1
|
van Asch CJ, Luitse MJ, Rinkel GJ, van der
Tweel I, Algra A and Klijn CJ: Incidence, case fatality, and
functional outcome of intracerebral haemorrhage over time,
according to age, sex, and ethnic origin: A systematic review and
meta-analysis. Lancet Neurol. 9:167–176. 2010. View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhang Y, Zhang X, Wei Q, Leng S, Li C, Han
B, Bai Y, Zhang H and Yao H: Activation of sigma-1 receptor
enhanced pericyte survival via the interplay between apoptosis and
autophagy: Implications for blood-brain barrier integrity in
stroke. Transl Stroke Res. 11:267–287. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Zhang Z, Cho S, Rehni AK, Quero HN, Dave
KR and Zhao W: Automated assessment of hematoma volume of rodents
subjected to experimental intracerebral hemorrhagic stroke by bayes
segmentation approach. Transl Stroke Res. 11:789–798. 2020.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Gross BA, Jankowitz BT and Friedlander RM:
Cerebral intraparenchymal hemorrhage: A review. JAMA.
321:1295–1303. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Wu X, Luo J, Liu H, Cui W, Guo K, Zhao L,
Bai H, Guo W, Guo H, Feng D and Qu Y: Recombinant adiponectin
peptide ameliorates brain injury following intracerebral hemorrhage
by suppressing astrocyte-derived inflammation via the inhibition of
Drp1-mediated mitochondrial fission. Transl Stroke Res. 11:924–939.
2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hanley DF, Thompson RE, Rosenblum M,
Yenokyan G, Lane K, McBee N, Mayo SW, Bistran-Hall AJ, Gandhi D,
Mould WA, et al: Efficacy and safety of minimally invasive surgery
with thrombolysis in intracerebral haemorrhage evacuation (MISTIE
III): A randomised, controlled, open-label, blinded endpoint phase
3 trial. Lancet. 393:1021–1032. 2019. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chen J, Zhu J, He J, Wang Y, Chen L, Zhang
C, Zhou J and Yang L: Ultra-early microsurgical treatment within 24
h of SAH improves prognosis of poor-grade aneurysm combined with
intracerebral hematoma. Oncol Lett. 11:3173–3178. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen J, Wang Y, Wu J, Yang J, Li M and
Chen Q: The potential value of targeting ferroptosis in early brain
injury after acute CNS disease. Front Mol Neurosci. 13:1102020.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Adeoye O and Broderick JP: Advances in the
management of intracerebral hemorrhage. Nat Rev Neurol. 6:593–601.
2010. View Article : Google Scholar : PubMed/NCBI
|
10
|
Mendelow AD, Gregson BA, Rowan EN, Murray
GD, Gholkar A and Mitchell PM; STICH II Investigators, : Early
surgery versus initial conservative treatment in patients with
spontaneous supratentorial lobar intracerebral haematomas (STICH
II): A randomised trial. Lancet. 382:397–408. 2013. View Article : Google Scholar : PubMed/NCBI
|
11
|
Zhou Y, Wang Y, Wang J, Anne Stetler R and
Yang QW: Inflammation in intracerebral hemorrhage: From mechanisms
to clinical translation. Prog Neurobiol. 115:25–44. 2014.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Xue M and Yong VW: Neuroinflammation in
intracerebral haemorrhage: Immunotherapies with potential for
translation. Lancet Neurol. 19:1023–1032. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Chen JH, Yang LK, Chen L, Wang YH, Wu Y,
Jiang BJ, Zhu J and Li PP: Atorvastatin ameliorates early brain
injury after subarachnoid hemorrhage via inhibition of AQP4
expression in rabbits. Int J Mol Med. 37:1059–1066. 2016.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Bao WD, Zhou XT, Zhou LT, Wang F, Yin X,
Lu Y, Zhu LQ and Liu D: Targeting miR-124/Ferroportin signaling
ameliorated neuronal cell death through inhibiting apoptosis and
ferroptosis in aged intracerebral hemorrhage murine model. Aging
Cell. 19:e132352020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Gautam J, Xu L, Nirwane A, Nguyen B and
Yao Y: Loss of mural cell-derived laminin aggravates hemorrhagic
brain injury. J Neuroinflammation. 17:1032020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Karuppagounder SS, Alim I, Khim SJ,
Bourassa MW, Sleiman SF, John R, Thinnes CC, Yeh TL, Demetriades M,
Neitemeier S, et al: Therapeutic targeting of oxygen-sensing prolyl
hydroxylases abrogates ATF4-dependent neuronal death and improves
outcomes after brain hemorrhage in several rodent models. Sci
Transl Med. 8:328ra3292016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Chen J, Xuan Y, Chen Y, Wu T, Chen L, Guan
H, Yang S, He J, Shi D and Wang Y: Netrin-1 alleviates subarachnoid
haemorrhage-induced brain injury via the PPARγ/NF-KB signalling
pathway. J Cell Mol Med. 23:2256–2262. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhou Y, Tao T, Liu G, Gao X, Gao Y, Zhuang
Z, Lu Y, Wang H, Li W, Wu L, et al: TRAF3 mediates neuronal
apoptosis in early brain injury following subarachnoid hemorrhage
via targeting TAK1-dependent MAPKs and NF-κB pathways. Cell Death
Dis. 12:102021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Chernyshev OY, Bir SC, Maiti TK, Patra DP,
Sun H, Guthikonda B, Kelley RE, Cuellar H, Minagar A and Nanda A:
The relationship between obstructive sleep apnea and ruptured
intracranial aneurysms. J Clin Sleep Med. 15:1839–1848. 2019.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Mason RH, Ruegg G, Perkins J, Hardinge M,
Amann-Vesti B, Senn O, Stradling JR and Kohler M: Obstructive sleep
apnea in patients with abdominal aortic aneurysms: Highly prevalent
and associated with aneurysm expansion. Am J Respir Crit Care Med.
183:668–674. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Zaremba S, Albus L, Schuss P, Vatter H,
Klockgether T and Güresir E: Increased risk for subarachnoid
hemorrhage in patients with sleep apnea. J Neurol. 266:1351–1357.
2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Geer JH, Falcone GJ, Vanent KN, Leasure
AC, Woo D, Molano JR, Sansing LH, Langefeld CD, Pisani MA, Yaggi HK
and Sheth KN: Obstructive sleep apnea as a risk factor for
intracerebral hemorrhage. Stroke. 52:1835–1838. 2021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bir SC, Nanda A, Cuellar H, Sun H,
Guthikonda B, Liendo C, Minagar A and Chernyshev OY: Coexistence of
obstructive sleep apnea worsens the overall outcome of intracranial
aneurysm: A pioneer study. J Neurosurg. 128:735–746. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Pontes-Neto OM, Fernandes RM, Sander HH,
da Silva LA, Mariano DC, Nobre F, Simão G, de Araujo DB, dos Santos
AC and Leite JP: Obstructive sleep apnea is frequent in patients
with hypertensive intracerebral hemorrhage and is related to
perihematoma edema. Cerebrovasc Dis. 29:36–42. 2010. View Article : Google Scholar : PubMed/NCBI
|
25
|
Orrù G, Storari M, Scano A, Piras V, Taibi
R and Viscuso D: Obstructive sleep apnea, oxidative stress,
inflammation and endothelial dysfunction-an overview of predictive
laboratory biomarkers. Eur Rev Med Pharmacol Sci. 24:6939–6948.
2020.PubMed/NCBI
|
26
|
Hung MW, Tipoe GL, Poon AM, Reiter RJ and
Fung ML: Protective effect of melatonin against hippocampal injury
of rats with intermittent hypoxia. J Pineal Res. 44:214–221. 2008.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Chen J, Zhang C, Yan T, Yang L, Wang Y,
Shi Z, Li M and Chen Q: Atorvastatin ameliorates early brain injury
after subarachnoid hemorrhage via inhibition of pyroptosis and
neuroinflammation. J Cell Physiol. Mar 31–2021.(Epub ahead of
print). View Article : Google Scholar
|
28
|
Wu X, Luo J, Liu H, Cui W, Guo W, Zhao L,
Guo H, Bai H, Guo K, Feng D and Qu Y: Recombinant adiponectin
peptide promotes neuronal survival after intracerebral haemorrhage
by suppressing mitochondrial and ATF4-CHOP apoptosis pathways in
diabetic mice via Smad3 signalling inhibition. Cell Prolif.
53:e127592020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Lu Z, Wang Z, Yu L, Ding Y, Xu Y, Xu N, Li
R, Tang J, Chen G and Zhang JH: GCN2 reduces inflammation by
p-eIF2α/ATF4 pathway after intracerebral hemorrhage in mice. Exp
Neurol. 313:16–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
National Research Council Institute for
Laboratory Animal Research, . Guide for the Care and Use of
Laboratory Animals National Academies Press. National Academy of
Sciences; Washington, DC: 1996
|
31
|
Deng S, Sherchan P, Jin P, Huang L, Travis
Z, Zhang JH, Gong Y and Tang J: Recombinant CCL17 enhances hematoma
resolution and activation of CCR4/ERK/Nrf2/CD163 signaling pathway
after intracerebral hemorrhage in mice. Neurotherapeutics.
17:1940–1953. 2020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li L, Ren F, Qi C, Xu L, Fang Y, Liang M,
Feng J, Chen B, Ning W and Cao J: Intermittent hypoxia promotes
melanoma lung metastasis via oxidative stress and inflammation
responses in a mouse model of obstructive sleep apnea. Respir Res.
19:282018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chen JH, Wu T, Xia WY, Shi ZH, Zhang CL,
Chen L, Chen QX and Wang YH: An early neuroprotective effect of
atorvastatin against subarachnoid hemorrhage. Neural Regen Res.
15:1947–1954. 2020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Li G, Dong Y, Liu D, Zou Z, Hao G, Gao X,
Pan P and Liang G: NEK7 coordinates rapid neuroinflammation after
subarachnoid hemorrhage in mice. Front Neurol. 11:5512020.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Chen JH, Wu T, Yang LK, Chen L, Zhu J, Li
PP, Hu X and Wang YH: Protective effects of atorvastatin on
cerebral vessel autoregulation in an experimental rabbit model of
subarachnoid hemorrhage. Mol Med Rep. 17:1651–1659. 2018.PubMed/NCBI
|
36
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Nguyen JQN, Resnick CM, Chang YH, Hansen
RM, Fulton AB, Moskowitz A, Calabrese CE and Dagi LR: Impact of
obstructive sleep apnea on optic nerve function in patients with
craniosynostosis and recurrent intracranial hypertension. Am J
Ophthalmol. 207:356–362. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Wei C, Guo S, Liu W, Jin F, Wei B, Fan H,
Su H, Liu J, Zhang N, Fang D, et al: Resolvin D1 ameliorates
inflammation-mediated blood-brain barrier disruption after
subarachnoid hemorrhage in rats by modulating A20 and NLRP3
inflammasome. Front Pharmacol. 11:6107342020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Deng S, Liu S, Jin P, Feng S, Tian M, Wei
P, Zhu H, Tan J, Zhao F and Gong Y: Albumin reduces oxidative
stress and neuronal apoptosis via the ERK/Nrf2/HO-1 pathway after
intracerebral hemorrhage in rats. Oxid Med Cell Longev.
2021:88913732021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Prabhakar NR, Peng YJ and Nanduri J:
Hypoxia-inducible factors and obstructive sleep apnea. J Clin
Invest. 130:5042–5051. 2020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Tan J, Xing H, Sha S, Li J, Miao Y and
Zhang Q: Analysis of circulating microvesicles levels and effects
of associated factors in elderly patients with obstructive sleep
apnea. Front Aging Neurosci. 13:6092822021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Strausz S, Ruotsalainen S, Ollila HM,
Karjalainen J, Kiiskinen T, Reeve M, Kurki M, Mars N, Havulinna AS,
Luonsi E, et al: Genetic analysis of obstructive sleep apnoea
discovers a strong association with cardiometabolic health. Eur
Respir J. 57:20030912021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Li J, McEvoy RD, Zheng D, Loffler KA, Wang
X, Redline S, Woodman RJ and Anderson CS: Self-reported snoring
patterns predict stroke events in high-risk patients with osa: Post
hoc analyses of the save study. Chest. 158:2146–2154. 2020.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Yu LM, Zhang WH, Han XX, Li YY, Lu Y, Pan
J, Mao JQ, Zhu LY, Deng JJ, Huang W and Liu YH: Hypoxia-induced ROS
contribute to myoblast pyroptosis during obstructive sleep apnea
via the NF-κB/HIF-1α signaling pathway. Oxid Med Cell Longev.
2019:45963682019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Zhu Y, Fenik P, Zhan G, Mazza E, Kelz M,
Aston-Jones G and Veasey SC: Selective loss of catecholaminergic
wake active neurons in a murine sleep apnea model. J Neurosci.
27:10060–10071. 2007. View Article : Google Scholar : PubMed/NCBI
|
46
|
Lim DC and Pack AI: Obstructive sleep
apnea and cognitive impairment: Addressing the blood-brain barrier.
Sleep Med Rev. 18:35–48. 2014. View Article : Google Scholar : PubMed/NCBI
|
47
|
Halder SK and Milner R: Mild hypoxia
triggers transient blood-brain barrier disruption: A fundamental
protective role for microglia. Acta Neuropathol Commun. 8:1752020.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Zolotoff C, Voirin AC, Puech C, Roche F
and Perek N: Intermittent hypoxia and its impact on Nrf2/HIF-1α
expression and ABC transporters: An in vitro human blood-brain
barrier model study. Cell Physiol Biochem. 54:1231–1248. 2020.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Gong LJ, Wang XY, Gu WY and Wu X:
Pinocembrin ameliorates intermittent hypoxia-induced
neuroinflammation through BNIP3-dependent mitophagy in a murine
model of sleep apnea. J Neuroinflammation. 17:3372020. View Article : Google Scholar : PubMed/NCBI
|
50
|
Deng Y, Liu K, Pan Y, Ren J, Shang J, Chen
L and Liu H: TLR2 antagonism attenuates the hippocampal neuronal
damage in a murine model of sleep apnea via inhibiting
neuroinflammation and oxidative stress. Sleep Breath. 24:1613–1621.
2020. View Article : Google Scholar : PubMed/NCBI
|
51
|
Johnson SM, Randhawa KS, Epstein JJ,
Gustafson E, Hocker AD, Huxtable AG, Baker TL and Watters JJ:
Gestational intermittent hypoxia increases susceptibility to
neuroinflammation and alters respiratory motor control in neonatal
rats. Respir Physiol Neurobiol. 256:128–142. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Wang C and Guo F: Effects of activating
transcription factor 4 deficiency on carbohydrate and lipid
metabolism in mammals. IUBMB Life. 64:226–230. 2012. View Article : Google Scholar : PubMed/NCBI
|
53
|
Aimé P, Karuppagounder SS, Rao A, Chen Y,
Burke RE, Ratan RR and Greene LA: The drug adaptaquin blocks
ATF4/CHOP-dependent pro-death Trib3 induction and protects in
cellular and mouse models of Parkinson's disease. Neurobiol Dis.
136:1047252020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Galehdar Z, Swan P, Fuerth B, Callaghan
SM, Park DS and Cregan SP: Neuronal apoptosis induced by
endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated
induction of the Bcl-2 homology 3-only member PUMA. J Neurosci.
30:16938–16948. 2010. View Article : Google Scholar : PubMed/NCBI
|
55
|
Harding HP, Zhang Y, Zeng H, Novoa I, Lu
PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, et al: An
integrated stress response regulates amino acid metabolism and
resistance to oxidative stress. Mol Cell. 11:619–633. 2003.
View Article : Google Scholar : PubMed/NCBI
|
56
|
Baleriola J, Walker CA, Jean YY, Crary JF,
Troy CM, Nagy PL and Hengst U: Axonally synthesized ATF4 transmits
a neurodegenerative signal across brain regions. Cell.
158:1159–1172. 2014. View Article : Google Scholar : PubMed/NCBI
|
57
|
Liu Y: Hydrogen peroxide induces nucleus
pulposus cell apoptosis by ATF4/CHOP signaling pathway. Exp Ther
Med. 20:3244–3252. 2020.PubMed/NCBI
|
58
|
Zhao YS, An JR, Yang S, Guan P, Yu FY, Li
W, Li JR, Guo Y, Sun ZM and Ji ES: Hydrogen and oxygen mixture to
improve cardiac dysfunction and myocardial pathological changes
induced by intermittent hypoxia in rats. Oxid Med Cell Longev.
2019:74152122019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Lange PS, Chavez JC, Pinto JT, Coppola G,
Sun CW, Townes TM, Geschwind DH and Ratan RR: ATF4 is an oxidative
stress-inducible, prodeath transcription factor in neurons in vitro
and in vivo. J Exp Med. 205:1227–1242. 2008. View Article : Google Scholar : PubMed/NCBI
|