Current treatment strategies for COVID‑19 (Review)
- Authors:
- Fabin Han
- Yanming Liu
- Mei Mo
- Juanli Chen
- Cheng Wang
- Yong Yang
- Jibiao Wu
-
Affiliations: The Translational Research Laboratory for Stem Cell and Traditional Chinese Medicine, Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250355, P.R. China, Laboratory for Stem Cell and Regenerative Medicine, Institute for Tissue Engineering and Regenerative Medicine, Liaocheng People's Hospital/Liaocheng University, Liaocheng, Shandong 252000, P.R. China - Published online on: October 15, 2021 https://doi.org/10.3892/mmr.2021.12498
- Article Number: 858
-
Copyright: © Han et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, et al: Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet. 395:565–574. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, Lu G, Qiao C, Hu Y, Yuen KY, et al: Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell. 181:894–904. e9. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, Geng Q, Auerbach A and Li F: Structural basis of receptor recognition by SARS-CoV-2. Nature. 581:221–224. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kuhn JH, Radoshitzky SR, Li W, Wong SK, Choe H and Farzan M: The SARS Coronavirus receptor ACE 2 A potential target for antiviral therapy. New Concepts of Antiviral Therapy. Holzenburg A and Bogner E: Springer US; Boston, MA: pp. 397–418. 2006, View Article : Google Scholar | |
Letko M, Marzi A and Munster V: Functional assessment of cell entry and receptor usage for SARS-CoV-2 and other lineage B betacoronaviruses. Nat Microbiol. 5:562–569. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez Y, Novelli L, Rojas M, De Santis M, Acosta-Ampudia Y, Monsalve DM, Ramírez-Santana C, Costanzo A, Ridgway WM, Ansari AA, et al: Autoinflammatory and autoimmune conditions at the crossroad of COVID-19. J Autoimmun. 114:1025062020. View Article : Google Scholar : PubMed/NCBI | |
Tay MZ, Poh CM, Rénia L, MacAry PA and Ng LFP: The trinity of COVID-19: Immunity, inflammation and intervention. Nat Rev Immunol. 20:363–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fricke-Galindo I and Falfán-Valencia R: Genetics insight for COVID-19 susceptibility and severity: A review. Front Immunol. 12:6221762021. View Article : Google Scholar : PubMed/NCBI | |
Maggi E, Canonica GW and Moretta L: COVID-19: Unanswered questions on immune response and pathogenesis. J Allergy Clin Immunol. 146:18–22. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ahmed-Hassan H, Sisson B, Shukla RK, Wijewantha Y, Funderburg NT, Li Z, Hayes D Jr, Demberg T and Liyanage NPM: Innate immune responses to highly pathogenic coronaviruses and other significant respiratory viral infections. Front Immunol. 11:19792020. View Article : Google Scholar : PubMed/NCBI | |
Li G and De Clercq E: Therapeutic options for the 2019 novel coronavirus (2019-nCoV). Nat Rev Drug Discov. 19:149–150. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zumla A, Chan JF, Azhar EI, Hui DS and Yuen KY: Coronaviruses-drug discovery and therapeutic options. Nat Rev Drug Discov. 15:327–347. 2016. View Article : Google Scholar : PubMed/NCBI | |
Alzaabi MM, Hamdy R, Ashmawy NS, Hamoda AM, Alkhayat F, Khademi NN, Al Joud SMA, El-Keblawy AA and Soliman SSM: Flavonoids are promising safe therapy against COVID-19. Phytochem Rev. May 22–2021.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Savarino A, Di Trani L, Donatelli I, Cauda R and Cassone A: New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 6:67–69. 2006. View Article : Google Scholar : PubMed/NCBI | |
Al-Bari MA: Chloroquine analogues in drug discovery: New directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 70:1608–1621. 2015. View Article : Google Scholar : PubMed/NCBI | |
Keyaerts E, Vijgen L, Maes P, Neyts J and Van Ranst M: In vitro inhibition of severe acute respiratory syndrome coronavirus by chloroquine. Biochem Biophys Res Commun. 323:264–268. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, Shi Z, Hu Z, Zhong W and Xiao G: Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30:269–271. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Tian Z and Yang X: Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 14:72–73. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang M, Tang T, Pang P, Li M, Ma R, Lu J, Shu J, You Y, Chen B, Liang J, et al: Treating COVID-19 with chloroquine. J Mol Cell Biol. 12:322–325. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Ye F, Zhang M, Cui C, Huang B, Niu P, Liu X, Zhao L, Dong E, Song C, et al: In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 71:732–739. 2020. View Article : Google Scholar : PubMed/NCBI | |
Andreani J, Le Bideau M, Duflot I, Jardot P, Rolland C, Boxberger M, Wurtz N, Rolain JM, Colson P, La Scola B and Raoult D: In vitro testing of combined hydroxychloroquine and azithromycin on SARS-CoV-2 shows synergistic effect. Microb Pathog. 145:1042282020. View Article : Google Scholar : PubMed/NCBI | |
Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, Mailhe M, Doudier B, Courjon J, Giordanengo V, Vieira VE, et al: Hydroxychloroquine and azithromycin as a treatment of COVID-19: Results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 56:1059492020. View Article : Google Scholar : PubMed/NCBI | |
Arshad S, Kilgore P, Chaudhry ZS, Jacobsen G, Wang DD, Huitsing K, Brar I, Alangaden GJ, Ramesh MS, McKinnon JE, et al: Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. Int J Infect Dis. 97:396–403. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hernandez AV, Roman YM, Pasupuleti V, Barboza JJ and White CM: Hydroxychloroquine or chloroquine for treatment or prophylaxis of COVID-19: A living systematic review. Ann Intern Med. 173:287–296. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chowdhury MS, Rathod J and Gernsheimer J: A rapid systematic review of clinical trials utilizing chloroquine and hydroxychloroquine as a treatment for COVID-19. Acad Emerg Med. 27:493–504. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elavarasi A, Prasad M, Seth T, Sahoo RK, Madan K, Nischal N, Soneja M, Sharma A, Maulik SK, Shalimar and Garg P: Chloroquine and hydroxychloroquine for the treatment of COVID-19: A systematic review and meta-analysis. J Gen Intern Med. 35:3308–3314. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kumar J, Jain S, Meena J and Yadav A: Efficacy and safety of hydroxychloroquine/chloroquine against SARS-CoV-2 infection: A systematic review and meta-analysis. J Infect Chemother. 27:882–889. 2021. View Article : Google Scholar : PubMed/NCBI | |
Eckerle LD, Becker MM, Halpin RA, Li K, Venter E, Lu X, Scherbakova S, Graham RL, Baric RS, Stockwell TB, et al: Infidelity of SARS-CoV Nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6:e10008962010. View Article : Google Scholar : PubMed/NCBI | |
Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, Soloveva V, Siegel D, Perron M, Bannister R, Hui HC, et al: Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 531:381–385. 2016. View Article : Google Scholar : PubMed/NCBI | |
Dong L, Hu S and Gao J: Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discov Ther. 14:58–60. 2020. View Article : Google Scholar : PubMed/NCBI | |
Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, Lu X, Smith EC, Case JB, Feng JY, Jordan R, et al: Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. mBio. 9:e00221–e00228. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, Zhao C, Sun H, Huang B, Niu P, et al: Both boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun. 11:44172020. View Article : Google Scholar : PubMed/NCBI | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First case of 2019 Novel Coronavirus in the United States. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Grein J, Ohmagari N, Shin D, Diaz G, Asperges E, Castagna A, Feldt T, Green G, Green ML, Lescure FX, et al: Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 382:2327–2336. 2020. View Article : Google Scholar : PubMed/NCBI | |
Spinner CD, Gottlieb RL, Criner GJ, Arribas López JR, Cattelan AM, Soriano Viladomiu A, Ogbuagu O, Malhotra P, Mullane KM, Castagna A, et al: Effect of remdesivir vs standard care on clinical status at 11 days in patients with moderate COVID-19: A randomized clinical trial. JAMA. 324:1048–1057. 2020. View Article : Google Scholar : PubMed/NCBI | |
Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, Hohmann E, Chu HY, Luetkemeyer A, Kline S, et al: Remdesivir for the treatment of Covid-19-final report. N Engl J Med. 383:1813–1826. 2020. View Article : Google Scholar : PubMed/NCBI | |
Garibaldi BT, Wang K, Robinson ML, Zeger SL, Bandeen-Roche K, Wang MC, Alexander GC, Gupta A, Bollinger R and Xu Y: Comparison of time to clinical improvement with vs without remdesivir treatment in hospitalized patients with COVID-19. JAMA Netw Open. 4:e2130712021. View Article : Google Scholar : PubMed/NCBI | |
Aleissa MM, Silverman EA, Paredes Acosta LM, Nutt CT, Richterman A and Marty FM: New perspectives on antimicrobial agents: Remdesivir treatment for COVID-19. Antimicrob Agents Chemother. 65:e01814–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
Elfiky AA: Ribavirin, remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci. 253:1175922020. View Article : Google Scholar : PubMed/NCBI | |
Falzarano D, de Wit E, Martellaro C, Callison J, Munster VJ and Feldmann H: Inhibition of novel β coronavirus replication by a combination of interferon-α2b and ribavirin. Sci Rep. 3:16862013. View Article : Google Scholar : PubMed/NCBI | |
Falzarano D, de Wit E, Rasmussen AL, Feldmann F, Okumura A, Scott DP, Brining D, Bushmaker T, Martellaro C, Baseler L, et al: Treatment with interferon-α2b and ribavirin improves outcome in MERS-CoV-infected rhesus macaques. Nat Med. 19:1313–1317. 2013. View Article : Google Scholar : PubMed/NCBI | |
De Clercq E: New nucleoside analogues for the treatment of hemorrhagic fever virus infections. Chem Asian J. 14:3962–3968. 2019. View Article : Google Scholar : PubMed/NCBI | |
Choy KT, Wong AY, Kaewpreedee P, Sia SF, Chen D, Hui KPY, Chu DKW, Chan MCW, Cheung PP, Huang X, et al: Remdesivir, lopinavir, emetine, and homoharringtonine inhibit SARS-CoV-2 replication in vitro. Antiviral Res. 178:1047862020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Zhang Y, Huang J, Yin P, Cheng Z, Wu J, Chen S, Zhang Y, Chen B, Lu M, et al: Favipiravir versus Arbidol for COVID-19: A randomized clinical trial. medRxiv: 2020.03.17.20037432. 2020. View Article : Google Scholar | |
Taylor R, Kotian P, Warren T, Panchal R, Bavari S, Julander J, Dobo S, Rose A, El-Kattan Y, Taubenheim B, et al: BCX4430-A broad-spectrum antiviral adenosine nucleoside analog under development for the treatment of Ebola virus disease. J Infect Public Health. 9:220–226. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shu H, Wang S, Ruan S, Wang Y, Zhang J, Yuan Y, Liu H, Wu Y, Li R, Pan S, et al: Dynamic changes of antibodies to SARS-CoV-2 in COVID-19 patients at early stage of outbreak. Virol Sin. 35:744–751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Brouwer PJM, Caniels TG, van der Straten K, Snitselaar JL, Aldon Y, Bangaru S, Torres JL, Okba NMA, Claireaux M, Kerster G, et al: Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability. Science. 369:643–650. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chan KH, Chan JF, Tse H, Chen H, Lau CC, Cai JP, Tsang AK, Xiao X, To KK, Lau SK, et al: Cross-reactive antibodies in convalescent SARS patients' sera against the emerging novel human coronavirus EMC (2012) by both immunofluorescent and neutralizing antibody tests. J Infect. 67:130–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mair-Jenkins J, Saavedra-Campos M, Baillie JK, Cleary P, Khaw FM, Lim WS, Makki S, Rooney KD, Nguyen-Van-Tam JS and Beck CR; Convalescent Plasma Study Group, : The effectiveness of convalescent plasma and hyperimmune immunoglobulin for the treatment of severe acute respiratory infections of viral etiology: A systematic review and exploratory meta-analysis. J Infect Dis. 211:80–90. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tian X, Li C, Huang A, Xia S, Lu S, Shi Z, Lu L, Jiang S, Yang Z, Wu Y and Ying T: Potent binding of 2019 novel coronavirus spike protein by a SARS coronavirus-specific human monoclonal antibody. Emerg Microbes Infect. 9:382–385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Sui J, Deming M, Rockx B, Liddington RC, Zhu QK, Baric RS and Marasco WA: Effects of human anti-spike protein receptor binding domain antibodies on severe acute respiratory syndrome coronavirus neutralization escape and fitness. J Virol. 88:13769–13780. 2014. View Article : Google Scholar : PubMed/NCBI | |
Jiang S, Hillyer C and Du L: Neutralizing antibodies against SARS-CoV-2 and other human coronaviruses: (Trends in Immunology 41, 355–359; 2020). Trends Immunol. 41:5452020. View Article : Google Scholar : PubMed/NCBI | |
Mulangu S, Dodd LE, Davey RT Jr, Tshiani Mbaya O, Proschan M, Mukadi D, Lusakibanza Manzo M, Nzolo D, Tshomba Oloma A, Ibanda A, et al: A randomized, controlled trial of Ebola virus disease therapeutics. N Engl J Med. 381:2293–2303. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi R, Shan C, Duan X, Chen Z, Liu P, Song J, Song T, Bi X, Han C, Wu L, et al: A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature. 584:120–124. 2020. View Article : Google Scholar : PubMed/NCBI | |
Valdez-Cruz NA, García-Hernández E, Espitia C, Cobos-Marín L, Altamirano C, Bando-Campos CG, Cofas-Vargas LF, Coronado-Aceves EW, González-Hernández RA, Hernández-Peralta P, et al: Integrative overview of antibodies against SARS-CoV-2 and their possible applications in COVID-19 prophylaxis and treatment. Microb Cell Fact. 20:882021. View Article : Google Scholar : PubMed/NCBI | |
Chen P, Nirula A, Heller B, Gottlieb RL, Boscia J, Morris J, Huhn G, Cardona J, Mocherla B, Stosor V, et al: SARS-CoV-2 neutralizing antibody LY-CoV555 in outpatients with Covid-19. N Engl J Med. 384:229–237. 2021. View Article : Google Scholar : PubMed/NCBI | |
Katia F, Myriam DP, Ucciferri C, Auricchio A, Di Nicola M, Marchioni M, Eleonora C, Emanuela S, Cipollone F and Vecchiet J: Efficacy of canakinumab in mild or severe COVID-19 pneumonia. Immun Inflamm Dis. 9:399–405. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hung IF, To KK, Lee CK, Lee KL, Chan K, Yan WW, Liu R, Watt CL, Chan WM, Lai KY, et al: Convalescent plasma treatment reduced mortality in patients with severe pandemic influenza A (H1N1) 2009 virus infection. Clin Infect Dis. 52:447–456. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ko JH, Seok H, Cho SY, Ha YE, Baek JY, Kim SH, Kim YJ, Park JK, Chung CR, Kang ES, et al: Challenges of convalescent plasma infusion therapy in Middle East respiratory coronavirus infection: A single centre experience. Antivir Ther. 23:617–622. 2018. View Article : Google Scholar : PubMed/NCBI | |
Soo YO, Cheng Y, Wong R, Hui DS, Lee CK, Tsang KK, Ng MH, Chan P, Cheng G and Sung JJ: Retrospective comparison of convalescent plasma with continuing high-dose methylprednisolone treatment in SARS patients. Clin Microbiol Infect. 10:676–678. 2004. View Article : Google Scholar : PubMed/NCBI | |
Casadevall A, Grossman BJ, Henderson JP, Joyner MJ, Shoham S, Pirofski LA and Paneth N: The assessment of convalescent plasma efficacy against COVID-19. Med (N Y). 1:66–77. 2020.PubMed/NCBI | |
Arabi Y, Balkhy H, Hajeer AH, Bouchama A, Hayden FG, Al-Omari A, Al-Hameed FM, Taha Y, Shindo N, Whitehead J, et al: Feasibility, safety, clinical, and laboratory effects of convalescent plasma therapy for patients with Middle East respiratory syndrome coronavirus infection: A study protocol. Springerplus. 4:7092015. View Article : Google Scholar : PubMed/NCBI | |
Ahn JY, Sohn Y, Lee SH, Cho Y, Hyun JH, Baek YJ, Jeong SJ, Kim JH, Ku NS, Yeom JS, et al: Use of convalescent plasma therapy in two COVID-19 patients with acute respiratory distress syndrome in Korea. J Korean Med Sci. 35:e1492020. View Article : Google Scholar : PubMed/NCBI | |
Duan K, Liu B, Li C, Zhang H, Yu T, Qu J, Zhou M, Chen L, Meng S, Hu Y, et al: Effectiveness of convalescent plasma therapy in severe COVID-19 patients. Proc Natl Acad Sci USA. 117:9490–9496. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Shergis J, Chen X, Yu X, Guo X, Zhang AL, Lu C and Xue CC: Chinese herbal medicine (weijing decoction) combined with pharmacotherapy for the treatment of acute exacerbations of chronic obstructive pulmonary disease. Evid Based Complement Alternat Med. 2014:2570122014. View Article : Google Scholar : PubMed/NCBI | |
Leung PC: The efficacy of Chinese medicine for SARS: A review of Chinese publications after the crisis. Am J Chin Med. 35:575–581. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cinatl J, Morgenstern B, Bauer G, Chandra P, Rabenau H and Doerr HW: Glycyrrhizin, an active component of liquorice roots, and replication of SARS-associated coronavirus. Lancet. 361:2045–2046. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wang SQ, Du QS, Zhao K, Li AX, Wei DQ and Chou KC: Virtual screening for finding natural inhibitor against cathepsin-L for SARS therapy. Amino Acids. 33:129–135. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ho TY, Wu SL, Chen JC, Li CC and Hsiang CY: Emodin blocks the SARS coronavirus spike protein and angiotensin-converting enzyme 2 interaction. Antiviral Res. 74:92–101. 2007. View Article : Google Scholar : PubMed/NCBI | |
Niu M, Wang RL, Wang ZX, Zhang P, Bai ZF, Jing J, Guo YM, Zhao X, Zhan XY, Zhang ZT, et al: Rapid establishment of traditional Chinese medicine prevention and treatment of 2019-nCoV based on clinical experience and molecular docking. Zhongguo Zhong Yao Za Zhi. 45:1213–1218. 2020.(In Chinese). PubMed/NCBI | |
Runfeng L, Yunlong H, Jicheng H, Weiqi P, Qinhai M, Yongxia S, Chufang L, Jin Z, Zhenhua J, Haiming J, et al: Lianhuaqingwen exerts anti-viral and anti-inflammatory activity against novel coronavirus (SARS-CoV-2). Pharmacol Res. 156:1047612020. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Ye F, Sun Q, Liang H, Li C, Li S, Lu R, Huang B, Tan W and Lai L: Scutellaria baicalensis extract and baicalein inhibit replication of SARS-CoV-2 and its 3C-like protease in vitro. bioRxiv: 2020.04.10.035824. 2020. | |
Zhu J, Deng YQ, Wang X, Li XF, Zhang NN, Liu Z, Zhang B, Qin CF and Xie Z: An artificial intelligence system reveals liquiritin inhibits SARS-CoV-2 by mimicking type I interferon. bioRxiv: doi: https://doi.org/10.1101/2020.05.02.074021. View Article : Google Scholar | |
Chen Z and Nakamura T: Statistical evidence for the usefulness of Chinese medicine in the treatment of SARS. Phytother Res. 18:592–594. 2004. View Article : Google Scholar : PubMed/NCBI | |
Luo H, Tang QL, Shang YX, Liang SB, Yang M, Robinson N and Liu JP: Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integr Med. 26:243–250. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ang L, Lee HW, Choi JY, Zhang J and Soo Lee M: Herbal medicine and pattern identification for treating COVID-19: A rapid review of guidelines. Integr Med Res. 9:1004072020. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Wang J and Shen H: Network pharmacology-based analysis of the role of traditional Chinese herbal medicines in the treatment of COVID-19. Ann Palliat Med. 9:437–446. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, Wang Q, Xu Y, Li M, Li X, et al: Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 10:766–788. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang DH, Wu KL, Zhang X, Deng SQ and Peng B: In silico screening of Chinese herbal medicines with the potential to directly inhibit 2019 novel coronavirus. J Integr Med. 18:152–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Wang Y, Qi C, Shen L and Li J: Clinical trial analysis of 2019-nCoV therapy registered in China. J Med Virol. 92:540–545. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kulanthaivel S, Kaliberdenko VB, Balasundaram K, Shterenshis MV, Scarpellini E and Abenavoli L: Tocilizumab in SARS-CoV-2 patients with the syndrome of cytokine storm: A narrative review. Rev Recent Clin Trials. 16:138–145. 2021. View Article : Google Scholar : PubMed/NCBI | |
Toniati P, Piva S, Cattalini M, Garrafa E, Regola F, Castelli F, Franceschini F, Airò P, Bazzani C, Beindorf EA, et al: Tocilizumab for the treatment of severe COVID-19 pneumonia with hyperinflammatory syndrome and acute respiratory failure: A single center study of 100 patients in Brescia, Italy. Autoimmun Rev. 19:1025682020. View Article : Google Scholar : PubMed/NCBI | |
Caly L, Druce JD, Catton MG, Jans DA and Wagstaff KM: The FDA-approved drug ivermectin inhibits the replication of SARS-CoV-2 in vitro. Antiviral Res. 178:1047872020. View Article : Google Scholar : PubMed/NCBI | |
Yang SNY, Atkinson SC, Wang C, Lee A, Bogoyevitch MA, Borg NA and Jans DA: The broad spectrum antiviral ivermectin targets the host nuclear transport importin α/β1 heterodimer. Antiviral Res. 177:1047602020. View Article : Google Scholar : PubMed/NCBI | |
Monteagudo LA, Boothby A and Gertner E: Continuous intravenous anakinra infusion to calm the cytokine storm in macrophage activation syndrome. ACR Open Rheumatol. 2:276–282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Franzetti M, Forastieri A, Borsa N, Pandolfo A, Molteni C, Borghesi L, Pontiggia S, Evasi G, Guiotto L, Erba M, et al: IL-1 receptor antagonist anakinra in the treatment of COVID-19 acute respiratory distress syndrome: A retrospective, observational study. J Immunol. 206:1569–1575. 2021. View Article : Google Scholar : PubMed/NCBI | |
Romani L, Tomino C, Puccetti P and Garaci E: Off-label therapy targeting pathogenic inflammation in COVID-19. Cell Death Discov. 6:492020. View Article : Google Scholar : PubMed/NCBI | |
Puccetti M, Costantini C, Ricci M and Giovagnoli S: Tackling immune pathogenesis of COVID-19 through molecular pharmaceutics. Pharmaceutics. 13:4942021. View Article : Google Scholar : PubMed/NCBI | |
D'Ardes D, Pontolillo M, Esposito L, Masciarelli M, Boccatonda A, Rossi I, Bucci M, Guagnano MT, Ucciferri C, Santilli F, et al: Duration of COVID-19: Data from an Italian cohort and potential role for steroids. Microorganisms. 8:13272020. View Article : Google Scholar : PubMed/NCBI | |
Horby P, White NJ and Landray MJ: Hydroxychloroquine in hospitalized patients with Covid-19. Reply. N Engl J Med. 384:8822021.PubMed/NCBI | |
Ucciferri C, Barone M, Vecchiet J and Falasca K: Pidotimod in paucisymptomatic SARS-CoV2 infected patients. Mediterr J Hematol Infect Dis. 12:e20200482020. View Article : Google Scholar : PubMed/NCBI | |
Saakre M, Mathew D and Ravisankar V: Perspectives on plant flavonoid quercetin-based drugs for novel SARS-CoV-2. Beni Suef Univ J Basic Appl Sci. 10:212021. View Article : Google Scholar : PubMed/NCBI | |
López-Cortés A, Guevara-Ramírez P, Kyriakidis NC, Barba-Ostria C, León Cáceres Á, Guerrero S, Ortiz-Prado E, Munteanu CR, Tejera E, Cevallos-Robalino D, et al: In silico analyses of immune system protein interactome network, single-cell rna sequencing of human tissues, and artificial neural networks reveal potential therapeutic targets for drug repurposing against COVID-19. Front Pharmacol. 12:5989252021. View Article : Google Scholar : PubMed/NCBI | |
Hong W: Combating COVID-19 with chloroquine. J Mol Cell Biol. 12:249–250. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lan J, Ge J, Yu J, Shan S, Zhou H, Fan S, Zhang Q, Shi X, Wang Q, Zhang L and Wang X: Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature. 581:215–220. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Cao R, Xu M, Wang X, Zhang H, Hu H, Li Y, Hu Z, Zhong W and Wang M: Hydroxychloroquine, a less toxic derivative of chloroquine, is effective in inhibiting SARS-CoV-2 infection in vitro. Cell Discov. 6:162020. View Article : Google Scholar | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280.e8. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kong Q, Wu Y, Gu Y, Lv Q, Qi F, Gong S and Chen X: Analysis of the molecular mechanism of Pudilan (PDL) treatment for COVID-19 by network pharmacology tools. Biomed Pharmacother. 128:1103162020. View Article : Google Scholar : PubMed/NCBI | |
Chu CK, Gadthula S, Chen X, Choo H, Olgen S, Barnard DL and Sidwell RW: Antiviral activity of nucleoside analogues against SARS-coronavirus (SARS-coV). Antivir Chem Chemother. 17:285–289. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gordon CJ, Tchesnokov EP, Woolner E, Perry JK, Feng JY, Porter DP and Götte M: Remdesivir is a direct-acting antiviral that inhibits RNA-dependent RNA polymerase from severe acute respiratory syndrome coronavirus 2 with high potency. J Biol Chem. 295:6785–6797. 2020. View Article : Google Scholar : PubMed/NCBI | |
Shannon A, Selisko B, Le NT, Huchting J, Touret F, Piorkowski G, Fattorini V, Ferron F, Decroly E, Meier C, et al: Rapid incorporation of Favipiravir by the fast and permissive viral RNA polymerase complex results in SARS-CoV-2 lethal mutagenesis. Nat Commun. 11:46822020. View Article : Google Scholar : PubMed/NCBI | |
Khan A, Khan M, Saleem S, Babar Z, Ali A, Khan AA, Sardar Z, Hamayun F, Ali SS and Wei DQ: Phylogenetic analysis and structural perspectives of RNA-dependent RNA-polymerase inhibition from SARs-CoV-2 with natural products. Interdiscip Sci. 12:335–348. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lin CW, Tsai FJ, Tsai CH, Lai CC, Wan L, Ho TY, Hsieh CC and Chao PD: Anti-SARS coronavirus 3C-like protease effects of Isatis indigotica root and plant-derived phenolic compounds. Antiviral Res. 68:36–42. 2005. View Article : Google Scholar : PubMed/NCBI | |
Park T, Lee SY, Kim S, Kim MJ, Kim HG, Jun S, Kim SI, Kim BT, Park EC and Park D: Spike protein binding prediction with neutralizing antibodies of SARS-CoV-2. bioRxiv: doi: 2020.02.22.951178. 2020. View Article : Google Scholar | |
Anand K, Ziebuhr J, Wadhwani P, Mesters JR and Hilgenfeld R: Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science. 300:1763–1767. 2003. View Article : Google Scholar : PubMed/NCBI | |
Zhou G and Zhao Q: Perspectives on therapeutic neutralizing antibodies against the novel coronavirus SARS-CoV-2. Int J Biol Sci. 16:1718–1723. 2020. View Article : Google Scholar : PubMed/NCBI | |
Quiros Roldan E, Biasiotto G, Magro P and Zanella I: The possible mechanisms of action of 4-aminoquinolines (chloroquine/hydroxychloroquine) against Sars-Cov-2 infection (COVID-19): A role for iron homeostasis? Pharmacol Res. 158:1049042020. View Article : Google Scholar : PubMed/NCBI | |
Zhou D, Dai SM and Tong Q: COVID-19: A recommendation to examine the effect of hydroxychloroquine in preventing infection and progression. J Antimicrob Chemother. 75:1667–1670. 2020. View Article : Google Scholar : PubMed/NCBI | |
Devaux CA, Rolain JM, Colson P and Raoult D: New insights on the antiviral effects of chloroquine against coronavirus: What to expect for COVID-19? Int J Antimicrob Agents. 55:1059382020. View Article : Google Scholar : PubMed/NCBI | |
Adhikari B, Marasini BP, Rayamajhee B, Bhattarai BR, Lamichhane G, Khadayat K, Adhikari A, Khanal S and Parajuli N: Potential roles of medicinal plants for the treatment of viral diseases focusing on COVID-19: A review. Phytother Res. 35:1298–1312. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lee DYW, Li QY, Liu J and Efferth T: Traditional Chinese herbal medicine at the forefront battle against COVID-19: Clinical experience and scientific basis. Phytomedicine. 80:1533372021. View Article : Google Scholar : PubMed/NCBI |