Research methods for animal models of atherosclerosis (Review)
- Authors:
- Yali Zhang
- Mahreen Fatima
- Siyuan Hou
- Liang Bai
- Sihai Zhao
- Enqi Liu
-
Affiliations: Research Institute of Atherosclerotic Disease, Xi'an Jiaotong University Cardiovascular Research Centre, Xi'an, Shaanxi 710061, P.R. China, Laboratory Animal Center, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China - Published online on: October 27, 2021 https://doi.org/10.3892/mmr.2021.12511
- Article Number: 871
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gimbrone MA Jr and Garcia-Cardena G: Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 118:620–636. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sena CM, Leandro A, Azul L, Seica R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Orekhov AN and Bobryshev YV: Effects of shear stress on endothelial cells: Go with the flow. Acta Physiol (Oxf). 219:382–408. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ, Sheedy FJ and Fisher EA: Macrophages in atherosclerosis: A dynamic balance. Nat Rev Immunol. 13:709–721. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Melnichenko AA, Myasoedova VA, Grechko AV and Orekhov AN: Mechanisms of foam cell formation in atherosclerosis. J Mol Med (Berl). 95:1153–1165. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bennett MR, Sinha S and Owens GK: Vascular smooth muscle cells in atherosclerosis. Circ Res. 118:692–702. 2016. View Article : Google Scholar : PubMed/NCBI | |
Davignon J and Ganz P: Role of endothelial dysfunction in atherosclerosis. Circulation. 109 (23 Suppl 1):III27–III32. 2004. View Article : Google Scholar : PubMed/NCBI | |
Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L and Giorgino F: Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 100:1–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hajjar DP and Gotto AM Jr: Biological relevance of inflammation and oxidative stress in the pathogenesis of arterial diseases. Am J Pathol. 182:1474–1481. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rhoads JP and Major AS: How oxidized low-density lipoprotein activates inflammatory responses. Crit Rev Immunol. 38:333–342. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Chen J, Tang X, Luo Q, Xu D and Yu B: Interaction between adipocytes and high-density lipoprotein: New insights into the mechanism of obesity-induced dyslipidemia and atherosclerosis. Lipids Health Dis. 18:2232019. View Article : Google Scholar : PubMed/NCBI | |
Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, Hegele RA, Krauss RM, Raal FJ, Schunkert H, et al: Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur Heart J. 38:2459–2472. 2017. View Article : Google Scholar : PubMed/NCBI | |
Messner B and Bernhard D: Smoking and cardiovascular disease: Mechanisms of endothelial dysfunction and early atherogenesis. Arterioscler Thromb Vasc Biol. 34:509–515. 2014. View Article : Google Scholar : PubMed/NCBI | |
Altman R: Risk factors in coronary atherosclerosis athero-inflammation: The meeting point. Thromb J. 1:42003. View Article : Google Scholar : PubMed/NCBI | |
Hollander W: Role of hypertension in atherosclerosis and cardiovascular disease. Am J Cardiol. 38:786–800. 1976. View Article : Google Scholar : PubMed/NCBI | |
Katakami N: Mechanism of development of atherosclerosis and cardiovascular disease in diabetes mellitus. J Atheroscler Thromb. 25:27–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lenfant C and Savage PJ: The early natural history of atherosclerosis and hypertension in the young: National institutes of health perspectives. Am J Med Sci. 310 (Suppl 1):S3–S7. 1995. View Article : Google Scholar : PubMed/NCBI | |
McNamara JJ, Molot MA, Stremple JF and Cutting RT: Coronary artery disease in combat casualties in Vietnam. JAMA. 216:1185–1187. 1971. View Article : Google Scholar : PubMed/NCBI | |
Strong JP, Mcgill HC Jr, Tejada C and Holman RL: The natural history of atherosclerosis; comparison of the early aortic lesions in New Orleans, Guatemala, and Costa Rica. Am J Pathol. 34:731–744. 1958.PubMed/NCBI | |
Enos WF, Holmes RH and Beyer J: Coronary disease among United States soldiers killed in action in Korea; preliminary report. J Am Med Assoc. 152:1090–1093. 1953. View Article : Google Scholar : PubMed/NCBI | |
Konstantinov IE and Jankovic GM: Alexander I. Ignatowski: A pioneer in the study of atherosclerosis. Tex Heart Inst J. 40:246–249. 2013.PubMed/NCBI | |
Daugherty A, Tall AR, Daemen M, Falk E, Fisher EA, García-Cardeña G, Lusis AJ, Owens AP III, Rosenfeld ME, Virmani R, et al: Recommendation on design, execution, and reporting of animal atherosclerosis studies: A scientific statement from the american heart association. Arterioscler Thromb Vasc Biol. 37:e131–e157. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Daugherty A and Lu HS: Updates on approaches for studying atherosclerosis. Arterioscler Thromb Vasc Biol. 39:e108–e117. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Chen Y, Yan H, Niimi M, Wang Y and Liang J: Principles and applications of rabbit models for atherosclerosis research. J Atheroscler Thromb. 25:213–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vesselinovitch D, Wissler RW and Doull J: Experimental production of atherosclerosis in mice. 1. Effect of various synthetic diets and radiation on survival time, food consumption and body weight in mice. J Atheroscler Res. 8:483–495. 1968. View Article : Google Scholar : PubMed/NCBI | |
Vesselinovitch D and Wissler RW: Experimental production of atherosclerosis in mice. 2. Effects of atherogenic and high-fat diets on vascular changes in chronically and acutely irradiated mice. J Atheroscler Res. 8:497–523. 1968. View Article : Google Scholar : PubMed/NCBI | |
Thompson JS: Atheromata in an inbred strain of mice. J Atheroscler Res. 10:113–122. 1969. View Article : Google Scholar : PubMed/NCBI | |
Paigen B, Morrow A, Brandon C, Mitchell D and Holmes P: Variation in susceptibility to atherosclerosis among inbred strains of mice. Atherosclerosis. 57:65–73. 1985. View Article : Google Scholar : PubMed/NCBI | |
Ishibashi S, Brown MS, Goldstein JL, Gerard RD, Hammer RE and Herz J: Hypercholesterolemia in low density lipoprotein receptor knockout mice and its reversal by adenovirus-mediated gene delivery. J Clin Invest. 92:883–893. 1993. View Article : Google Scholar : PubMed/NCBI | |
Plump AS, Smith JD, Hayek T, Aalto-Setälä K, Walsh A, Verstuyft JG, Rubin EM and Breslow JL: Severe hypercholesterolemia and atherosclerosis in apolipoprotein E-deficient mice created by homologous recombination in ES cells. Cell. 71:343–353. 1992. View Article : Google Scholar : PubMed/NCBI | |
Piedrahita JA, Zhang SH, Hagaman JR, Oliver PM and Maeda N: Generation of mice carrying a mutant apolipoprotein E gene inactivated by gene targeting in embryonic stem cells. Proc Natl Acad Sci USA. 89:4471–4475. 1992. View Article : Google Scholar : PubMed/NCBI | |
Olszanecki R and Korbut R: The effect of montelukast on atherogenesis in apoE/LDLR-double knockout mice. J Physiol Pharmacol. 59:633–639. 2008.PubMed/NCBI | |
Olszanecki R, Jawien J, Gajda M, Mateuszuk L, Gebska A, Korabiowska M, Chłopicki S and Korbut R: Effect of curcumin on atherosclerosis in apoE-LDLR-double knockout mice. J Physiol Pharmacol. 4:627–635. 2005.PubMed/NCBI | |
Schilperoort M, van den Berg R, Bosmans LA, van Os BW, Dollé ME, Smits NA, Guichelaar T, van Baarle D, Koemans L, Berbée JF, et al: Disruption of circadian rhythm by alternating light-dark cycles aggravates atherosclerosis development in APOE* 3-leiden. CETP mice. J Pineal Res. 68:e126142020. View Article : Google Scholar : PubMed/NCBI | |
Berbée JF, Wong MC, Wang Y, van der Hoorn JW, Khedoe PP, van Klinken JB, Mol IM, Hiemstra PS, Tsikas D, Romijn JA, et al: Resveratrol protects against atherosclerosis, but does not add to the antiatherogenic effect of atorvastatin, in APOE* 3-leiden. CETP mice. J Nutr Biochem. 24:1423–1430. 2013. View Article : Google Scholar : PubMed/NCBI | |
de Haan W, van der Hoogt CC, Westerterp M, Hoekstra M, Dallinga-Thie GM, Princen HM, Romijn JA, Jukema JW, Havekes LM and Rensen PC: Atorvastatin increases HDL cholesterol by reducing CETP expression in cholesterol-fed APOE* 3-leiden. CETP mice. Atherosclerosis. 197:57–63. 2008. View Article : Google Scholar : PubMed/NCBI | |
Stein EA and Raal F: Reduction of low-density lipoprotein cholesterol by monoclonal antibody inhibition of PCSK9. Annu Rev Med. 65:417–431. 2014. View Article : Google Scholar : PubMed/NCBI | |
Getz GS and Reardon CA: Apoprotein E as a lipid transport and signaling protein in the blood, liver, and artery wall. J Lipid Res (50 Suppl). S156–S161. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sehayek E, Shefer S, Nguyen LB, Ono JG, Merkel M and Breslow JL: Apolipoprotein E regulates dietary cholesterol absorption and biliary cholesterol excretion: studies in C57BL/6 apolipoprotein E knockout mice. Proc Natl Acad Sci USA. 97:3433–3437. 2000. View Article : Google Scholar : PubMed/NCBI | |
Plump AS and Breslow JL: Apolipoprotein E and the apolipoprotein E-deficient mouse. Annu Rev Nutr. 15:495–518. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nakashima Y, Plump AS, Raines EW, Breslow JL and Ross R: ApoE-deficient mice develop lesions of all phases of atherosclerosis throughout the arterial tree. Arterioscler Thromb. 14:133–140. 1994. View Article : Google Scholar : PubMed/NCBI | |
Rattazzi M, Bennett BJ, Bea F, Kirk EA, Ricks JL, Speer M, Schwartz SM, Giachelli CM and Rosenfeld ME: Calcification of advanced atherosclerotic lesions in the innominate arteries of ApoE-deficient mice: Potential role of chondrocyte-like cells. Arterioscler Thromb Vasc Biol. 25:1420–1425. 2005. View Article : Google Scholar : PubMed/NCBI | |
Meir KS and Leitersdorf E: Atherosclerosis in the apolipoprotein-E-deficient mouse: a decade of progress. Arterioscler Thromb Vasc Biol. 24:1006–1014. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oppi S, Luscher TF and Stein S: Mouse models for atherosclerosis research-which is my line? Front Cardiovasc Med. 6:462019. View Article : Google Scholar : PubMed/NCBI | |
von Scheidt M, Zhao Y, Kurt Z, Pan C, Zeng L, Yang X, Schunkert H and Lusis AJ: Applications and limitations of mouse models for understanding human atherosclerosis. Cell Metab. 25:248–261. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ, Kunjathoor VV, Koehn SL, Manning JJ, Tseng AA, Silver JM, McKee M and Freeman MW: Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 115:2192–2201. 2005. View Article : Google Scholar : PubMed/NCBI | |
Go GW and Mani A: Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J Biol Med. 85:19–28. 2012.PubMed/NCBI | |
Ishibashi S, Goldstein JL, Brown MS, Herz J and Burns DK: Massive xanthomatosis and atherosclerosis in cholesterol-fed low density lipoprotein receptor-negative mice. J Clin Invest. 93:1885–1893. 1994. View Article : Google Scholar : PubMed/NCBI | |
Moore RE, Kawashiri MA, Kitajima K, Secreto A, Millar JS, Pratico D and Rader DJ: Apolipoprotein A-I deficiency results in markedly increased atherosclerosis in mice lacking the LDL receptor. Arterioscler Thromb Vasc Biol. 23:1914–1920. 2003. View Article : Google Scholar : PubMed/NCBI | |
Getz GS and Reardon CA: Diet and murine atherosclerosis. Arterioscler Thromb Vasc Biol. 26:242–249. 2006. View Article : Google Scholar : PubMed/NCBI | |
Boisvert WA, Spangenberg J and Curtiss LK: Role of leukocyte-specific LDL receptors on plasma lipoprotein cholesterol and atherosclerosis in mice. Arterioscler Thromb Vasc Biol. 17:340–347. 1997. View Article : Google Scholar : PubMed/NCBI | |
Herijgers N, Van Eck M, Groot PH, Hoogerbrugge PM and Van Berkel TJ: Effect of bone marrow transplantation on lipoprotein metabolism and atherosclerosis in LDL receptor-knockout mice. Arterioscler Thromb Vasc Biol. 17:1995–2003. 1997. View Article : Google Scholar : PubMed/NCBI | |
Linton MF, Atkinson JB and Fazio S: Prevention of atherosclerosis in apolipoprotein E-deficient mice by bone marrow transplantation. Science. 267:1034–1037. 1995. View Article : Google Scholar : PubMed/NCBI | |
Boisvert WA, Spangenberg J and Curtiss LK: Treatment of severe hypercholesterolemia in apolipoprotein E-deficient mice by bone marrow transplantation. J Clin Invest. 96:1118–1124. 1995. View Article : Google Scholar : PubMed/NCBI | |
Roche-Molina M, Sanz-Rosa D, Cruz FM, García-Prieto J, López S, Abia R, Muriana FJ, Fuster V, Ibáñez B and Bernal JA: Induction of sustained hypercholesterolemia by single adeno-associated virus-mediated gene transfer of mutant hPCSK9. Arterioscler Thromb Vasc Biol. 35:50–59. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bjorklund MM, Hollensen AK, Hagensen MK, Dagnaes-Hansen F, Christoffersen C, Mikkelsen JG and Bentzon JF: Induction of atherosclerosis in mice and hamsters without germline genetic engineering. Circ Res. 114:1684–1689. 2014. View Article : Google Scholar : PubMed/NCBI | |
Goettsch C, Hutcheson JD, Hagita S, Rogers MA, Creager MD, Pham T, Choi J, Mlynarchik AK, Pieper B, Kjolby M, et al: A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis. 251:109–118. 2016. View Article : Google Scholar : PubMed/NCBI | |
Veseli BE, Perrotta P, De Meyer GRA, Roth L, der Donckt CV, Martinet W and De Meyer GR: Animal models of atherosclerosis. Eur J Pharmacol. 816:3–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Picard MH, Vasile E, Zhu Y, Raffai RL, Weisgraber KH and Krieger M: Diet-induced occlusive coronary atherosclerosis, myocardial infarction, cardiac dysfunction, and premature death in scavenger receptor class B type I-deficient, hypomorphic apolipoprotein ER61 mice. Circulation. 111:3457–3464. 2005. View Article : Google Scholar : PubMed/NCBI | |
Westerterp M, van der Hoogt CC, de Haan W, Offerman EH, Dallinga-Thie GM, Jukema JW, Havekes LM and Rensen PC: Cholesteryl ester transfer protein decreases high-density lipoprotein and severely aggravates atherosclerosis in APOE*3-leiden mice. Arterioscler Thromb Vasc Biol. 26:2552–2559. 2006. View Article : Google Scholar : PubMed/NCBI | |
van den Maagdenberg AM, Hofker MH, Krimpenfort PJ, de Bruijn I, van Vlijmen B, van der Boom H, Havekes LM and Frants RR: Transgenic mice carrying the apolipoprotein E3-Leiden gene exhibit hyperlipoproteinemia. J Biol Chem. 268:10540–10545. 1993. View Article : Google Scholar : PubMed/NCBI | |
Berbee JF, Boon MR, Khedoe PP, Bartelt A, Schlein C, Worthmann A, Kooijman S, Hoeke G, Mol IM, John C, et al: Brown fat activation reduces hypercholesterolaemia and protects from atherosclerosis development. Nat Commun. 6:63562015. View Article : Google Scholar : PubMed/NCBI | |
Van der Donckt C, Van Herck JL, Schrijvers DM, Vanhoutte G, Verhoye M, Blockx I, Van Der Linden A, Bauters D, Lijnen HR, Sluimer JC, et al: Elastin fragmentation in atherosclerotic mice leads to intraplaque neovascularization, plaque rupture, myocardial infarction, stroke, and sudden death. Eur Heart J. 36:1049–1058. 2015. View Article : Google Scholar : PubMed/NCBI | |
Roth L, Rombouts M, Schrijvers DM, Lemmens K, De Keulenaer GW, Martinet W and De Meyer GR: Chronic intermittent mental stress promotes atherosclerotic plaque vulnerability, myocardial infarction and sudden death in mice. Atherosclerosis. 242:288–294. 2015. View Article : Google Scholar : PubMed/NCBI | |
Steinberg D: In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. J Lipid Res. 54:2946–2949. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fan J and Watanabe T: Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J Atheroscler Thromb. 7:26–32. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Kitajima S, Watanabe T, Xu J, Zhang J, Liu E and Chen YE: Rabbit models for the study of human atherosclerosis: From pathophysiological mechanisms to translational medicine. Pharmacol Ther. 146:104–119. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niimi M, Yang D, Kitajima S, Ning B, Wang C, Li S, Liu E, Zhang J, Chen YE and Fan J: ApoE knockout rabbits: A novel model for the study of human hyperlipidemia. Atherosclerosis. 245:187–193. 2016. View Article : Google Scholar : PubMed/NCBI | |
Matsuhisa F, Kitajima S, Nishijima K, Akiyoshi T, Morimoto M and Fan J: Transgenic rabbit models: Now and the future. Applied Sciences. 10:74162020. View Article : Google Scholar | |
Yu QQ, Cheng DX, Xu LR, Li YK, Zheng XY, Liu Y, Li YF, Liu HL, Bai L, Wang R, et al: Urotensin II and urantide exert opposite effects on the cellular components of atherosclerotic plaque in hypercholesterolemic rabbits. Acta Pharmacol Sin. 41:546–553. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Waqar AB, Nishijima K, Ning B, Kitajima S, Matsuhisa F, Chen L, Liu E, Koike T, Yu Y, et al: Macrophage-derived MMP-9 enhances the progression of atherosclerotic lesions and vascular calcification in transgenic rabbits. J Cell Mol Med. 24:4261–4274. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Wang X, Cheng D, Li J, Li L, Ran L, Zhao S, Fan J and Liu E: Overexpression of cholesteryl ester transfer protein increases macrophage-derived foam cell accumulation in atherosclerotic lesions of transgenic rabbits. Mediators Inflamm. 2017:38242762017. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Wang Y, Zhu H, Fan J, Yu L, Liu G and Liu E: Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res. 20:867–875. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koike T, Kitajima S, Yu Y, Li Y, Nishijima K, Liu E, Sun H, Waqar AB, Shibata N, Inoue T, et al: Expression of human apoAII in transgenic rabbits leads to dyslipidemia: A new model for combined hyperlipidemia. Arterioscler Thromb Vasc Biol. 29:2047–2053. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Nishijima K, Kitajima S, Niimi M, Yan H, Chen Y, Ning B, Matsuhisa F, Liu E, Zhang J, et al: Increased hepatic expression of endothelial lipase inhibits cholesterol diet-induced hypercholesterolemia and atherosclerosis in transgenic rabbits. Arterioscler Thromb Vasc Biol. 37:1282–1289. 2017. View Article : Google Scholar : PubMed/NCBI | |
Watanabe Y: Serial inbreeding of rabbits with hereditary hyperlipidemia (WHHL-rabbit). Atherosclerosis. 36:261–268. 1980. View Article : Google Scholar : PubMed/NCBI | |
Shiomi M and Ito T: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis. 207:1–7. 2009. View Article : Google Scholar : PubMed/NCBI | |
Masashi S and Takashi I: The Watanabe heritable hyperlipidemic (WHHL) rabbit, its characteristics and history of development: A tribute to the late Dr. Yoshio Watanabe. Atherosclerosis. 207:1–7. 2009. View Article : Google Scholar | |
Ning B, Wang X, Yu Y, Waqar AB, Yu Q, Koike T, Shiomi M, Liu E, Wang Y and Fan J: High-fructose and high-fat diet-induced insulin resistance enhances atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Nutr Metab (Lond). 12:302015. View Article : Google Scholar : PubMed/NCBI | |
Lichtman AH, Clinton SK, Iiyama K, Connelly PW, Libby P and Cybulsky MI: Hyperlipidemia and atherosclerotic lesion development in LDL receptor-deficient mice fed defined semipurified diets with and without cholate. Arterioscler Thromb Vasc Biol. 19:1938–1944. 1999. View Article : Google Scholar : PubMed/NCBI | |
Reardon CA, Blachowicz L, Lukens J, Nissenbaum M and Getz GS: Genetic background selectively influences innominate artery atherosclerosis: Immune system deficiency as a probe. Arterioscler Thromb Vasc Biol. 23:1449–1454. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Bai L, Chen Y, Zhu N, Bai Y, Li Q, Zhao S, Fan J and Liu E: Practical assessment of the quantification of atherosclerotic lesions in apoE(−)/(−) mice. Mol Med Rep. 12:5298–5306. 2015. View Article : Google Scholar : PubMed/NCBI | |
Centa M, Ketelhuth DFJ, Malin S and Gisterå A: Quantification of atherosclerosis in mice. J Vis Exp. 12:doi: 10.3791/59828. 2019.PubMed/NCBI | |
Bai L, Li Z, Li Q, Guan H, Zhao S, Liu R, Wang R, Zhang J, Jia Y, Fan J, et al: Mediator 1 is atherosclerosis protective by regulating macrophage polarization. Arterioscler Thromb Vasc Biol. 37:1470–1481. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang R, Zhang Y, Xu L, Lin Y, Yang X, Bai L, Chen Y, Zhao S, Fan J, Cheng X and Liu E: Protein inhibitor of activated STAT3 suppresses oxidized LDL-induced cell responses during atherosclerosis in apolipoprotein E-deficient mice. Sci Rep. 6:367902016. View Article : Google Scholar : PubMed/NCBI | |
Guan H, Lin Y, Bai L, An Y, Shang J, Wang Z, Zhao S, Fan J and Liu E: Dietary cocoa powder improves hyperlipidemia and reduces atherosclerosis in apoE deficient mice through the inhibition of hepatic endoplasmic reticulum stress. Mediators Inflamm. 2016:19375722016. View Article : Google Scholar : PubMed/NCBI | |
Li S, Wang YN, Niimi M, Ning B, Chen Y, Kang D, Wang Z, Yu Q, Waqar AB, Liu E, et al: Angiotensin II destabilizes coronary plaques in watanabe heritable hyperlipidemic rabbits. Arterioscler Thromb Vasc Biol. 36:810–816. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan H, Niimi M, Matsuhisa F, Zhou H, Kitajima S, Chen Y, Wang C, Yang X, Yao J, Yang D, et al: Apolipoprotein CIII deficiency protects against atherosclerosis in knockout rabbits. Arterioscler Thromb Vasc Biol. 40:2095–2107. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dweck MR, Aikawa E, Newby DE, Tarkin JM, Rudd JH, Narula J and Fayad ZA: Noninvasive molecular imaging of disease activity in atherosclerosis. Circ Res. 119:330–340. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen Q, Yu J, Lukashova L, Latoche JD, Zhu J, Lavery L, Verdelis K, Anderson CJ and Kim K: validation of ultrasound super-resolution imaging of vasa vasorum in rabbit atherosclerotic plaques. IEEE Trans Ultrason Ferroelectr Freq Control. 67:1725–1729. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Ha S, Wei W, Duan S, Shi Y and Yang Y: Noninvasive imaging of aortic atherosclerosis by ultrasound biomicroscopy in a mouse model. J Ultrasound Med. 34:111–116. 2015. View Article : Google Scholar : PubMed/NCBI | |
Punjabi M, Xu L, Ochoa-Espinosa A, Kosareva A, Wolff T, Murtaja A, Broisat A, Devoogdt N and Kaufmann BA: Ultrasound molecular imaging of atherosclerosis with nanobodies: Translatable microbubble targeting murine and human VCAM (Vascular Cell Adhesion Molecule) 1. Arterioscler Thromb Vasc Biol. 39:2520–2530. 2019. View Article : Google Scholar : PubMed/NCBI | |
Borland SJ, Behnsen J, Ashton N, Francis SE, Brennan K, Sherratt MJ, Withers PJ and Canfield AE: X-ray micro-computed tomography: An emerging technology to analyze vascular calcification in animal models. Int J Mol Sci. 21:45382020. View Article : Google Scholar : PubMed/NCBI | |
Magnoni M, Ammirati E and Camici PG: Non-invasive molecular imaging of vulnerable atherosclerotic plaques. J Cardiol. 65:261–269. 2015. View Article : Google Scholar : PubMed/NCBI | |
Choudhury RP, Fuster V, Badimon JJ, Fisher EA and Fayad ZA: MRI and characterization of atherosclerotic plaque: Emerging applications and molecular imaging. Arterioscler Thromb Vasc Biol. 22:1065–1074. 2002. View Article : Google Scholar : PubMed/NCBI | |
Evans NR, Tarkin JM, Chowdhury MM, Warburton EA and Rudd JH: PET imaging of atherosclerotic disease: Advancing plaque assessment from anatomy to pathophysiology. Curr Atheroscler Rep. 18:302016. View Article : Google Scholar : PubMed/NCBI | |
Calcagno C, Lairez O, Hawkins J, Kerr SW, Dugas MS, Simpson T, Epskamp J, Robson PM, Eldib M, Bander I, et al: Combined PET/DCE-MRI in a rabbit model of atherosclerosis: Integrated quantification of plaque inflammation, permeability, and burden during treatment with a leukotriene A4 hydrolase inhibitor. JACC Cardiovasc Imaging. 11:291–301. 2018. View Article : Google Scholar : PubMed/NCBI | |
Calcagno C, Perez-Medina C, Mulder WJM and Fayad ZA: Whole-Body atherosclerosis imaging by positron emission tomography/magnetic resonance imaging: From mice to nonhuman primates. Arterioscler Thromb Vasc Biol. 40:1123–1134. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luehmann HP, Detering L, Fors BP, Pressly ED, Woodard PK, Randolph GJ, Gropler RJ, Hawker CJ and Liu Y: PET/CT imaging of chemokine receptors in inflammatory atherosclerosis using targeted nanoparticles. J Nucl Med. 57:1124–1129. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng D, Li X, Zhang C, Tan H, Wang C, Pang L and Shi H: Detection of vulnerable atherosclerosis plaques with a dual-modal single-photon-emission computed tomography/magnetic resonance imaging probe targeting apoptotic macrophages. ACS Appl Mater Interfaces. 7:2847–2855. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rahaman SO, Lennon DJ, Febbraio M, Podrez EA, Hazen SL and Silverstein RL: A CD36-dependent signaling cascade is necessary for macrophage foam cell formation. Cell Metab. 4:211–221. 2006. View Article : Google Scholar : PubMed/NCBI | |
Versari D, Daghini E, Virdis A, Ghiadoni L and Taddei S: Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care. 32 (Suppl 2):S314–S321. 2009. View Article : Google Scholar : PubMed/NCBI | |
Medina-Leyte DJ, Domínguez-Pérez M, Mercado I, Villarreal-Molina MT and Jacobo-Albavera L: Use of human umbilical vein endothelial cells (HUVEC) as a model to study cardiovascular disease: A review. Applied Sciences. 10:9382020. View Article : Google Scholar | |
Yang Q, Xu J, Ma Q, Liu Z, Sudhahar V, Cao Y, Wang L, Zeng X, Zhou Y, Zhang M, et al: PRKAA1/AMPKα1-driven glycolysis in endothelial cells exposed to disturbed flow protects against atherosclerosis. Nat Commun. 9:46672018. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Liu R, Zhang G, Yu Q, Jia M, Zheng C, Wang Y, Xu C, Zhang Y and Liu E: Hypercysteinemia promotes atherosclerosis by reducing protein S-nitrosylation. Biomed Pharmacother. 70:253–259. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell J, Mille-Baker B and Laffan M: Human umbilical vein endothelial cells differ from other endothelial cells in failing to express ABO blood group antigens. J Vasc Res. 37:540–547. 2000. View Article : Google Scholar : PubMed/NCBI | |
Addis R, Campesi I, Fois M, Capobianco G, Dessole S, Fenu G, Montella A, Cattaneo MG, Vicentini LM and Franconi F: Human umbilical endothelial cells (HUVECs) have a sex: Characterisation of the phenotype of male and female cells. Biol Sex Differ. 5:182014. View Article : Google Scholar : PubMed/NCBI | |
Crampton SP, Davis J and Hughes CC: Isolation of human umbilical vein endothelial cells (HUVEC). J Vis Exp. 183:doi: 10.3791/183. 2007.PubMed/NCBI | |
Jaffe EA, Nachman RL, Becker CG and Minick CR: Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest. 52:2745–2756. 1973. View Article : Google Scholar : PubMed/NCBI | |
Baudin B, Bruneel A, Bosselut N and Vaubourdolle M: A protocol for isolation and culture of human umbilical vein endothelial cells. Nat Protoc. 2:481–485. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Shi GP: CD31: Beyond a marker for endothelial cells. Cardiovasc Res. 94:3–5. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li AC and Glass CK: The macrophage foam cell as a target for therapeutic intervention. Nat Med. 8:1235–1242. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zimmerman MA, Selzman CH, Reznikov LL, Miller SA, Raeburn CD, Emmick J, Meng X and Harken AH: Lack of TNF-alpha attenuates intimal hyperplasia after mouse carotid artery injury. Am J Physiol Regul Integr Comp Physiol. 283:R505–R512. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Goncalves R and Mosser DM: The isolation and characterization of murine macrophages. Curr Protoc Immunol Chapter. 14:Unit 14 11. 2008.PubMed/NCBI | |
Austyn JM and Gordon S: F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol. 11:805–815. 1981. View Article : Google Scholar : PubMed/NCBI | |
Bennett MR and Boyle JJ: Apoptosis of vascular smooth muscle cells in atherosclerosis. Atherosclerosis. 138:3–9. 1998. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Xu L, Zhang Y, Yu Q, Li J, Guan H, Wang X, Cheng D, Liu Y, Bai L, et al: Salusin-alpha inhibits proliferation and migration of vascular smooth muscle cell via Akt/mTOR signaling. Cell Physiol Biochem. 50:1740–1753. 2018. View Article : Google Scholar : PubMed/NCBI | |
Feng C, Wang X, Shi H, Yan Q, Zheng M, Li J, Zhang Q, Qin Y, Zhong Y, Mi J and Lai L: Generation of ApoE deficient dogs via combination of embryo injection of CRISPR/Cas9 with somatic cell nuclear transfer. J Genet Genomics. 45:47–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Fang B, Ren X, Wang Y, Li Z, Zhao L, Zhang M, Li C, Zhang Z, Chen L, Li X, et al: Apolipoprotein E deficiency accelerates atherosclerosis development in miniature pigs. Dis Model Mech. 11:dmm0366322018. View Article : Google Scholar : PubMed/NCBI |