Cardioprotective effects of hydrogen sulfide in attenuating myocardial ischemia‑reperfusion injury (Review)
- Authors:
- Dan Wu
- Yijing Gu
- Deqiu Zhu
-
Affiliations: Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P.R. China - Published online on: October 29, 2021 https://doi.org/10.3892/mmr.2021.12515
- Article Number: 875
This article is mentioned in:
Abstract
Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M and Nichols M: Cardiovascular disease in Europe: Epidemiological update 2016. Eur Heart J. 37:3232–3245. 2016. View Article : Google Scholar : PubMed/NCBI | |
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 Study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, Li CY and Li CJ: Current mechanistic concepts in ischemia and reperfusion injury. Cell Physiol Biochem. 46:1650–1667. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ibáñez B, Heusch G, Ovize M and Van de Werf F: Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 65:1454–1471. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gorini F, Bustaffa E, Chatzianagnostou K, Bianchi F and Vassalle C: Hydrogen sulfide and cardiovascular disease: Doubts, clues, and interpretation difficulties from studies in geothermal areas. Sci Total Environ. 743:1408182020. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Hu Q, Tan B, Rose P, Zhu D and Zhu YZ: Amelioration of mitochondrial dysfunction in heart failure through S-sulfhydration of Ca2+/calmodulin-dependent protein kinase II. Redox Biol. 19:250–262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang ZJ, Wu J, Guo W and Zhu YZ: Atherosclerosis and the hydrogen sulfide signaling pathway-therapeutic approaches to disease prevention. Cell Physiol Biochem. 42:859–875. 2017. View Article : Google Scholar : PubMed/NCBI | |
Donnarumma E, Trivedi RK and Lefer DJ: Protective actions of H2S in acute myocardial infarction and heart failure. Compr Physiol. 7:583–602. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Oxidative stress in cell death and cardiovascular diseases. Oxid Med Cell Longev. 2019:90305632019. View Article : Google Scholar : PubMed/NCBI | |
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bai YD, Yang YR, Mu XP, Lin G, Wang YP, Jin S, Chen Y, Wang MJ and Zhu YC: Hydrogen sulfide alleviates acute myocardial ischemia injury by modulating autophagy and inflammation response under oxidative stress. Oxid Med Cell Longev. 2018:34028092018. View Article : Google Scholar : PubMed/NCBI | |
Tsutsui H, Kinugawa S and Matsushima S: Oxidative stress and heart failure. Am J Physiol Heart Circ Physiol. 301:H2181–H2190. 2011. View Article : Google Scholar : PubMed/NCBI | |
van der Pol A, van Gilst WH, Voors AA and van der Meer P: Treating oxidative stress in heart failure: Past, present and future. Eur J Heart Fail. 21:425–435. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li X, Fang P, Mai J, Choi ET, Wang H and Yang XF: Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. J Hematol Oncol. 6:192013. View Article : Google Scholar : PubMed/NCBI | |
Briston T, Selwood DL, Szabadkai G and Duchen MR: Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 40:50–70. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bauer TM and Murphy E: Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 126:280–293. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwong JQ and Molkentin JD: Physiological and pathological roles of the mitochondrial permeability transition pore in the heart. Cell Metab. 21:206–214. 2015. View Article : Google Scholar : PubMed/NCBI | |
Li HW and Xiao FY: Effect of hydrogen sulfide on cardiomyocyte apoptosis in rats with myocardial ischemia-reperfusion injury via the JNK signaling pathway. Eur Rev Med Pharmacol Sci. 24:2054–2061. 2020.PubMed/NCBI | |
Ong S, Samangouei P, Kalkhoran SB and Hausenloy DJ: The mitochondrial permeability transition pore and its role in myocardial ischemia reperfusion injury. J Mol Cell Cardiol. 78:23–34. 2014. View Article : Google Scholar : PubMed/NCBI | |
Matsui Y, Takagi H, Qu X, Abdellatif M, Sakoda H, Asano T, Levine B and Sadoshima J: Distinct roles of autophagy in the heart during ischemia and reperfusion: Roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ Res. 100:914–922. 2007. View Article : Google Scholar : PubMed/NCBI | |
Loos B, Genade S, Ellis B, Lochner A and Engelbrecht AM: At the core of survival: Autophagy delays the onset of both apoptotic and necrotic cell death in a model of ischemic cell injury. Exp Cell Res. 317:1437–1453. 2011. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: New directions for protecting the heart against ischaemia-reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 61:448–460. 2004. View Article : Google Scholar : PubMed/NCBI | |
Hausenloy DJ and Yellon DM: Reperfusion injury salvage kinase signalling: Taking a RISK for cardioprotection. Heart Fail Rev. 12:217–234. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peake BF, Nicholson CK, Lambert JP, Hood RL, Amin H, Amin S and Calvert JW: Hydrogen sulfide preconditions the db/db diabetic mouse heart against ischemia-reperfusion injury by activating Nrf2 signaling in an Erk-dependent manner. Am J Physiol Heart Circ Physiol. 304:H1215–H1224. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao X, Ding L, Xie ZZ, Yang Y, Whiteman M, Moore PK and Bian JS: A review of hydrogen sulfide synthesis, metabolism, and measurement: Is modulation of hydrogen sulfide a novel therapeutic for cancer? Antioxid Redox Signal. 31:1–38. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bełtowski J and Jamroz-Wiśniewska A: Hydrogen sulfide and endothelium-dependent vasorelaxation. Molecules. 19:21183–21199. 2014. View Article : Google Scholar : PubMed/NCBI | |
Panthi S, Chung HJ, Jung J and Jeong NY: Physiological importance of hydrogen sulfide: Emerging potent neuroprotector and neuromodulator. Oxid Med Cell Longev. 2016:90497822016. View Article : Google Scholar : PubMed/NCBI | |
Wilinski B, Wilinski J, Somogyi E, Goralska M and Piotrowska J: Paracetamol (acetaminophen) decreases hydrogen sulfide tissue concentration in brain but increases it in the heart, liver and kidney in mice. Folia Biol (Krakow). 59:41–44. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wilinski B, Wilinski J, Somogyi E, Goralska M and Piotrowska J: Ramipril affects hydrogen sulfide generation in mouse liver and kidney. Folia Biol (Krakow). 58:177–180. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wilinski J, Wilinski B, Somogyi E, Piotrowska J, Kameczura T and Zygmunt M: Nicotine affects hydrogen sulfide concentrations in mouse kidney and heart but not in brain and liver tissues. Folia Med Cracov. 57:55–64. 2017.PubMed/NCBI | |
Tan B, Jin S, Sun J, Gu Z, Sun X, Zhu Y, Huo K, Cao Z, Yang P, Xin X, et al: New method for quantification of gasotransmitter hydrogen sulfide in biological matrices by LC-MS/MS. Sci Rep. 7:462782017. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Hu Q and Zhu YZ; Therapeutic application of hydrogen sulfide donors, : The potential and challenges. Front Med. 10:18–27. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pei J, Wang F, Pei S, Bai R, Cong X, Nie Y and Chen X: Hydrogen sulfide promotes cardiomyocyte proliferation and heart regeneration via ROS scavenging. Oxid Med Cell Longev. 2020:14126962020. View Article : Google Scholar : PubMed/NCBI | |
Feng A, Ling C, Xin-duo L, Bing W, San-Wu W, Yu Z, Yu-Lan H and You-En Z: Hydrogen sulfide protects human cardiac fibroblasts against H2O2-induced injury through regulating autophagy-related proteins. Cell Transplant. 27:1222–1234. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Dong X, Zhuang X, Hu X, Wang L and Liao X: Exogenous hydrogen sulfide protects against high glucose-induced inflammation and cytotoxicity in H9c2 cardiac cells. Mol Med Rep. 14:4911–4917. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Hou HT, Chen HX, Wang J, Wang ZQ, Chen TN, Novakovic A, Marinko M, Yang Q, Liu ZG, et al: Hydrogen sulfide-mediated endothelial function and the interaction with eNOS and PDE5A activity in human internal mammary arteries. J Int Med Res. 47:3778–3791. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang GG and Li W: Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice. Iran J Basic Med Sci. 22:1192–1197. 2019.PubMed/NCBI | |
Wang CN, Liu YJ, Duan GL, Zhao W, Li XH, Zhu XY and Ni X: CBS and CSE are critical for maintenance of mitochondrial function and glucocorticoid production in adrenal cortex. Antioxid Redox Signal. 21:2192–2207. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH and Moore PK: Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): New insights into the biology of hydrogen sulfide. Circulation. 117:2351–2360. 2008. View Article : Google Scholar : PubMed/NCBI | |
Castelblanco M, Lugrin J, Ehirchiou D, Nasi S, Ishii I, So A, Martinon F and Busso N: Hydrogen sulfide inhibits NLRP3 inflammasome activation and reduces cytokine production both in vitro and in a mouse model of inflammation. J Biol Chem. 293:2546–2557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Wu Y, Meng M, Luo M, Zhao H, Sun H and Gao S: GYY4137 protects against myocardial ischemia/reperfusion injury via activation of the PHLPP-1/Akt/Nrf2 signaling pathway in diabetic mice. J Surg Res. 225:29–39. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Mao Y, Tan B, Luo S and Zhu Y: The protective effects of endogenous hydrogen sulfide modulator, S-propargyl-cysteine, on high glucose-induced apoptosis in cardiomyocytes: A novel mechanism mediated by the activation of Nrf2. Eur J Pharmacol. 761:135–143. 2015. View Article : Google Scholar : PubMed/NCBI | |
Qian X, Li X, Ma F, Luo S, Ge R and Zhu Y: Novel hydrogen sulfide-releasing compound, S-propargyl-cysteine, prevents STZ-induced diabetic nephropathy. Biochem Biophys Res Commun. 473:931–938. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kan J, Guo W, Huang C, Bao G, Zhu Y and Zhu YZ: S-propargyl-cysteine, a novel water-soluble modulator of endogenous hydrogen sulfide, promotes angiogenesis through activation of signal transducer and activator of transcription 3. Antioxid Redox Signal. 20:2303–2316. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao FL, Fang F, Qiao PF, Yan N, Gao D and Yan Y: AP39, a mitochondria-targeted hydrogen sulfide donor, supports cellular bioenergetics and protects against Alzheimer's disease by preserving mitochondrial function in APP/PS1 mice and neurons. Oxid Med Cell Longev. 2016:83607382016. View Article : Google Scholar : PubMed/NCBI | |
Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M and Szabo C: AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide. 41:120–130. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chao C, Zatarain JR, Ding Y, Coletta C, Mrazek AA, Druzhyna N, Johnson P, Chen H, Hellmich JL, Asimakopoulou A, et al: Cystathionine-beta-synthase inhibition for colon cancer: Enhancement of the efficacy of aminooxyacetic acid via the prodrug approach. Mol Med. 22:361–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lilyanna S, Peh MT, Liew OW, Wang P, Moore PK, Richards AM and Martinez EC: GYY4137 attenuates remodeling, preserves cardiac function and modulates the natriuretic peptide response to ischemia. J Mol Cell Cardiol. 87:27–37. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Tang S, Hu K, Zhang Z, Liu P, Luo Y, Kang J and Xu L: DL-Propargylglycine protects against myocardial injury induced by chronic intermittent hypoxia through inhibition of endoplasmic reticulum stress. Sleep Breath. 22:853–863. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szabo C, Ransy C, Modis K, Andriamihaja M, Murghes B, Coletta C, Olah G, Yanagi K and Bouillaud F: Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol. 171:2099–2122. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xie L, Gu Y, Wen M, Zhao S, Wang W, Ma Y, Meng G, Han Y, Wang Y, Liu G, et al: Hydrogen sulfide induces Keap1 S-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes. 65:3171–3184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Liu J, Liu S, Song Q, Liu L, Xie L, Han Y and Ji Y: Hydrogen sulfide pretreatment improves mitochondrial function in myocardial hypertrophy via a SIRT3-dependent manner. Br J Pharmacol. 175:1126–1145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Lu F, Yu X, Wang B, Chen J, Lu F, Peng S, Sun X, Yu M, Chen H, et al: Exogenous H2S promoted USP8 sulfhydration to regulate mitophagy in the hearts of db/db mice. Aging Dis. 11:269–285. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu M, Du H, Wang B, Chen J, Lu F, Peng S, Sun Y, Liu N, Sun X, Shiyun D, et al: Exogenous H2S induces Hrd1 S-sulfhydration and prevents CD36 translocation via VAMP3 ubiquitylation in diabetic hearts. Aging Dis. 11:286–300. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kar S, Shahshahan HR, Hackfort BT, Yadav SK, Yadav R, Kambis TN, Lefer DJ and Mishra PK: Exercise training promotes cardiac hydrogen sulfide biosynthesis and mitigates pyroptosis to prevent high-fat diet-induced diabetic cardiomyopathy. Antioxidants. 8:6382019. View Article : Google Scholar : PubMed/NCBI | |
Shimizu Y, Polavarapu R, Eskla KL, Nicholson CK, Koczor CA, Wang R, Lewis W, Shiva S, Lefer DJ and Calvert JW: Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J Mol Cell Cardiol. 116:29–40. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Li H, Wu B, Zhang L, Wu SW, Wang JN and Zhang YE: Hydrogen sulfide reduces recruitment of CD11b+Gr-1+ cells in mice with myocardial infarction. Cell Transplant. 26:753–764. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ye P, Gu Y, Zhu YR, Chao YL, Kong XQ, Luo J, Ren XM, Zuo GF, Zhang DM and Chen SL: Exogenous hydrogen sulfide attenuates the development of diabetic cardiomyopathy via the FoxO1 pathway. J Cell Physiol. 233:9786–9798. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ellmers LJ, Templeton EM, Pilbrow AP, Frampton C, Ishii I, Moore PK, Bhatia M, Richards AM and Cameron VA: Hydrogen sulfide treatment improves post-infarct remodeling and long-term cardiac function in CSE knockout and wild-type mice. Int J Mol Sci. 21:42842020. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Zhao D, Lu F, Peng S, Yu M, Liu N, Sun Y, Du H, Wang B, Chen J, et al: Hydrogen sulfide regulates muscle RING finger-1 protein S-sulfhydration at Cys44 to prevent cardiac structural damage in diabetic cardiomyopathy. Br J Pharmacol. 177:836–856. 2020. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Xiao Y, Ma Y, Tang X, Xie L, Liu J, Gu Y, Yu Y, Park CM, Xian M, et al: Hydrogen sulfide regulates krüppel-like factor 5 transcription activity via specificity protein 1 s-sulfhydration at Cys664 to prevent myocardial hypertrophy. J Am Heart Assoc. 5:e0041602016. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Liao Y, Huang Y, Chen SY, Sun Y, Sun C, Wu Y, Tang C, Du J and Jin H: Endogenous hydrogen sulfide enhances carotid sinus baroreceptor sensitivity by activating the transient receptor potential cation channel subfamily V Member 1 (TRPV1) Channel. J Am Heart Assoc. 6:e0049712017. View Article : Google Scholar : PubMed/NCBI | |
Jin S, Teng X, Xiao L, Xue H, Guo Q, Duan X, Chen Y and Wu Y: Hydrogen sulfide ameliorated L-NAME-induced hypertensive heart disease by the Akt/eNOS/NO pathway. Exp Biol Med (Maywood). 242:1831–1841. 2017. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Zhu J, Xiao Y, Huang Z, Zhang Y, Tang X, Xie L, Chen Y, Shao Y, Ferro A, et al: Hydrogen sulfide donor GYY4137 protects against myocardial fibrosis. Oxid Med Cell Longev. 2015:6910702015. View Article : Google Scholar : PubMed/NCBI | |
Huang C, Kan J, Liu X, Ma F, Tran BH, Zou Y, Wang S and Zhu YZ: Cardioprotective effects of a novel hydrogen sulfide agent-controlled release formulation of S-propargyl-cysteine on heart failure rats and molecular mechanisms. PLoS One. 8:e692052013. View Article : Google Scholar : PubMed/NCBI | |
Zhong X, Wang L, Wang Y, Dong S, Leng X, Jia J, Zhao Y, Li H, Zhang X, Xu C, et al: Exogenous hydrogen sulfide attenuates diabetic myocardial injury through cardiac mitochondrial protection. Mol Cell Biochem. 371:187–198. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sodha NR, Clements RT, Feng J, Liu Y, Bianchi C, Horvath EM, Szabo C, Stahl GL and Sellke FW: Hydrogen sulfide therapy attenuates the inflammatory response in a porcine model of myocardial ischemia/reperfusion injury. J Thorac Cardiovasc Surg. 138:977–984. 2009. View Article : Google Scholar : PubMed/NCBI | |
Meng G, Wang J, Xiao Y, Bai W, Xie L, Shan L, Moore PK and Ji Y: GYY4137 protects against myocardial ischemia and reperfusion injury by attenuating oxidative stress and apoptosis in rats. J Biomed Res. 29:203–213. 2015.PubMed/NCBI | |
King AL, Polhemus DJ, Bhushan S, Otsuka H, Kondo K, Nicholson CK, Bradley JM, Islam KN, Calvert JW, Tao YX, et al: Hydrogen sulfide cytoprotective signaling is endothelial nitric oxide synthase-nitric oxide dependent. Proc Natl Acad Sci USA. 111:3182–3187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Karwi QG, Bice JS and Baxter GF: Pre- and postconditioning the heart with hydrogen sulfide (H2S) against ischemia/reperfusion injury in vivo: A systematic review and meta-analysis. Basic Res Cardiol. 113:62018. View Article : Google Scholar : PubMed/NCBI | |
Xiong Q, Wang Z, Yu Y, Wen Y, Suguro R, Mao Y and Zhu YZ: Hydrogen sulfide stabilizes atherosclerotic plaques in apolipoprotein E knockout mice. Pharmacol Res. 144:90–98. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Wang W, Dai J, Jin S, Huang J, Guo C, Wang C, Pang L and Wang Y: A Long-term and slow-releasing hydrogen sulfide donor protects against myocardial ischemia/reperfusion injury. Sci Rep. 7:35412017. View Article : Google Scholar : PubMed/NCBI | |
Hu MZ, Zhou B, Mao HY, Sheng Q, Du B, Chen JL, Pang QF and Ji Y: Exogenous hydrogen sulfide postconditioning protects isolated rat hearts from ischemia/reperfusion injury through Sirt1/PGC-1α signaling pathway. Int Heart J. 57:477–482. 2016. View Article : Google Scholar : PubMed/NCBI | |
Karwi QG, Bornbaum J, Boengler K, Torregrossa R, Whiteman M, Wood ME, Schulz R and Baxter GF: AP39, a mitochondria-targeting hydrogen sulfide (H2 S) donor, protects against myocardial reperfusion injury independently of salvage kinase signalling. Br J Pharmacol. 174:287–301. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nandi S, Ravindran S and Kurian GA: Role of endogenous hydrogen sulfide in cardiac mitochondrial preservation during ischemia reperfusion injury. Biomed Pharmacother. 97:271–279. 2018. View Article : Google Scholar : PubMed/NCBI | |
Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, et al: Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci USA. 104:15560–15565. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ji Y, Pang Q, Xu G, Wang L, Wang J and Zeng Y: Exogenous hydrogen sulfide postconditioning protects isolated rat hearts against ischemia-reperfusion injury. Eur J Pharmacol. 587:1–7. 2008. View Article : Google Scholar : PubMed/NCBI | |
Testai L, Marino A, Piano I, et al: The novel H2S-donor 4-carboxyphenyl isothiocyanate promotes cardioprotective effects against ischemia/reperfusion injury through activation of mitoKATP channels and reduction of oxidative stress. Pharmacol Res. 113:290–299. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yao LL, Huang XW, Wang YG, Cao YX, Zhang CC and Zhu YC: Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol. 298:H1310–H1319. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lambert JP, Nicholson CK, Amin H, Amin S and Calvert JW: Hydrogen sulfide provides cardioprotection against myocardial/ischemia reperfusion injury in the diabetic state through the activation of the RISK pathway. Med Gas Res. 4:202014. View Article : Google Scholar : PubMed/NCBI | |
Meng W, Pei Z, Feng Y, Zhao J, Chen Y, Shi W, Xu Q, Lin F, Sun M and Xiao K: Neglected role of hydrogen sulfide in sulfur mustard poisoning: Keap1 S-sulfhydration and subsequent Nrf2 pathway activation. Sci Rep. 7:94332017. View Article : Google Scholar : PubMed/NCBI | |
Calvert JW, Jha S, Gundewar S, Elrod JW, Ramachandran A, Pattillo CB, Kevil CG and Lefer DJ: hydrogen sulfide mediates cardioprotection through Nrf2 signaling. Circ Res. 105:365–374. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tu W, Wang H, Li S, Liu Q and Sha H: The anti-inflammatory and anti-oxidant mechanisms of the Keap1/Nrf2/ARE signaling pathway in chronic diseases. Aging Dis. 10:637–651. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gao T, Furnari F and Newton AC: PHLPP: A phosphatase that directly dephosphorylates Akt, promotes apoptosis, and suppresses tumor growth. Mol Cell. 18:13–24. 2005. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto S, Purcell NH, Smith JM, Gao T, Whittaker R, Huang K, Castillo R, Glembotski CC, Sussman MA, Newton AC and Brown JH: PHLPP-1 negatively regulates Akt activity and survival in the heart. Circ Res. 107:476–484. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ji K, Xue L, Cheng J and Bai Y: Preconditioning of H2S inhalation protects against cerebral ischemia/reperfusion injury by induction of HSP70 through PI3K/Akt/Nrf2 pathway. Brain Res Bull. 121:68–74. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang B, Li W, Xi W, Yi Y, Ciren Y, Shen H, Zhang Y, Jiang H, Xiao J and Wang Z: Hydrogen sulfide protects cardiomyocytes against apoptosis in ischemia/reperfusion through MiR-1-regulated histone deacetylase 4 pathway. Cell Physiol Biochem. 41:10–21. 2017. View Article : Google Scholar : PubMed/NCBI | |
Muñoz-Planillo R, Nuñez G, Franchi L and Eigenbrod T: The inflammasome: A caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol. 10:241–247. 2009. View Article : Google Scholar : PubMed/NCBI | |
Toldo S, Das A, Mezzaroma E, Chau VQ, Marchetti C, Durrant D, Samidurai A, Van Tassell BW, Yin C, Ockaili RA, et al: Induction of microRNA-21 with exogenous hydrogen sulfide attenuates myocardial ischemic and inflammatory injury in mice. Circ Cardiovasc Genet. 7:311–320. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhu WD, Xu J, Zhang M, Zhu TM, Zhang YH and Sun K: MicroRNA-21 inhibits lipopolysaccharide-induced acute lung injury by targeting nuclear factor-κB. Exp Ther Med. 16:4616–4622. 2018.PubMed/NCBI | |
Yan X, Liu Y, Kong X, Ji J, Zhu H, Zhang Z, Fu T, Yang J, Zhang Z, Liu F and Gu Z: MicroRNA-21-5p are involved in apoptosis and invasion of fibroblast-like synoviocytes through PTEN/PI3K/AKT signal. Cytotechnology. 71:317–328. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Tian SS, Hang PZ, Sun C, Guo J and Du ZM: Combination of microRNA-21 and microRNA-146a attenuates cardiac dysfunction and apoptosis during acute myocardial infarction in mice. Mol Ther Nucleic Acids. 5:e2962016. View Article : Google Scholar : PubMed/NCBI | |
Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M and Volchuk A: Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreatic beta-Cell apoptosis. Endocrinology. 147:3398–3407. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ren L, Wang Q, Chen Y, Ma Y and Wang D: Involvement of MicroRNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology. 103:1–9. 2019. View Article : Google Scholar : PubMed/NCBI | |
He B, Xiao J, Ren AJ, Zhang YF, Zhang H, Chen M, Xie B, Gao XG and Wang YW: Role of miR-1 and miR-133a in myocardial ischemic postconditioning. J Biomed Sci. 18:222011. View Article : Google Scholar : PubMed/NCBI | |
Dakhlallah D, Zhang J, Yu L, Marsh CB, Angelos MG and Khan M: MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart. J Cardiovasc Pharmacol. 65:241–251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Predmore BL, Kondo K, Bhushan S, Zlatopolsky MA, King AL, Aragon JP, Grinsfelder DB, Condit ME and Lefer DJ: The polysulfide diallyl trisulfide protects the ischemic myocardium by preservation of endogenous hydrogen sulfide and increasing nitric oxide bioavailability. Am J Physiol Heart Circ Physiol. 302:H2410–H2418. 2012. View Article : Google Scholar : PubMed/NCBI | |
Minamishima S, Bougaki M, Sips PY, Yu JD, Minamishima YA, Elrod JW, Lefer DJ, Bloch KD and Ichinose F: Hydrogen sulfide improves survival after cardiac arrest and cardiopulmonary resuscitation via a nitric oxide synthase 3-dependent mechanism in mice. Circulation. 120:888–896. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bibli SI, Hu J, Looso M, Weigert A, Ratiu C, Wittig J, Drekolia MK, Tombor L, Randriamboavonjy V, Leisegang MS, et al: Mapping the endothelial Cell S-sulfhydrome highlights the crucial role of integrin sulfhydration in vascular function. Circulation. 143:935–948. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun J, Aponte AM, Menazza S, Gucek M, Steenbergen C and Murphy E: Additive cardioprotection by pharmacological postconditioning with hydrogen sulfide and nitric oxide donors in mouse heart: S-sulfhydration vs. S-nitrosylation. Cardiovasc Res. 110:96–106. 2016. View Article : Google Scholar : PubMed/NCBI |