1
|
Ezzedine K, Eleftheriadou V, Whitton M and van Geel N: Vitiligo. Lancet. 386:74–84. 2015. View Article : Google Scholar : PubMed/NCBI
|
2
|
Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, et al: Revised classification/nomenclature of vitiligo and related issues: The Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 25:E1–E13. 2012. View Article : Google Scholar : PubMed/NCBI
|
3
|
Elbuluk N and Ezzedine K: Quality of life, burden of disease, co-morbidities, and systemic effects in vitiligo patients. Dermatol Clin. 35:117–128. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Manga P, Elbuluk N and Orlow SJ: Recent advances in understanding vitiligo. F1000Research. 5:2016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Denman CJ, McCracken J, Hariharan V, Klarquist J, Oyarbide-Valencia K, Guevara-Patiño JA and Le Poole IC: HSP70i accelerates depigmentation in a mouse model of autoimmune vitiligo. J Invest Dermatol. 128:2041–2048. 2008. View Article : Google Scholar : PubMed/NCBI
|
6
|
Yildirim M, Korkmaz S and Erturan İ: Role of antioxidants in vitiligo. Comprehensive Textbook on Vitiligo. 1452020. View Article : Google Scholar
|
7
|
Eletto D, Chevet E, Argon Y and Appenzeller-Herzog C: Redox controls UPR to control redox. J Cell Sci. 127:3649–3658. 2014.PubMed/NCBI
|
8
|
Krebs J, Groenendyk J and Michalak M: Ca2+-signaling, alternative splicing and endoplasmic reticulum stress responses. Neurochem Res. 36:1198–1211. 2011. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiao BH, Wu Y, Sun Y, Chen HD and Gao XH: Treatment of vitiligo with NB-UVB: A systematic review. J Dermatolog Treat. 26:340–346. 2015. View Article : Google Scholar : PubMed/NCBI
|
10
|
Njoo M, Bos J and Westerhof W: Treatment of generalized vitiligo in children with narrow-band (TL-01) UVB radiation therapy. J Am Acad Dermatol. 42:245–253. 2000. View Article : Google Scholar : PubMed/NCBI
|
11
|
Karaosmanoglu N, Ozdemir Cetinkaya P, Kutlu O, Karaaslan E, Imren IG, Kiratli Nalbant E and Eksioglu M: A cross-sectional analysis of skin cancer risk in patients receiving narrow-band ultraviolet B phototherapy: An evaluation of 100 patients. Arch Dermatol Res. 312:249–253. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Buglewicz DJ, Mussallem JT, Haskins AH, Su C, Maeda J and Kato TA: Cytotoxicity and mutagenicity of narrowband UVB to mammalian cells. Genes (Basel). 11:6462020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Si Z, Wang X, Sun C, Kang Y, Xu J, Wang X and Hui Y: Adipose-derived stem cells: Sources, potency, and implications for regenerative therapies. Biomed Pharmacother. 114:1087652019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Bajek A, Gurtowska N, Olkowska J, Kazmierski L, Maj M and Drewa T: Adipose-derived stem cells as a tool in cell-based therapies. Arch Immunol Ther Exp (Warsz). 64:443–454. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Rigotti G, Marchi A, Galiè M, Baroni G, Benati D, Krampera M, Pasini A and Sbarbati A: Clinical treatment of radiotherapy tissue damage by lipoaspirate transplant: A healing process mediated by adipose-derived adult stem cells. Plast Reconstr Surg. 119:1409–1422. 2007. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sándor GK, Tuovinen VJ, Wolff J, Patrikoski M, Jokinen J, Nieminen E, Mannerström B, Lappalainen OP, Seppänen R and Miettinen S: Adipose stem cell tissue-engineered construct used to treat large anterior mandibular defect: A case report and review of the clinical application of good manufacturing practice-level adipose stem cells for bone regeneration. J Oral Maxillofac Surg. 71:938–950. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Lim WS, Kim CH, Kim JY, Do BR, Kim EJ and Lee AY: Adipose-derived stem cells improve efficacy of melanocyte transplantation in animal skin. Biomol Ther (Seoul). 22:3282014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Mukhatayev Z, Dellacecca ER, Cosgrove C, Shivde R, Jaishankar D, Pontarolo-Maag K, Eby JM, Henning SW, Ostapchuk YO, Cedercreutz K, et al: Antigen specificity enhances disease control by Tregs in vitiligo. Front Immunol. 11:5814332020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Zhao Y, Wang N, Wu H, Zhou Y, Huang C, Luo J, Zeng Z and Kong L: Structure-based tailoring of the first coumarins-specific bergaptol O-methyltransferase to synthesize bergapten for depigmentation disorder treatment. J Adv Res. 21:57–64. 2020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Chen J, Tang YX, Liu YM, Chen J, Hu XQ, Liu N, Wang SX, Zhang Y, Zeng WG, Ni HJ, et al: Transplantation of adipose-derived stem cells is associated with neural differentiation and functional improvement in a rat model of intracerebral hemorrhage. CNS Neurosci Ther. 18:847–854. 2012. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lv W, Graves DT, He L, Shi Y, Deng X, Zhao Y, Dong X, Ren Y, Liu X, Xiao E and Zhang Y: Depletion of the diabetic gut microbiota resistance enhances stem cells therapy in type 1 diabetes mellitus. Theranostics. 10:6500–6516. 2020. View Article : Google Scholar : PubMed/NCBI
|
22
|
Singh A, Venkannagari S, Oh KH, Zhang YQ, Rohde JM, Liu L, Nimmagadda S, Sudini K, Brimacombe KR, Gajghate S, et al: Small molecule inhibitor of NRF2 selectively intervenes therapeutic resistance in KEAP1-deficient NSCLC tumors. ACS Chem Biol. 11:3214–3225. 2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Liu X, Zhu Q, Zhang M, Yin T, Xu R, Xiao W, Wu J, Deng B, Gao X, Gong W, et al: Isoliquiritigenin ameliorates acute pancreatitis in mice via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2018:7161592. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Dicle O: Assessment methods in vitiligo. Pigment Disord. 2:12015.
|
25
|
Zhu Y, Wang S and Xu A: A mouse model of vitiligo induced by monobenzone. Exp Dermatol. 22:499–501. 2013. View Article : Google Scholar : PubMed/NCBI
|
26
|
Pinton P, Giorgi C, Siviero R, Zecchini E and Rizzuto R: Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene. 27:6407–6418. 2008. View Article : Google Scholar : PubMed/NCBI
|
27
|
Giorgi C, Romagnoli A, Pinton P and Rizzuto R: Ca2+ signaling, mitochondria and cell death. Curr Mol Med. 8:119–130. 2008. View Article : Google Scholar : PubMed/NCBI
|
28
|
Carreras-Sureda A, Pihán P and Hetz C: Calcium signaling at the endoplasmic reticulum: Fine-tuning stress responses. Cell Calcium. 70:24–31. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Buckley C, Wilson C and McCarron JG: FK506 regulates Ca2+ release evoked by inositol 1,4,5-trisphosphate independently of FK-binding protein in endothelial cells. Br J Pharmacol. 177:1131–1149. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
De Brito OM and Scorrano L: An intimate liaison: Spatial organization of the endoplasmic reticulum-mitochondria relationship. EMBO J. 29:2715–2723. 2010. View Article : Google Scholar : PubMed/NCBI
|
31
|
Biagioli M, Pifferi S, Ragghianti M, Bucci S, Rizzuto R and Pinton P: Endoplasmic reticulum stress and alteration in calcium homeostasis are involved in cadmium-induced apoptosis. Cell Calcium. 43:184–195. 2008. View Article : Google Scholar : PubMed/NCBI
|
32
|
Rimessi A, Previati M, Nigro F, Wieckowski MR and Pinton P: Mitochondrial reactive oxygen species and inflammation: Molecular mechanisms, diseases and promising therapies. Int J Biochem Cell Biol. 81:281–293. 2016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Denat L, Kadekaro AL, Marrot L, Leachman SA and Abdel-Malek ZA: Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 134:1512–1518. 2014. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jian Z, Li K, Song P, Zhu G, Zhu L, Cui T, Liu B, Tang L, Wang X, Wang G, et al: Impaired activation of the Nrf2-ARE signaling pathway undermines H2O2-induced oxidative stress response: A possible mechanism for melanocyte degeneration in vitiligo. J Invest Dermatol. 134:2221–2230. 2014. View Article : Google Scholar : PubMed/NCBI
|