1
|
Ewen S, Nikolovska A, Zivanovic I,
Kindermann I and Böhm M: Chronic heart failure - new insights.
Dtsch Med Wochenschr. 141:1560–1564. 2016.(In German). PubMed/NCBI
|
2
|
Špinar J, Špinarová L and Vítovec J:
Pathophysiology, causes and epidemiology of chronic heart failure.
Vnitr Lek. 64:834–838. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
King M, Kingery J and Casey B: Diagnosis
and evaluation of heart failure. Am Fam Physician. 85:1161–1168.
2012.PubMed/NCBI
|
4
|
Climent M, Viggiani G, Chen YW, Coulis G
and Castaldi A: MicroRNA and ROS crosstalk in cardiac and pulmonary
diseases. Int J Mol Sci. 21:212020. View Article : Google Scholar
|
5
|
Dick SA and Epelman S: Chronic heart
failure and inflammation: what do we really know? Circ Res.
119:159–176. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang J, Wong YK and Liao F: What has
traditional Chinese medicine delivered for modern medicine? Expert
Rev Mol Med. 20:e42018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zang Y, Wan J, Zhang Z, Huang S, Liu X and
Zhang W: An updated role of astragaloside IV in heart failure.
Biomed Pharmacother. 126:1100122020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Rybnikář M, Šmejkal K and Žemlička M:
Schisandra chinensis and its phytotherapeutical applications. Ceska
Slov Farm. 68:95–118. 2019.PubMed/NCBI
|
9
|
Ma S, Li X, Dong L, Zhu J, Zhang H and Jia
Y: Protective effect of Sheng-Mai Yin, a traditional Chinese
preparation, against doxorubicin-induced cardiac toxicity in rats.
BMC Complement Altern Med. 16:612016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang K, Zhang J, Wang X, Wang L, Pugliese
M, Passantino A and Li J: Cardioprotection of Sheng Mai Yin a
classic formula on adriamycin induced myocardial injury in Wistar
rats. Phytomedicine. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Xu D, Liu J, Ma H, Guo W, Wang J, Kan X,
Li Y, Gong Q, Cao Y, Cheng J, et al: Schisandrin A protects against
lipopolysaccharide-induced mastitis through activating Nrf2
signaling pathway and inducing autophagy. Int Immunopharmacol.
78:1059832020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhi Y, Jin Y, Pan L, Zhang A and Liu F:
Schisandrin A ameliorates MPTP-induced Parkinson's disease in a
mouse model via regulation of brain autophagy. Arch Pharm Res.
42:1012–1020. 2019. View Article : Google Scholar : PubMed/NCBI
|
13
|
Cui L, Zhu W, Yang Z, Song X, Xu C, Cui Z
and Xiang L: Evidence of anti-inflammatory activity of Schizandrin
A in animal models of acute inflammation. Naunyn Schmiedebergs Arch
Pharmacol. 393:2221–2229. 2020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Kwon DH, Cha HJ, Choi EO, Leem SH, Kim GY,
Moon SK, Chang YC, Yun SJ, Hwang HJ, Kim BW, et al: Schisandrin A
suppresses lipopolysaccharide-induced inflammation and oxidative
stress in RAW 264.7 macrophages by suppressing the NF-κB, MAPKs and
PI3K/Akt pathways and activating Nrf2/HO-1 signaling. Int J Mol
Med. 41:264–274. 2018.PubMed/NCBI
|
15
|
Ni S, Qian Z, Yuan Y, Li D, Zhong Z,
Ghorbani F, Zhang X, Zhang F, Zhang Z, Liu Z, et al: Schisandrin A
restrains osteoclastogenesis by inhibiting reactive oxygen species
and activating Nrf2 signalling. Cell Prolif. 53:e128822020.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhou F, Wang M, Ju J, Wang Y, Liu Z, Zhao
X, Yan Y, Yan S, Luo X and Fang Y: Schizandrin A protects against
cerebral ischemia-reperfusion injury by suppressing inflammation
and oxidative stress and regulating the AMPK/Nrf2 pathway
regulation. Am J Transl Res. 11:199–209. 2019.PubMed/NCBI
|
17
|
Lu Y, Wang WJ, Song YZ and Liang ZQ: The
protective mechanism of schisandrin A in d-galactosamine-induced
acute liver injury through activation of autophagy. Pharm Biol.
52:1302–1307. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Xu X, Rajamanicham V, Xu S, Liu Z, Yan T,
Liang G, Guo G, Zhou H and Wang Y: Schisandrin A inhibits triple
negative breast cancer cells by regulating Wnt/ER stress signaling
pathway. Biomed Pharmacother. 115:1089222019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Xiao N, Zhang J, Chen C, Wan Y, Wang N and
Yang J: miR-129-5p improves cardiac function in rats with chronic
heart failure through targeting HMGB1. Mamm Genome. 30:276–288.
2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Li J, Salvador AM, Li G, Valkov N, Ziegler
O, Yeri A, Yang Xiao C, Meechoovet B, Alsop E, Rodosthenous RS, et
al: Mir-30d regulates cardiac remodeling by intracellular and
paracrine signaling. Circ Res. 128:e1–e23. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wehbe N, Nasser SA, Pintus G, Badran A,
Eid AH and Baydoun E: Micrornas in cardiac hypertrophy. Int J Mol
Sci. 20:47142019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Ge X, Meng Q, Wei L, Liu J, Li M, Liang X,
Lin F, Zhang Y, Li Y, Liu Z, et al: Myocardial ischemia-reperfusion
induced cardiac extracellular vesicles harbour proinflammatory
features and aggravate heart injury. J Extracell Vesicles.
10:e120722021. View Article : Google Scholar : PubMed/NCBI
|
23
|
Blanco RR, Austin H, Vest RN III, Valadri
R, Li W, Lassegue B, Song Q, London B, Dudley SC, Bloom HL, et al:
Angiotensin receptor type 1 single nucleotide polymorphism 1166A/C
is associated with malignant arrhythmias and altered circulating
miR-155 levels in patients with chronic heart failure. J Card Fail.
18:717–723. 2012. View Article : Google Scholar : PubMed/NCBI
|
24
|
Yan H and Guo M: Schizandrin A inhibits
cellular phenotypes of breast cancer cells by repressing miR-155.
IUBMB Life. 72:1640–1648. 2020. View
Article : Google Scholar : PubMed/NCBI
|
25
|
Chang SC, Ren S, Rau CD and Wang JJ:
Isoproterenol-induced heart failure mouse model using osmotic pump
implantation. Methods Mol Biol. 1816:207–220. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhou Q, Pan LL, Xue R, Ni G, Duan Y, Bai
Y, Shi C, Ren Z, Wu C, Li G, et al: The anti-microbial peptide
LL-37/CRAMP levels are associated with acute heart failure and can
attenuate cardiac dysfunction in multiple preclinical models of
heart failure. Theranostics. 10:6167–6181. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Tan X, Li J, Wang X, Chen N, Cai B, Wang
G, Shan H, Dong D, Liu Y, Li X, et al: Tanshinone IIA protects
against cardiac hypertrophy via inhibiting calcineurin/NFATc3
pathway. Int J Biol Sci. 7:383–389. 2011. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang Y, Xu C, Tang S and Xia Z:
Interleukin-9 Aggravates isoproterenol-induced heart failure by
activating signal transducer and activator of transcription 3
signalling. Can J Cardiol. 36:1770–1781. 2020. View Article : Google Scholar : PubMed/NCBI
|
30
|
You X, Guo ZF, Cheng F, Yi B, Yang F, Liu
X, Zhu N, Zhao X, Yan G, Ma XL, et al: Transcriptional
up-regulation of relaxin-3 by Nur77 attenuates β-adrenergic
agonist-induced apoptosis in cardiomyocytes. J Biol Chem.
293:14001–14011. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng H, Wu X, Ni G, Wang S, Peng W, Zhang
H, Gao J and Li X: Citri Reticulatae Pericarpium protects
against isoproterenol-induced chronic heart failure via activation
of PPARγ. Ann Transl Med. 8:13962020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Laudette M, Coluccia A, Sainte-Marie Y,
Solari A, Fazal L, Sicard P, Silvestri R, Mialet-Perez J, Pons S,
Ghaleh B, et al: Identification of a pharmacological inhibitor of
Epac1 that protects the heart against acute and chronic models of
cardiac stress. Cardiovasc Res. 115:1766–1777. 2019.PubMed/NCBI
|
33
|
Gallo S, Vitacolonna A, Bonzano A,
Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology
of cardiac hypertrophy. Int J Mol Sci. 20:202019. View Article : Google Scholar
|
34
|
Heinzel FR, Hohendanner F, Jin G, Sedej S
and Edelmann F: Myocardial hypertrophy and its role in heart
failure with preserved ejection fraction. J Appl Physiol 1985.
119:1233–1242. 2015.PubMed/NCBI
|
35
|
Hartupee J and Mann DL: Neurohormonal
activation in heart failure with reduced ejection fraction. Nat Rev
Cardiol. 14:30–38. 2017. View Article : Google Scholar : PubMed/NCBI
|
36
|
Raveendran VV, Al-Haffar K, Kunhi M,
Belhaj K, Al-Habeeb W, Al-Buraiki J, Eyjolsson A and Poizat C:
Protein arginine methyltransferase 6 mediates cardiac hypertrophy
by differential regulation of histone H3 arginine methylation.
Heliyon. 6:e038642020. View Article : Google Scholar : PubMed/NCBI
|
37
|
Qi Y, Li JJ, Di XH, Zhang Y, Chen JL, Wu
ZX, Man ZY, Bai RY, Lu F, Tong J, et al: Excess sarcoplasmic
reticulum-mitochondria calcium transport induced by
Sphingosine-1-phosphate contributes to cardiomyocyte hypertrophy.
Biochim Biophys Acta Mol Cell Res. 1868:1189702021. View Article : Google Scholar : PubMed/NCBI
|
38
|
de Bold AJ: Atrial natriuretic factor: A
hormone produced by the heart. Science. 230:767–770. 1985.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Charloux A, Piquard F, Doutreleau S,
Brandenberger G and Geny B: Mechanisms of renal hyporesponsiveness
to ANP in heart failure. Eur J Clin Invest. 33:769–778. 2003.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Gardner DG, Chen S, Glenn DJ and Grigsby
CL: Molecular biology of the natriuretic peptide system:
Implications for physiology and hypertension. Hypertension.
49:419–426. 2007. View Article : Google Scholar : PubMed/NCBI
|
41
|
Kuwahara K, Nakagawa Y and Nishikimi T:
Cutting Edge of Brain Natriuretic Peptide (BNP) Research - The
Diversity of BNP Immunoreactivity and Its Clinical Relevance. Circ
J. 82:2455–2461. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Ingles J, Doolan A, Chiu C, Seidman J,
Seidman C and Semsarian C: Compound and double mutations in
patients with hypertrophic cardiomyopathy: Implications for genetic
testing and counselling. J Med Genet. 42:e592005. View Article : Google Scholar : PubMed/NCBI
|
43
|
Hang CT, Yang J, Han P, Cheng HL, Shang C,
Ashley E, Zhou B and Chang CP: Chromatin regulation by Brg1
underlies heart muscle development and disease. Nature. 466:62–67.
2010.Erratum in: Nature 475: 532, 2011. View Article : Google Scholar : PubMed/NCBI
|
44
|
Vegter EL, van der Meer P, de Windt LJ,
Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker
to target for therapy. Eur J Heart Fail. 18:457–468. 2016.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Michaille JJ, Awad H, Fortman EC, Efanov
AA and Tili E: miR-155 expression in antitumor immunity: The higher
the better? Genes Chromosomes Cancer. 58:208–218. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Eissa MG and Artlett CM: The microRNA
miR-155 is essential in fibrosis. Noncoding RNA. 5:52019.
|
47
|
Chen L, Gao D, Shao Z, Zheng Q and Yu Q:
miR-155 indicates the fate of CD4+ T cells. Immunol Lett.
224:40–49. 2020. View Article : Google Scholar : PubMed/NCBI
|
48
|
Ding H, Wang Y, Hu L, Xue S, Wang Y, Zhang
L, Zhang Y, Qi H, Yu H, Aung LHH, et al: Combined detection of
miR-21-5p, miR-30a-3p, miR-30a-5p, miR-155-5p, miR-216a and miR-217
for screening of early heart failure diseases. Biosci Rep.
40:BSR201916532020. View Article : Google Scholar : PubMed/NCBI
|
49
|
Liu J, van Mil A, Vrijsen K, Zhao J, Gao
L, Metz CH, Goumans MJ, Doevendans PA and Sluijter JP: MicroRNA-155
prevents necrotic cell death in human cardiomyocyte progenitor
cells via targeting RIP1. J Cell Mol Med. 15:1474–1482. 2011.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Seok HY, Chen J, Kataoka M, Huang ZP, Ding
J, Yan J, Hu X and Wang DZ: Loss of MicroRNA-155 protects the heart
from pathological cardiac hypertrophy. Circ Res. 114:1585–1595.
2014. View Article : Google Scholar : PubMed/NCBI
|
51
|
Gabbiani G: The myofibroblast in wound
healing and fibrocontractive diseases. J Pathol. 200:500–503. 2003.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Rai V, Sharma P, Agrawal S and Agrawal DK:
Relevance of mouse models of cardiac fibrosis and hypertrophy in
cardiac research. Mol Cell Biochem. 424:123–145. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
McLellan MA, Skelly DA, Dona MSI, Squiers
GT, Farrugia GE, Gaynor TL, Cohen CD, Pandey R, Diep H, Vinh A, et
al: High-Resolution Transcriptomic Profiling of the Heart During
Chronic Stress Reveals Cellular Drivers of Cardiac Fibrosis and
Hypertrophy. Circulation. 142:1448–1463. 2020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Weeks KL, Bernardo BC, Ooi JYY, Patterson
NL and McMullen JR: The IGF1-PI3K-Akt Signaling Pathway in
Mediating Exercise-Induced Cardiac Hypertrophy and Protection. Adv
Exp Med Biol. 1000:187–210. 2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Jiang DS, Bian ZY, Zhang Y, Zhang SM, Liu
Y, Zhang R, Chen Y, Yang Q, Zhang XD, Fan GC, et al: Role of
interferon regulatory factor 4 in the regulation of pathological
cardiac hypertrophy. Hypertension. 61:1193–1202. 2013. View Article : Google Scholar : PubMed/NCBI
|
56
|
Müller FU, Lewin G, Baba HA, Bokník P,
Fabritz L, Kirchhefer U, Kirchhof P, Loser K, Matus M, Neumann J,
et al: Heart-directed expression of a human cardiac isoform of
cAMP-response element modulator in transgenic mice. J Biol Chem.
280:6906–6914. 2005. View Article : Google Scholar : PubMed/NCBI
|