1
|
Wehkamp J, Götz M, Herrlinger K, Steurer W
and Stange EF: Inflammatory bowel disease. Dtsch Arztebl Int.
113:72–82. 2016.PubMed/NCBI
|
2
|
Ananthakrishnan AN, Bernstein CN,
Iliopoulos D, Macpherson A, Neurath MF, Ali RAR, Vavricka SR and
Fiocchi C: Environmental triggers in IBD: A review of progress and
evidence. Nat Rev Gastroenterol Hepatol. 15:39–49. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cleynen I, Boucher G, Jostins L, Schumm
LP, Zeissig S, Ahmad T, Andersen V, Andrews JM, Annese V, Brand S,
et al: Inherited determinants of Crohn's disease and ulcerative
colitis phenotypes: A genetic association study. Lancet.
387:156–167. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Nielsen OH and Munck LK: Drug insight:
Aminosalicylates for the treatment of IBD. Nat Clin Pract
Gastroenterol Hepatol. 4:160–170. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Darb Emamie A, Rajabpour M, Ghanavati R,
Asadolahi P, Farzi S, Sobouti B and Darbandi A: The effects of
probiotics, prebiotics and synbiotics on the reduction of IBD
complications, a periodic review during 2009-2020. J Appl
Microbiol. 130:1823–1838. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Wu J, Yang R, Gao M, Zhang H and Zhan X:
Synthesis of functional oligosaccharides and their derivatives
through cocultivation and cellular NTP regeneration. Adv Appl
Microbiol. 115:35–63. 2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang L, Liu YS, Wu YF and Fu QY: Effects
of chitosan oligosaccharide on alveolar bone resorption, Th17/Treg
balance and OPG/RANKL/RANK pathway in periodontitis rats. Shanghai
Kou Qiang Yi Xue. 30:237–242. 2021.(In Chinese). PubMed/NCBI
|
8
|
Liu SH, Chen RY and Chiang MT: Effects of
chitosan oligosaccharide on plasma and hepatic lipid metabolism and
liver histomorphology in normal sprague-dawley rats. Mar Drugs.
18:4082020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Huang Y and Wang T: Pectin
oligosaccharides enhance α2,6-sialylation modification that
promotes apoptosis of bladder cancer cells by targeting the
hedgehog pathway. Cell Biochem Biophys. 79:719–728. 2021.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Yu X, Fu C, Cui Z, Chen G, Xu Y and Yang
C: Inulin and isomalto-oligosaccharide alleviate constipation and
improve reproductive performance by modulating motility-related
hormones, short-chain fatty acids, and feces microflora in pregnant
sows. J Anim Sci. 99:skab2572021. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rastall RA: Functional oligosaccharides:
Application and manufacture. Annu Rev Food Sci Technol. 1:305–339.
2010. View Article : Google Scholar : PubMed/NCBI
|
12
|
Babbar N, Dejonghe W, Gatti M, Sforza S
and Elst K: Pectic oligosaccharides from agricultural by-products:
Production, characterization and health benefits. Crit Rev
Biotechnol. 36:594–606. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao M, Zhang H, Xu X, Li S and Xu H: A
strategy for the synthesis of low-molecular-weight welan gum by
eliminating capsule form of Sphingomonas strains. Int J Biol
Macromol. 178:11–18. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ke C, Wei L, Wang M, Li Q, Liu X, Guo Y
and Li S: Effect of NaCl addition on the production of welan gum
with the UV mutant of Sphingomonas sp. Carbohydr Polym.
265:1181102021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li H, Xu H, Xu H, Li S, Ying HJ and Ouyang
PK: Enhanced welan gum production using a two-stage agitation speed
control strategy in Alcaligenes sp. CGMCC2428. Bioprocess
Biosyst Eng. 34:95–102. 2011. View Article : Google Scholar : PubMed/NCBI
|
16
|
Martin-Piñero MJ, García MC, Muñoz J and
Alfaro-Rodriguez MC: Influence of the welan gum biopolymer
concentration on the rheological properties, droplet size
distribution and physical stability of thyme oil/W emulsions. Int J
Biol Macromol. 133:270–277. 2019. View Article : Google Scholar : PubMed/NCBI
|
17
|
Berninger T, Dietz N and González López Ó:
Water-soluble polymers in agriculture: Xanthan gum as eco-friendly
alternative to synthetics. Microb Biotechnol. 14:1881–1896. 2021.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Zhu H, Sun SW, Li H, Chang A, Liu YC, Qian
J and Shen YL: Significantly improved production of Welan gum by
Sphingomonas sp. WG through a novel quorum-sensing-interfering
dipeptide cyclo(L-Pro-L-Phe). Int J Biol Macromol. 126:118–122.
2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kaur V, Bera MB, Panesar PS, Kumar H and
Kennedy JF: Welan gum: Microbial production, characterization, and
applications. Int J Biol Macromol. 65:454–461. 2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Martis BS, Droux M, Deboudard F, Nasser W,
Meyer S and Reverchon S: Separation and quantification of
2-keto-3-deoxy-gluconate (KDG) a major metabolite in pectin and
alginate degradation pathways. Anal Biochem. 619:1140612021.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Hagiwara A, Imai N, Doi Y, Sano M, Tamano
S, Omoto T, Asai I, Yasuhara K and Hayashi SM: Ninety-day oral
toxicity study of rhamsan gum, a natural food thickener produced
from Sphingomonas ATCC 31961, in Crl:CD(SD)IGS rats. J Toxicol Sci.
35:493–501. 2010. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li Q, Zhou Y, Ke C, Bai Y, Liu X and Li S:
Production of welan gum from cane molasses by Sphingomonas sp.
FM01. Carbohydr Polym. 244:1164852020. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhu P, Zhan Y, Wang C, Liu X, Liu L and Xu
H: Efficient biosynthesis of polysaccharide welan gum in heat shock
protein-overproducing Sphingomonas sp. via temperature-dependent
strategy. Bioprocess Biosyst Eng. 44:247–257. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Gupta L, Khandelwal D and Kalra S: Applied
carbohydrate counting. J Pak Med Assoc. 67:1456–1457.
2017.PubMed/NCBI
|
25
|
Slámová K, Kapešová J and Valentová K:
‘Sweet flavonoids’: Glycosidase-catalyzed modifications. Int J Mol
Sci. 19:21262018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Martinez-Pomares L: The mannose receptor.
J Leukoc Biol. 92:1177–1186. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Jang J, Kim SM, Yee SM, Kim EM, Lee EH,
Choi HR, Lee YS, Yang WK, Kim HY, Kim KH, et al: Daucosterol
suppresses dextran sulfate sodium (DSS)-induced colitis in mice.
Int Immunopharmacol. 72:124–130. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao H, Liu J, Shen P, Cai J, Han Y, Zhu K,
Fu Y, Zhang N, Zhang Z and Cao Y: Protective effect of naringin on
DSS-induced ulcerative colitis in mice. J Agric Food Chem.
66:13133–13140. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Morton DB: The animals (scientific
procedures) Act 1986 and research into anaesthesia. Br J Anaesth.
65:303–305. 1990. View Article : Google Scholar : PubMed/NCBI
|
30
|
National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals: Guide for the Care and Use of Laboratory Animals. 8th
edition. National Academies Press (US); Washington, DC: 2011
|
31
|
Pacheco MT, Vezza T, Diez-Echave P,
Utrilla P, Villamiel M and Moreno FJ: Anti-inflammatory bowel
effect of industrial orange by-products in DSS-treated mice. Food
Funct. 9:4888–4896. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Chen Y, Zhang M and Ren F: A role of
exopolysaccharide produced by streptococcus thermophilus in the
intestinal inflammation and mucosal barrier in Caco-2 monolayer and
dextran sulphate sodium-induced experimental murine colitis.
Molecules. 24:5132019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ling X, Linglong P, Weixia D and Hong W:
Protective effects of bifidobacterium on intestinal barrier
function in LPS-induced enterocyte barrier injury of Caco-2
monolayers and in a rat NEC model. PLoS One. 11:e01616352016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Konstantinou GN: Enzyme-linked
immunosorbent assay (ELISA). Methods Mol Biol. 1592:79–94. 2017.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhu R, Wang C, Zhang L, Wang Y, Chen G,
Fan J, Jia Y, Yan F and Ning C: Pectin oligosaccharides from fruit
of Actinidia arguta: Structure-activity relationship of prebiotic
and antiglycation potentials. Carbohydr Polym. 217:90–97. 2019.
View Article : Google Scholar : PubMed/NCBI
|
37
|
Chumpitazi BP: The gut microbiome as a
predictor of low fermentable oligosaccharides disaccharides
monosaccharides and polyols diet efficacy in functional bowel
disorders. Curr Opin Gastroenterol. 36:147–154. 2020.PubMed/NCBI
|
38
|
Krasiński R and Tchórzewski H:
Hyaluronan-mediated regulation of inflammation. Postepy Hig Med
Dosw (Online). 61:683–689. 2007.(In Polish). PubMed/NCBI
|
39
|
el-Nezhawy AO, Adly FG, Eweas AF, Hanna
AG, el-Kholy YM, el-Syed SH and el-Naggar TB: Design, synthesis and
antitumor activity of novel D-glucuronic acid derivatives. Med
Chem. 7:624–638. 2011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Dinda B, Dinda S, DasSharma S, Banik R,
Chakraborty A and Dinda M: Therapeutic potentials of baicalin and
its aglycone, baicalein against inflammatory disorders. Eur J Med
Chem. 131:68–80. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Cheng PW, Davidson S and Bhat G: Markers
of malignant prostate cancer cells: Golgi localization of
α-mannosidase 1A at GM130-GRASP65 site and appearance of high
mannose N-glycans on cell surface. Biochem Biophys Res Commun.
527:406–410. 2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wei YY, Fan YM, Ga Y, Zhang YN, Han JC and
Hao ZH: Shaoyao decoction attenuates DSS-induced ulcerative
colitis, macrophage and NLRP3 inflammasome activation through the
MKP1/NF-κB pathway. Phytomedicine. 92:1537432021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Guazelli CFS, Fattori V, Ferraz CR, Borghi
SM, Casagrande R, Baracat MM and Verri WA Jr: Antioxidant and
anti-inflammatory effects of hesperidin methyl chalcone in
experimental ulcerative colitis. Chem Biol Interact.
333:1093152021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Peng Y, Yan Y, Wan P, Chen D, Ding Y, Ran
L, Mi J, Lu L, Zhang Z, Li X, et al: Gut microbiota modulation and
anti-inflammatory properties of anthocyanins from the fruits of
Lycium ruthenicum Murray in dextran sodium sulfate-induced colitis
in mice. Free Radic Biol Med. 136:96–108. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Lamb CA, Kennedy NA, Raine T, Hendy PA,
Smith PJ, Limdi JK, Hayee B, Lomer MCE, Parkes GC, Selinger C, et
al: British society of gastroenterology consensus guidelines on the
management of inflammatory bowel disease in adults. Gut. 68 (Suppl
3):s1–s106. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Casellas F, Borruel N, Torrejón A, Varela
E, Antolin M, Guarner F and Malagelada JR: Oral
oligofructose-enriched inulin supplementation in acute ulcerative
colitis is well tolerated and associated with lowered faecal
calprotectin. Aliment Pharmacol Ther. 25:1061–1067. 2007.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Fang T, Yao Y, Tian G, Chen D, Wu A, He J,
Zheng P, Mao X, Yu J, Luo Y, et al: Chitosan oligosaccharide
attenuates endoplasmic reticulum stress-associated intestinal
apoptosis via the Akt/mTOR pathway. Food Funct. 12:8647–8658. 2021.
View Article : Google Scholar : PubMed/NCBI
|
48
|
Yang X, Yang SP, Zhang X, Yu XD, He QY and
Wang BC: Study on the multi-marker components quantitative HPLC
fingerprint of the compound Chinese medicine Wuwei changyanning
granule. Iran J Pharm Res. 13:1191–1201. 2014.PubMed/NCBI
|
49
|
Luyen BT, Tai BH, Thao NP, Eun KJ, Cha JY,
Xin MJ, Lee YM and Kim YH: Anti-inflammatory components of
euphorbia humifusa Willd. Bioorg Med Chem Lett. 24:1895–1900. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang LL, Fu H, Li WW, Song FJ, Song YX, Yu
Q, Liu GX and Wang XM: Study of effect of humifuse euphorbia herb
on alleviating insulin resistance in type 2 diabetic model KK-Ay
mice. Zhongguo Zhong Yao Za Zhi. 40:1994–1998. 2015.(In Chinese).
PubMed/NCBI
|
51
|
Sann H, Erichsen JV, Hessmann M, Pahl A
and Hoffmeyer A: Efficacy of drugs used in the treatment of IBD and
combinations thereof in acute DSS-induced colitis in mice. Life
Sci. 92:708–718. 2013. View Article : Google Scholar : PubMed/NCBI
|
52
|
Shin SY, Kim CG, Jung YJ, Jung Y, Jung H,
Im J, Lim Y and Lee YH: Euphorbia humifusa Willd exerts inhibition
of breast cancer cell invasion and metastasis through inhibition of
TNFα-induced MMP-9 expression. BMC Complement Altern Med.
16:4132016. View Article : Google Scholar : PubMed/NCBI
|
53
|
Cao SY, Ye SJ, Wang WW, Wang B, Zhang T
and Pu YQ: Progress in active compounds effective on ulcerative
colitis from Chinese medicines. Chin J Nat Med. 17:81–102.
2019.PubMed/NCBI
|
54
|
Zhuang YT, Xu DY, Wang GY, Sun JL, Huang Y
and Wang SZ: IL-6 induced lncRNA MALAT1 enhances TNF-α expression
in LPS-induced septic cardiomyocytes via activation of SAA3. Eur
Rev Med Pharmacol Sci. 21:302–309. 2017.PubMed/NCBI
|
55
|
Baumgart DC and Carding SR: Inflammatory
bowel disease: Cause and immunobiology. Lancet. 369:1627–1640.
2007. View Article : Google Scholar : PubMed/NCBI
|
56
|
Atreya R and Neurath MF: Chemokines in
inflammatory bowel diseases. Dig Dis. 28:386–394. 2010. View Article : Google Scholar : PubMed/NCBI
|
57
|
Zhang H, Kovacs-Nolan J, Kodera T, Eto Y
and Mine Y: γ-Glutamyl cysteine and γ-glutamyl valine inhibit TNF-α
signaling in intestinal epithelial cells and reduce inflammation in
a mouse model of colitis via allosteric activation of the
calcium-sensing receptor. Biochim Biophys Acta. 1852:792–804. 2015.
View Article : Google Scholar : PubMed/NCBI
|
58
|
Singh DP, Khare P, Zhu J, Kondepudi KK,
Singh J, Baboota RK, Boparai RK, Khardori R, Chopra K and Bishnoi
M: A novel cobiotic-based preventive approach against high-fat
diet-induced adiposity, nonalcoholic fatty liver and gut
derangement in mice. Int J Obes (Lond). 40:487–496. 2016.
View Article : Google Scholar : PubMed/NCBI
|