1
|
Apitz C, Webb GD and Redington AN:
Tetralogy of Fallot. Lancet. 374:1462–1471. 2009. View Article : Google Scholar : PubMed/NCBI
|
2
|
Page DJ, Miossec MJ, Williams SG, Monaghan
RM, Fotiou E, Cordell HJ, Sutcliffe L, Topf A, Bourgey M, Bourque
G, et al: Whole exome sequencing reveals the major genetic
contributors to Nonsyndromic Tetralogy of Fallot. Circ Res.
124:553–563. 2019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Grunert M, Dorn C, Cui H, Dunkel I, Schulz
K, Schoenhals S, Sun W, Berger F, Chen W and Sperling SR:
Comparative DNA methylation and gene expression analysis identifies
novel genes for structural congenital heart diseases. Cardiovasc
Res. 112:464–477. 2016. View Article : Google Scholar : PubMed/NCBI
|
4
|
Finn J, Sottoriva K, Pajcini KV,
Kitajewski JK, Chen C, Zhang W, Malik AB and Liu Y: Dlk1-Mediated
Temporal Regulation of Notch Signaling is required for
differentiation of Alveolar Type II to Type I cells during repair.
Cell Rep. 26:2942–2954.e5. 2019. View Article : Google Scholar : PubMed/NCBI
|
5
|
de la Pompa JL and Epstein JA:
Coordinating tissue interactions: Notch signaling in cardiac
development and disease. Dev Cell. 22:244–254. 2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
McCright B, Lozier J and Gridley T: A
mouse model of Alagille syndrome: Notch2 as a genetic modifier of
Jag1 haploinsufficiency. Development. 129:1075–1082. 2002.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Digilio MC, Luca AD, Lepri F, Guida V,
Ferese R, Dentici ML, Angioni A, Marino B and Dallapiccola B: JAG1
mutation in a patient with deletion 22q11.2 syndrome and tetralogy
of Fallot. Am J Med Genet A. 161A:3133–3136. 2013. View Article : Google Scholar : PubMed/NCBI
|
8
|
Garg V: Notch signaling in aortic valve
development and disease, Etiology and Morphogenesis of Congenital
Heart Disease: From Gene Function and Cellular Interaction to
Morphology. Nakanishi T, Markwald RR, Baldwin HS, Keller BB,
Srivastava D and Yamagishi H: Springer; Tokyo: pp. 371–376.
2016
|
9
|
Huang CC, Kuo HM, Wu PC, Cheng SH, Chang
TT, Chang YC, Kung ML, Wu DC, Chuang JH and Tai MH: Soluble
delta-like 1 homolog (DLK1) stimulates angiogenesis through
Notch1/Akt/eNOS signaling in endothelial cells. Angiogenesis.
21:299–312. 2018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Shamis Y, Cullen DE, Liu L, Yang G, Ng SF,
Xiao L, Bell FT, Ray C, Takikawa S, Moskowitz IP, et al: Maternal
and zygotic Zfp57 modulate NOTCH signaling in cardiac development.
Proc Natl Acad Sci USA. 112:E2020–2029. 2015. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rodriguez P, Sassi Y, Troncone L, Benard
L, Ishikawa K, Gordon RE, Lamas S, Laborda J, Hajjar RJ and Lebeche
D: Deletion of delta-like 1 homologue accelerates
fibroblast-myofibroblast differentiation and induces myocardial
fibrosis. Eur Heart J. 40:967–978. 2019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu H, Wang G and Qian J: Transcription
factors as readers and effectors of DNA methylation. Nat Rev Genet.
17:551–565. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Moore-Morris T, van Vliet PP, Andelfinger
G and Puceat M: Role of epigenetics in cardiac development and
congenital diseases. Physiol Rev. 98:2453–2475. 2018. View Article : Google Scholar : PubMed/NCBI
|
14
|
Serra-Juhé C, Cuscó I, Homs A, Flores R,
Torán N and Pérez-Jurado LA: DNA methylation abnormalities in
congenital heart disease. Epigenetics. 10:167–177. 2015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Cao J, Wu Q, Huang Y, Wang L, Su Z and Ye
H: The role of DNA methylation in syndromic and non-syndromic
congenital heart disease. Clin Epigenetics. 13:932021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sheng W, Qian Y, Wang H, Ma X, Zhang P,
Diao L, An Q, Chen L, Ma D and Huang G: DNA methylation status of
NKX2-5, GATA4 and HAND1 in patients with tetralogy of fallot. BMC
Med Genomics. 6:462013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Fornes O, Castro-Mondragon JA, Khan A, van
der Lee R, Zhang X, Richmond PA, Modi BP, Correard S, Gheorghe M,
Baranasic D, et al: JASPAR 2020: update of the open-access database
of transcription factor binding profiles. Nucleic Acids Res.
48(D1): D87–D92. 2020.PubMed/NCBI
|
18
|
Lacazette E: A laboratory practical
illustrating the use of the ChIP-qPCR method in a robust model:
Estrogen receptor alpha immunoprecipitation using Mcf-7 culture
cells. Biochem Mol Biol Educ. 45:152–160. 2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kuhnert F, Kirshner JR and Thurston G:
Dll4-Notch signaling as a therapeutic target in tumor angiogenesis.
Vasc Cell. 3:202011. View Article : Google Scholar : PubMed/NCBI
|
20
|
MacGrogan D, Münch J and de la Pompa JL:
Notch and interacting signalling pathways in cardiac development,
disease, and regeneration. Nat Rev Cardiol. 15:685–704. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Luxan G, D'Amato G, MacGrogan D and de la
Pompa JL: Endocardial Notch signaling in cardiac development and
disease. Circ Res. 118:e1–e18. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Chen H, Zhang W, Sun X, Yoshimoto M, Chen
Z, Zhu W, Liu J, Shen Y, Yong W, Li D, et al: Fkbp1a controls
ventricular myocardium trabeculation and compaction by regulating
endocardial Notch1 activity. Development. 140:1946–1957. 2013.
View Article : Google Scholar : PubMed/NCBI
|
23
|
van Weerd JH, Koshiba-Takeuchi K, Kwon C
and Takeuchi JK: Epigenetic factors and cardiac development.
Cardiovasc Res. 91:203–211. 2011. View Article : Google Scholar : PubMed/NCBI
|
24
|
Wang Z, Zhai W, Richardson JA, Olson EN,
Meneses JJ, Firpo MT, Kang C, Skarnes WC and Tjian R: Polybromo
protein BAF180 functions in mammalian cardiac chamber maturation.
Genes Dev. 18:3106–3116. 2004. View Article : Google Scholar : PubMed/NCBI
|
25
|
Jones PA: Functions of DNA methylation:
Islands, start sites, gene bodies and beyond. Nat Rev Genet.
13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhu Y, Ye M, Xu H, Gu R, Ma X, Chen M, Li
X, Sheng W and Huang G: Methylation status of CpG sites in the
NOTCH4 promoter region regulates NOTCH4 expression in patients with
tetralogy of Fallot. Mol Med Rep. 22:4412–4422. 2020.PubMed/NCBI
|
27
|
Xiaodi L, Ming Y, Hongfei X, Yanjie Z,
Ruoyi G, Ma X, Wei S and Guoying H: DNA methylation at CpG island
shore and RXRα regulate NR2F2 in heart tissues of tetralogy of
Fallot patients. Biochem Biophys Res Commun. 529:1209–1215. 2020.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Vohra M, Adhikari P, Souza SC, Nagri SK,
Umakanth S, Satyamoorthy K and Rai PS: CpG-SNP site methylation
regulates allele-specific expression of MTHFD1 gene in type 2
diabetes. Lab Invest. 100:1090–1101. 2020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Dayeh TA, Olsson AH, Volkov P, Almgren P,
Ronn T and Ling C: Identification of CpG-SNPs associated with type
2 diabetes and differential DNA methylation in human pancreatic
islets. Diabetologia. 56:1036–1046. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Bogdanović O and Lister R: DNA methylation
and the preservation of cell identity. Curr Opin Genet Dev.
46:9–14. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Greenberg MVC and Bourc'his D: The diverse
roles of DNA methylation in mammalian development and disease. Nat
Rev Mol Cell Biol. 20:590–607. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Bahar Halpern K, Vana T and Walker MD:
Paradoxical role of DNA methylation in activation of FoxA2 gene
expression during endoderm development. J Biol Chem.
289:23882–23892. 2014. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nabilsi NH, Broaddus RR and Loose DS: DNA
methylation inhibits p53-mediated survivin repression. Oncogene.
28:2046–2050. 2009. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jia N, Wang J, Li Q, Tao X, Chang K, Hua
K, Yu Y, Wong KK and Feng W: DNA methylation promotes paired box 2
expression via myeloid zinc finger 1 in endometrial cancer.
Oncotarget. 7:84785–84797. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Smith J, Sen S, Weeks RJ, Eccles MR and
Chatterjee A: Promoter DNA Hypermethylation and Paradoxical Gene
Activation. Trends Cancer. 6:392–406. 2020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ruan H, Liao Y, Ren Z, Mao L, Yao F, Yu P,
Ye Y, Zhang Z, Li S, Xu H, et al: Single-cell reconstruction of
differentiation trajectory reveals a critical role of ETS1 in human
cardiac lineage commitment. BMC Biol. 17:892019. View Article : Google Scholar : PubMed/NCBI
|
37
|
Nie S and Bronner ME: Dual developmental
role of transcriptional regulator Ets1 in Xenopus cardiac neural
crest vs. heart mesoderm. Cardiovasc Res. 106:67–75. 2015.
View Article : Google Scholar : PubMed/NCBI
|