1
|
Cohen S, Nathan JA and Goldberg AL: Muscle
wasting in disease: Molecular mechanisms and promising therapies.
Nat Rev Drug Discov. 14:58–74. 2015. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Argilés JM, Busquets S, Stemmler B and
López-Soriano FJ: Cancer cachexia: Understanding the molecular
basis. Nat Rev Cancer. 14:754–762. 2014. View Article : Google Scholar : PubMed/NCBI
|
3
|
Cao RY, Li J, Dai Q, Li Q and Yang J:
Muscle atrophy: Present and future. Adv Exp Med Biol. 1088:605–624.
2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Singh A, Phogat J, Yadav A and Dabur R:
The dependency of autophagy and ubiquitin proteasome system during
skeletal muscle atrophy. Biophys Rev. 13:203–219. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Peris-Moreno D, Taillandier D and Polge C:
MuRF1/TRIM63, master regulator of muscle mass. Int J Mol Sci.
21:66632020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Stefanetti RJ, Voisin S, Russell A and
Lamon S: Recent advances in understanding the role of FOXO3.
F1000Res. 7:F10002018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bae GU, Lee JR, Kim BG, Han JW, Leem YE,
Lee HJ, Ho SM, Hahn MJ and Kang JS: Cdo interacts with APPL1 and
activates Akt in myoblast differentiation. Mol Biol Cell.
21:2399–2411. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kim JH: Cardiovascular diseases and panax
ginseng: A review on molecular mechanisms and medical applications.
J Ginseng Res. 36:16–26. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen XJ, Zhang XJ, Shui YM, Wan JB and Gao
JL: Anticancer activities of protopanaxadiol- and
protopanaxatriol-type ginsenosides and their metabolites. Evid
Based Complement Alternat Med. 2016:57386942016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kim MJ, Koo YD, Kim M, Lim S, Park YJ,
Chung SS, Jang HC and Park KS: Rg3 improves mitochondrial function
and the expression of key genes involved in mitochondrial
biogenesis in C2C12 myotubes. Diabetes Metab J. 40:406–413. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Wang CZ, Aung HH, Zhang B, Sun S, Li XL,
He H, Xie JT, He TC, Du W and Yuan CS: Chemopreventive effects of
heat-processed Panax quinquefolius root on human breast cancer
cells. Anticancer Res. 28:2545–2551. 2008.PubMed/NCBI
|
12
|
Zhang L, Zhang L, Wang X and Si H:
Anti-adipogenic effects and mechanisms of ginsenoside Rg3 in
pre-adipocytes and obese mice. Front Pharmacol.
8:1132017.PubMed/NCBI
|
13
|
Kim M, Ahn BY, Lee JS, Chung SS, Lim S,
Park SG, Jung HS, Lee HK and Park KS: The ginsenoside Rg3 has a
stimulatory effect on insulin signaling in L6 myotubes. Biochem
Biophys Res Commun. 389:70–73. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yoshida T and Delafontaine P: Mechanisms
of IGF-1-mediated regulation of skeletal muscle hypertrophy and
atrophy. Cells. 9:19702020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee SJ, Vuong TA, Go GY, Song YJ, Lee S,
Lee SY, Kim SW, Lee J, Kim YK, Seo DW, et al: An isoflavone
compound daidzein elicits myoblast differentiation and myotube
growth. J Functional Foods. 38:438–446. 2017. View Article : Google Scholar
|
16
|
Lee SJ, Bae JH, Lee H, Lee H, Park J, Kang
JS and Bae GU: Ginsenoside Rg3 upregulates myotube formation and
mitochondrial function, thereby protecting myotube atrophy induced
by tumor necrosis factor-alpha. J Ethnopharmacol. 242:1120542019.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Lee SJ, Im M, Park SK, Kim JY, So EY,
Liang OD, Kang JS and Bae GU: BST204, a Rg3 and Rh2 enriched
ginseng extract, upregulates myotube formation and mitochondrial
function in TNF-α-induced atrophic myotubes. Am J Chin Med.
48:631–650. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Lee SJ, Hwang J, Jeong HJ, Yoo M, Go GY,
Lee JR, Leem YE, Park JW, Seo DW, Kim YK, et al: PKN2 and Cdo
interact to activate AKT and promote myoblast differentiation. Cell
Death Dis. 7:e24312016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Jeong HJ, Lee HJ, Vuong TA, Choi KS, Choi
D, Koo SH, Cho SC, Cho H and Kang JS: Prmt7 deficiency causes
reduced skeletal muscle oxidative metabolism and age-related
obesity. Diabetes. 65:1868–1882. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Shanker G, Aschner JL, Syversen T and
Aschner M: Free radical formation in cerebral cortical astrocytes
in culture induced by methylmercury. Brain Res Mol Brain Res.
128:48–57. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Murakami Y, Ueki R, Tachikawa T and Hirose
M: The basic study of the mechanism of propofol-related infusion
syndrome using a murine skeletal muscle injury model. Anesth Pain
Med. 9:e894172019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Kim H, Cho SC, Jeong HJ, Lee HY, Jeong MH,
Pyun JH, Ryu D, Kim M, Lee YS, Kim MS, et al: Indoprofen prevents
muscle wasting in aged mice through activation of PDK1/AKT pathway.
J Cachexia Sarcopenia Muscle. 11:1070–1088. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Martín AI, Priego T and López-Calderón A:
Hormones and muscle atrophy. Adv Exp Med Biol. 1088:207–233. 2018.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Nakashima K, Ishida A, Ijiri D and Ohtsuka
A: Effect of dexamethasone on the expression of atrogin-1/MAFbx in
chick skeletal muscle. Anim Sci J. 87:405–410. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Baehr LM, Hughes DC, Lynch SA, Van Haver
D, Maia TM, Marshall AG, Radoshevich L, Impens F, Waddell DS and
Bodine SC: Identification of the MuRF1 skeletal muscle ubiquitylome
through quantitative proteomics. Function (Oxf). 2:zqab0292021.
View Article : Google Scholar : PubMed/NCBI
|
27
|
Sakuma K, Aoi W and Yamaguchi A: Molecular
mechanism of sarcopenia and cachexia: Recent research advances.
Pflugers Arch. 469:573–591. 2017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Sartori R, Romanello V and Sandri M:
Mechanisms of muscle atrophy and hypertrophy: Implications in
health and disease. Nat Commun. 12:3302021. View Article : Google Scholar : PubMed/NCBI
|
29
|
Glass DJ: PI3 kinase regulation of
skeletal muscle hypertrophy and atrophy. Curr Top Microbiol
Immunol. 346:267–278. 2010.PubMed/NCBI
|
30
|
Go GY, Lee SJ, Jo A, Lee J, Seo DW, Kang
JS, Kim SK, Kim SN, Kim YK and Bae GU: Ginsenoside Rg1 from
Panax ginseng enhances myoblast differentiation and myotube
growth. J Ginseng Res. 41:608–614. 2017. View Article : Google Scholar : PubMed/NCBI
|
31
|
Go GY, Jo A, Seo DW, Kim WY, Kim YK, So
EY, Chen Q, Kang JS, Bae GU and Lee SJ: Ginsenoside Rb1 and Rb2
upregulate Akt/mTOR signaling-mediated muscular hypertrophy and
myoblast differentiation. J Ginseng Res. 44:435–441. 2020.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Yang S, Loro E, Wada S, Kim B, Tseng WJ,
Li K, Khurana TS and Arany Z: Functional effects of muscle
PGC-1alpha in aged animals. Skelet Muscle. 10:142020. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ruas JL, White JP, Rao RR, Kleiner S,
Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, et
al: A PGC-1α isoform induced by resistance training regulates
skeletal muscle hypertrophy. Cell. 151:1319–1331. 2012. View Article : Google Scholar : PubMed/NCBI
|
34
|
Ascenzi F, Barberi L, Dobrowolny G, Villa
Nova Bacurau A, Nicoletti C, Rizzuto E, Rosenthal N, Scicchitano BM
and Musarò A: Effects of IGF-1 isoforms on muscle growth and
sarcopenia. Aging Cell. 18:e129542019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gao X, Zhao XL, Zhu YH, Li XM, Xu Q, Lin
HD and Wang MW: Tetramethylpyrazine protects palmitate-induced
oxidative damage and mitochondrial dysfunction in C2C12 myotubes.
Life Sci. 88:803–809. 2011. View Article : Google Scholar : PubMed/NCBI
|
36
|
Yan XH, Guo XY, Jiao FY, Liu X and Liu Y:
Activation of large-conductance Ca(2+)-activated K(+) channels
inhibits glutamate-induced oxidative stress through attenuating ER
stress and mitochondrial dysfunction. Neurochem Int. 90:28–35.
2015. View Article : Google Scholar : PubMed/NCBI
|