Cartilage tissue engineering: From proinflammatory and anti‑inflammatory cytokines to osteoarthritis treatments (Review)
- Authors:
- Shuyu Liu
- Zhenhan Deng
- Kang Chen
- Shengsheng Jian
- Feifei Zhou
- Yuan Yang
- Zicai Fu
- Huanyu Xie
- Jianyi Xiong
- Weimin Zhu
-
Affiliations: Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, Guangdong 518035, P.R. China, Department of Orthopedics, Luo Hu Hospital, Shenzhen, Guangdong 518001, P.R. China - Published online on: January 24, 2022 https://doi.org/10.3892/mmr.2022.12615
- Article Number: 99
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Abramoff B and Caldera FE: Osteoarthritis: Pathology, diagnosis, and treatment options. Med Clin North Am. 104:293–311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Goldring MB and Goldring SR: Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann NY Acad Sci. 1192:230–237. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xia B, Di Chen, Zhang J, Hu S, Jin H and Tong P: Osteoarthritis pathogenesis: A review of molecular mechanisms. Calcif Tissue Int. 95:495–505. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Ji Q, Wang X, Kang L, Fu Y, Yin Y, Li Z, Liu Y, Xu X and Wang Y: SOX9 is a regulator of ADAMTSs-induced cartilage degeneration at the early stage of human osteoarthritis. Osteoarthritis Cartilage. 23:2259–2268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tortorella MD and Malfait AM: Will the real aggrecanase(s) step up: Evaluating the criteria that define aggrecanase activity in osteoarthritis. Curr Pharm Biotechnol. 9:16–23. 2008. View Article : Google Scholar : PubMed/NCBI | |
Matsuo M, Nishida K, Yoshida A, Murakami T and Inoue H: Expression of caspase-3 and −9 relevant to cartilage destruction and chondrocyte apoptosis in human osteoarthritic cartilage. Acta Med Okayama. 55:333–340. 2001.PubMed/NCBI | |
Abdel-Sayed P and Pioletti DP: Strategies for improving the repair of focal cartilage defects. Nanomedicine (Lond). 10:2893–2905. 2015. View Article : Google Scholar : PubMed/NCBI | |
Medvedeva EV, Grebenik EA, Gornostaeva SN, Telpuhov VI, Lychagin AV, Timashev PS and Chagin AS: Repair of damaged articular cartilage: Current approaches and future directions. Int J Mol Sci. 19:23662018. View Article : Google Scholar : PubMed/NCBI | |
Hunter DJ and Bierma-Zeinstra S: Osteoarthritis. Lancet. 393:1745–1759. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rhee SM, You HJ and Han SK: Injectable tissue-engineered soft tissue for tissue augmentation. J Korean Med Sci. 29 (Suppl 3):S170–S175. 2014. View Article : Google Scholar : PubMed/NCBI | |
Schott EM, Farnsworth CW, Grier A, Lillis JA, Soniwala S, Dadourian GH, Bell RD, Doolittle ML, Villani DA, Awad H, et al: Targeting the gut microbiome to treat the osteoarthritis of obesity. JCI Insight. 3:e959972018. View Article : Google Scholar : PubMed/NCBI | |
Kuo SJ, Yang WH, Liu SC, Tsai CH, Hsu HC and Tang CH: Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis. PLoS One. 12:e01760522017. View Article : Google Scholar : PubMed/NCBI | |
Wang T and He C: Pro-inflammatory cytokines: The link between obesity and osteoarthritis. Cytokine Growth Factor Rev. 44:38–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP and Fahmi H: Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 7:33–42. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nguyen L, Sharma A, Chakraborty C, Saibaba B, Ahn ME and Lee SS: Review of prospects of biological fluid biomarkers in osteoarthritis. Int J Mol Sci. 18:6012017. View Article : Google Scholar : PubMed/NCBI | |
Mabey T, Honsawek S, Tanavalee A, Yuktanandana P, Wilairatana V and Poovorawan Y: Plasma and synovial fluid inflammatory cytokine profiles in primary knee osteoarthritis. Biomarkers. 21:639–644. 2016. View Article : Google Scholar : PubMed/NCBI | |
Boehme KA and Rolauffs B: Onset and progression of human osteoarthritis-can growth factors, inflammatory cytokines, or differential miRNA expression concomitantly induce proliferation, ECM Degradation, and inflammation in articular cartilage? Int J Mol Sci. 19:22822018. View Article : Google Scholar : PubMed/NCBI | |
Goldring MB and Goldring SR: Osteoarthritis. J Cell Physiol. 213:626–634. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sirikaew N, Chomdej S, Tangyuenyong S, Tangjitjaroen W, Somgird C, Thitaram C and Ongchai S: Proinflammatory cytokines and lipopolysaccharides up regulate MMP-3 and MMP-13 production in Asian elephant (Elephas maximus) chondrocytes: Attenuation by anti-arthritic agents. BMC Vet Res. 15:4192019. View Article : Google Scholar : PubMed/NCBI | |
Ho YJ, Lu JW, Ho LJ, Lai JH, Huang HS, Lee CC, Lin TY, Lien SB, Lin LC, Chen LW, et al: Anti-inflammatory and anti-osteoarthritis effects of Cm-02 and Ck-02. Biochem Biophys Res Commun. 517:155–163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fearing BV and Van Dyke ME: In vitro response of macrophage polarization to a keratin biomaterial. Acta Biomater. 10:3136–3144. 2014. View Article : Google Scholar : PubMed/NCBI | |
Dinarello CA: Overview of the interleukin-1 family of ligands and receptors. Semin Immunol. 25:389–393. 2013. View Article : Google Scholar : PubMed/NCBI | |
Melchiorri C, Meliconi R, Frizziero L, Silvestri T, Pulsatelli L, Mazzetti I, Borzì RM, Uguccioni M and Facchini A: Enhanced and coordinated in vivo expression of inflammatory cytokines and nitric oxide synthase by chondrocytes from patients with osteoarthritis. Arthritis Rheum. 41:2165–2174. 1998. View Article : Google Scholar : PubMed/NCBI | |
Massicotte F, Lajeunesse D, Benderdour M, Pelletier JP, Hilal G, Duval N and Martel-Pelletier J: Can altered production of interleukin-1beta, interleukin-6, transforming growth factor-beta and prostaglandin E(2) by isolated human subchondral osteoblasts identify two subgroups of osteoarthritic patients. Osteoarthritis Cartilage. 10:491–500. 2002. View Article : Google Scholar : PubMed/NCBI | |
Farahat MN, Yanni G, Poston R and Panayi GS: Cytokine expression in synovial membranes of patients with rheumatoid arthritis and osteoarthritis. Ann Rheum Dis. 52:870–875. 1993. View Article : Google Scholar : PubMed/NCBI | |
Sohn DH, Sokolove J, Sharpe O, Erhart JC, Chandra PE, Lahey LJ, Lindstrom TM, Hwang I, Boyer KA, Andriacchi TP and Robinson WH: Plasma proteins present in osteoarthritic synovial fluid can stimulate cytokine production via Toll-like receptor 4. Arthritis Res Ther. 14:R72012. View Article : Google Scholar : PubMed/NCBI | |
Wojdasiewicz P, Poniatowski ŁA and Szukiewicz D: The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm. 2014:5614592014. View Article : Google Scholar : PubMed/NCBI | |
Burrage PS, Mix KS and Brinckerhoff CE: Matrix metalloproteinases: Role in arthritis. Front Biosci. 11:529–543. 2006. View Article : Google Scholar : PubMed/NCBI | |
Verma P and Dalal K: ADAMTS-4 and ADAMTS-5: Key enzymes in osteoarthritis. J Cell Biochem. 112:3507–3514. 2011. View Article : Google Scholar : PubMed/NCBI | |
Koshy PJ, Lundy CJ, Rowan AD, Porter S, Edwards DR, Hogan A, Clark IM and Cawston TE: The modulation of matrix metalloproteinase and ADAM gene expression in human chondrocytes by interleukin-1 and oncostatin M: A time-course study using real-time quantitative reverse transcription-polymerase chain reaction. Arthritis Rheum. 46:961–967. 2002. View Article : Google Scholar : PubMed/NCBI | |
El Mansouri FE, Chabane N, Zayed N, Kapoor M, Benderdour M, Martel-Pelletier J, Pelletier JP, Duval N and Fahmi H: Contribution of H3K4 methylation by SET-1A to interleukin-1-induced cyclooxygenase 2 and inducible nitric oxide synthase expression in human osteoarthritis chondrocytes. Arthritis Rheum. 63:168–179. 2011. View Article : Google Scholar : PubMed/NCBI | |
Gilman SC, Chang J, Zeigler PR, Uhl J and Mochan E: Interleukin-1 activates phospholipase A2 in human synovial cells. Arthritis Rheum. 31:126–130. 1988. View Article : Google Scholar : PubMed/NCBI | |
Hardy MM, Seibert K, Manning PT, Currie MG, Woerner BM, Edwards D, Koki A and Tripp CS: Cyclooxygenase 2-dependent prostaglandin E2 modulates cartilage proteoglycan degradation in human osteoarthritis explants. Arthritis Rheum. 46:1789–1803. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lotz M: The role of nitric oxide in articular cartilage damage. Rheum Dis Clin North Am. 25:269–282. 1999. View Article : Google Scholar : PubMed/NCBI | |
Haynes MK, Hume EL and Smith JB: Phenotypic characterization of inflammatory cells from osteoarthritic synovium and synovial fluids. Clin Immunol. 105:315–325. 2002. View Article : Google Scholar : PubMed/NCBI | |
Afonso V, Champy R, Mitrovic D, Collin P and Lomri A: Reactive oxygen species and superoxide dismutases: Role in joint diseases. Joint Bone Spine. 74:324–329. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bodmer JL, Schneider P and Tschopp J: The molecular architecture of the TNF superfamily. Trends Biochem Sci. 27:19–26. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hosseinzadeh A, Kamrava SK, Joghataei MT, Darabi R, Shakeri-Zadeh A, Shahriari M, Reiter RJ, Ghaznavi H and Mehrzadi S: Ap MMR-21332-279469 optosis signaling pathways in osteoarthritis and possible protective role of melatonin. J Pineal Res. 61:411–425. 2016. View Article : Google Scholar : PubMed/NCBI | |
MacEwan DJ: TNF receptor subtype signalling: Differences and cellular consequences. Cell Signal. 14:477–492. 2002. View Article : Google Scholar : PubMed/NCBI | |
Grell M, Douni E, Wajant H, Löhden M, Clauss M, Maxeiner B, Georgopoulos S, Lesslauer W, Kollias G, Pfizenmaier K and Scheurich P: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell. 83:793–802. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hsu H, Xiong J and Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappaB activation. Cell. 81:495–504. 1995. View Article : Google Scholar : PubMed/NCBI | |
Hsu H, Huang J, Shu HB, Baichwal V and Goeddel DV: TNF-dependent recruitment of the protein kinase RIP to the TNF receptor-1 signaling complex. Immunity. 4:387–396. 1996. View Article : Google Scholar : PubMed/NCBI | |
Varfolomeev E, Goncharov T, Fedorova AV, Dynek JN, Zobel K, Deshayes K, Fairbrother WJ and Vucic D: c-IAP1 and c-IAP2 are critical mediators of tumor necrosis factor alpha (TNFalpha)-induced NF-kappaB activation. J Biol Chem. 283:24295–24299. 2008. View Article : Google Scholar : PubMed/NCBI | |
O'Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC and Ting AT: Ubiquitination of RIP1 Regulates an NF-kappaB-Independent cell-death switch in TNF signaling. Curr Biol. 17:418–424. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ea CK, Deng L, Xia ZP, Pineda G and Chen ZJ: Activation of IKK by TNF alpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 22:245–257. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bunning RA and Russell RG: The effect of tumor necrosis factor alpha and gamma-interferon on the resorption of human articular cartilage and on the production of prostaglandin E and of caseinase activity by human articular chondrocytes. Arthritis Rheum. 32:780–784. 1989. View Article : Google Scholar : PubMed/NCBI | |
Campbell IK, Piccoli DS, Roberts MJ, Muirden KD and Hamilton JA: Effects of tumor necrosis factor and on resorption of human articular cartilage and production of plasminogen activator by human articular chondrocytes. Arthritis Rheum. 33:542–552. 1990. View Article : Google Scholar : PubMed/NCBI | |
Lefebvre V, Peeters-Joris C and Vaes G: Modulation by interleukin 1 and tumor necrosis factor of production of collagenase, tissue inhibitor of metalloproteinases and collagen types in differentiated and dedifferentiated articular chondrocytes. Biochim Biophys Acta. 1052:366–378. 1990. View Article : Google Scholar : PubMed/NCBI | |
Meyer FA, Yaron I and Yaron M: Synergistic, additive, and antagonistic effects of interleukin-1 beta, tumor necrosis factor alpha, and gamma-interferon on prostaglandin E, hyaluronic acid, and collagenase production by cultured synovial fibroblasts. Arthritis Rheum. 33:1518–1525. 1990. View Article : Google Scholar : PubMed/NCBI | |
Saklatvala J: Tumour necrosis factor alpha stimulates resorption and inhibits synthesis of proteoglycan in cartilage. Nature. 322:547–549. 1986. View Article : Google Scholar : PubMed/NCBI | |
van den Berg WB: Anti-cytokine therapy in chronic destructive arthritis. Arthritis Res. 3:18–26. 2001. View Article : Google Scholar : PubMed/NCBI | |
Brennan FM, Chantry D, Jackson AM, Maini RN and Feldmann M: Cytokine production in culture by cells isolated from the synovial membrane. J Autoimmun. 2 (Suppl 1):S177–S186. 1989. View Article : Google Scholar | |
O'Byrne E, Blancuzzi V, Wilson DE, Wong M and Jeng AY: Elevated substance P and accelerated cartilage degradation in rabbit knees injected with interleukin-1 and tumor necrosis factor. Arthritis Rheum. 33:1023–1028. 1990. View Article : Google Scholar : PubMed/NCBI | |
Pettipher ER, Higgs GA and Henderson B: Interleukin 1 induces leukocyte infiltration and cartilage proteoglycan degradation in the synovial joint. Proc Natl Acad Sci USA. 83:8749–8753. 1986. View Article : Google Scholar : PubMed/NCBI | |
van Beuningen HM, Arntz OJ and van den Berg WB: In vivo effects of interleukin-1 on articular cartilage. Prolongation of proteoglycan metabolic disturbances in old mice. Arthritis Rheum. 34:606–615. 1991. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Zhang Y, Huang Y, Liu S, Lu H and Sun T: Cadherin-11 involves in synovitis and increases the migratory and invasive capacity of fibroblast-like synoviocytes of osteoarthritis. Int Immunopharmacol. 26:153–161. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Cao C, Zhang Y, Liu G, Ren W, Ye Y and Sun T: PI3K/Akt inhibitor partly decreases TNF-α-induced activation of fibroblast-like synoviocytes in osteoarthritis. J Orthop Surg Res. 14:4252019. View Article : Google Scholar : PubMed/NCBI | |
Porée B, Kypriotou M, Chadjichristos C, Beauchef G, Renard E, Legendre F, Melin M, Gueret S, Hartmann DJ, Malléin-Gerin F, et al: Interleukin-6 (IL-6) and/or soluble IL-6 receptor down-regulation of human type II collagen gene expression in Articular chondrocytes requires a decrease of Sp1·Sp3 ratio and of the binding activity of both factors to the COL2A1 promoter. J Biol Chem. 283:4850–4865. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rowan AD, Koshy PJ, Shingleton WD, Degnan BA, Heath JK, Vernallis AB, Spaull JR, Life PF, Hudson K and Cawston TE: Synergistic effects of glycoprotein 130 binding cytokines in combination with interleukin-1 on cartilage collagen breakdown. Arthritis Rheum. 44:1620–1632. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cawston TE, Curry VA, Summers CA, Clark IM, Riley GP, Life PF, Spaull JR, Goldring MB, Koshy PJ, Rowan AD and Shingleton WD: The role of oncostatin M in animal and human connective tissue collagen turnover and its localization within the rheumatoid joint. Arthritis Rheum. 41:1760–1771. 1998. View Article : Google Scholar : PubMed/NCBI | |
Scanzello CR, Umoh E, Pessler F, Diaz-Torne C, Miles T, Dicarlo E, Potter HG, Mandl L, Marx R, Rodeo S, et al: Local cytokine profiles in knee osteoarthritis: Elevated synovial fluid interleukin-15 differentiates early from end-stage disease. Osteoarthritis Cartilage. 17:1040–1048. 2009. View Article : Google Scholar : PubMed/NCBI | |
Honsawek S, Deepaisarnsakul B, Tanavalee A, Yuktanandana P, Bumrungpanichthaworn P, Malila S and Saetan N: Association of the IL-6-174G/C gene polymorphism with knee osteoarthritis in a Thai population. Genet Mol Res. 10:1674–1680. 2011. View Article : Google Scholar : PubMed/NCBI | |
Attur MG, Patel RN, Abramson SB and Amin AR: Interleukin-17 up-regulation of nitric oxide production in human osteoarthritis cartilage. Arthritis Rheum. 40:1050–1053. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ryu JH, Yang S, Shin Y, Rhee J, Chun CH and Chun JS: Interleukin-6 plays an essential role in hypoxia-inducible factor 2α-induced experimental osteoarthritic cartilage destruction in mice. Arthritis Rheum. 63:2732–2743. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kwan Tat S, Padrines M, Théoleyre S, Heymann D and Fortun Y: IL-6, RANKL, TNF-alpha/IL-1: Interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev. 15:49–60. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chenoufi HL, Diamant M, Rieneck K, Lund B, Stein GS and Lian JB: Increased mRNA expression and protein secretion of interleukin-6 in primary human osteoblasts differentiated in vitro from rheumatoid and osteoarthritic bone. J Cell Biochem. 81:666–678. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sakao K, Takahashi KA, Arai Y, Saito M, Honjo K, Hiraoka N, Asada H, Shin-Ya M, Imanishi J, Mazda O and Kubo T: Osteoblasts derived from osteophytes produce interleukin-6, interleukin-8, and matrix metalloproteinase-13 in osteoarthritis. J Bone Miner Metab. 27:412–423. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ding X, Cao Y, Xing Y, Ge S, Lin M and Li J: TIMP-1 mediates inflammatory and immune response to IL-6 in adult orbital xanthogranulomatous disease. Ocul Immunol Inflamm. 28:288–297. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Hooge ASK, van de Loo FAJ, Bennink MB, Bennink MB, Arntz OJ, de Hooge P and van den Berg WB: Male IL-6 gene Knock Out mice developed more advanced osteoarthritis upon aging. Osteoarthritis Cartilage. 13:66–73. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steel JC, Waldmann TA and Morris JC: Interleukin-15 biology and its therapeutic implications in cancer. Trends Pharmacol Sci. 33:35–41. 2012. View Article : Google Scholar : PubMed/NCBI | |
Perera LP: Interleukin 15: Its role in inflammation and immunity. Arch Immunol Ther Exp (Warsz). 48:457–464. 2000.PubMed/NCBI | |
Waldmann TA and Tagaya Y: The multifaceted regulation of interleukin-15 expression and the role of this cytokine in NK cell differentiation and host response to intracellular pathogens. Annu Rev Immunol. 17:19–49. 1999. View Article : Google Scholar : PubMed/NCBI | |
Baslund B, Tvede N, Danneskiold-Samsoe B, Larsson P, Panayi G, Petersen J, Petersen LJ, Beurskens FJ, Schuurman J, van de Winkel JG, et al: Targeting interleukin-15 in patients with rheumatoid arthritis: A proof-of-concept study. Arthritis Rheum. 52:2686–2692. 2005. View Article : Google Scholar : PubMed/NCBI | |
Mcinnes IB, al-Mughales J, Field M, Leung BP, Huang FP, Dixon R, Sturrock RD, Wilkinson PC and Liew FY: The role of interleukin-15 in T-cell migration and activation in rheumatoid arthritis. Nat Med. 2:175–182. 1996. View Article : Google Scholar : PubMed/NCBI | |
Tao Y, Qiu X, Xu C, Sun B and Shi C: Expression and correlation of matrix metalloproteinase-7 and interleukin-15 in human osteoarthritis. Int J Clin Exp Pathol. 8:9112–9118. 2015.PubMed/NCBI | |
Santos Savio A, Machado Diaz AC, Chico Capote A, Miranda Navarro J, Rodríguez Alvarez Y, Bringas Pérez R, Estévez del Toro M and Guillen Nieto GE: Differential expression of pro-inflammatory cytokines IL-15Ralpha, IL-15, IL-6 and TNFalpha in synovial fluid from rheumatoid arthritis patients. BMC Musculoskelet Disord. 16:512015. View Article : Google Scholar : PubMed/NCBI | |
Badolato R, Ponzi AN, Millesimo M, Notarangelo LD and Musso T: Interleukin-15 (IL-15) induces IL-8 and monocyte chemotactic protein 1 production in human monocytes. Blood. 90:2804–2809. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sun JM, Sun LZ, Liu J, Su BH and Shi L: Serum interleukin-15 levels are associated with severity of pain in patients with knee osteoarthritis. Dis Markers. 35:203–206. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chang SH and Dong C: Signaling of interleukin-17 family cytokines in immunity and inflammation. Cell Signal. 23:1069–1075. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Angkasekwinai P, Dong C and Tang H: Structure and function of interleukin-17 family cytokines. Protein Cell. 2:26–40. 2011. View Article : Google Scholar : PubMed/NCBI | |
Korn T, Bettelli E, Oukka M and Kuchroo VK: IL-17 and Th17 cells. Annu Rev Immunol. 27:485–517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Pawłowska J, Mikosik A, Soroczynska-Cybula M, Jóźwik A, Łuczkiewicz P, Mazurkiewicz S, Lorczyński A, Witkowski JM and Bryl E: Different distribution of CD4 and CD8 T cells in synovial membrane and peripheral blood of rheumatoid arthritis and osteoarthritis patients. Folia Histochem Cytobiol. 47:627–632. 2009.PubMed/NCBI | |
Ishii H, Tanaka H, Katoh K, Nakamura H, Nagashima M and Yoshino S: Characterization of infiltrating T cells and Th1/Th2-type cytokines in the synovium of patients with osteoarthritis. Osteoarthritis Cartilage. 10:277–281. 2002. View Article : Google Scholar : PubMed/NCBI | |
Suurmond J, Dorjée AL, Boon MR, Knol EF, Huizinga TW, Toes RE and Schuerwegh AJ: Mast cells are the main interleukin 17-positive cells in anticitrullinated protein antibody-positive and -negative rheumatoid arthritis and osteoarthritis synovium. Arthritis Res Ther. 13:R1502011. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Peng H, Meng Z and Wei M: Correlation of IL-17 Level in synovia and severity of knee osteoarthritis. Med Sci Monit. 21:1732–1736. 2015. View Article : Google Scholar : PubMed/NCBI | |
Koenders MI, Marijnissen RJ, Devesa I, Lubberts E, Joosten LA, Roth J, van Lent PL, van de Loo FA and van den Berg WB: Tumor necrosis factor-interleukin-17 interplay induces S100A8,interleukin-1β,and matrix metalloproteinases, and drives irreversible cartilage destruction in murine arthritis: Rationale for combination treatment during arthritis. Arthritis Rheum. 63:2329–2339. 2011. View Article : Google Scholar : PubMed/NCBI | |
Honorati MC, Cattini L and Facchini A: VEGF production by osteoarthritic chondrocytes cultured in micromass and stimulated by IL-17 and TNF-alpha. Connect Tissue Res. 48:239–245. 2007. View Article : Google Scholar : PubMed/NCBI | |
Honorati MC, Neri S, Cattini L and Facchini A: Interleukin-17, a regulator of angiogenic factor release by synovial fibroblasts. Osteoarthritis Cartilage. 14:345–352. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lubberts E, Joosten LA, van de Loo FA, van den Gersselaar LA and van den Berg WB: Reduction of interleukin-17-induced inhibition of chondrocyte proteoglycan synthesis in intact murine articular cartilage by interleukin-4. Arthritis Rheum. 43:1300–1306. 2000. View Article : Google Scholar : PubMed/NCBI | |
Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, et al: Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature. 378:88–91. 1995. View Article : Google Scholar : PubMed/NCBI | |
Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, et al: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 386:619–623. 1997. View Article : Google Scholar : PubMed/NCBI | |
Malemud CJ: Cytokines as therapeutic targets for osteoarthritis. BioDrugs. 18:23–35. 2004. View Article : Google Scholar : PubMed/NCBI | |
Joosten LA, Radstake TR, Lubberts E, van den Bersselaar LA, van Riel PL, van Lent PL, Barrera P and van den Berg WB: Association of interleukin-18 expression with enhanced levels of both interleukin-1beta and tumor necrosis factor alpha in knee synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum. 48:339–347. 2003. View Article : Google Scholar : PubMed/NCBI | |
Joosten LAB, Smeets RL, Koenders MI, van den Bersselaar LA, Helsen MM, Oppers-Walgreen B, Lubberts E, Iwakura Y, van de Loo FA and van den Berg WB: Interleukin-18 promotes joint inflammation and induces interleukin-1-driven cartilage destruction. Am J Pathol. 165:959–967. 2004. View Article : Google Scholar : PubMed/NCBI | |
Inoue H, Hiraoka K, Hoshino T, Okamoto M, Iwanaga T, Zenmyo M, Shoda T, Aizawa H and Nagata K: High levels of serum IL-18 promote cartilage loss through suppression of aggrecan synthesis. Bone. 42:1102–1110. 2008. View Article : Google Scholar : PubMed/NCBI | |
John T, Kohl B, Mobasheri A, Ertel W and Shakibaei M: Interleukin-18 induces apoptosis in human articular chondrocytes. Histol Histopathol. 22:469–482. 2007.PubMed/NCBI | |
Dai SM, Shan ZZ, Nishioka K and Yudoh K: Implication of interleukin 18 in production of matrix metalloproteinases in Articular chondrocytes in arthritis: Direct effect on chondrocytes may not be pivotal. Ann Rheum Dis. 64:735–742. 2005. View Article : Google Scholar : PubMed/NCBI | |
Powers R, Garrett DS, March CJ, Frieden EA, Gronenborn AM and Clore GM: The high-resolution, three-dimensional solution structure of human interleukin-4 determined by multidimensional heteronuclear magnetic resonance spectroscopy. Biochemistry. 32:6744–6762. 1993. View Article : Google Scholar : PubMed/NCBI | |
Wlodawer A, Pavlovsky A and Gustchina A: Crystal structure of human recombinant interleukin-4 at 2.25 A resolution. FEBS Lett. 309:59–64. 1992. View Article : Google Scholar : PubMed/NCBI | |
Carr C, Aykent S, Kimack NM and Levine AD: Disulfide assignments in recombinant mouse and human interleukin 4. Biochemistry. 30:1515–1523. 1991. View Article : Google Scholar : PubMed/NCBI | |
Mueller TD, Zhang JL, Sebald W and Duschl A: Structure, binding, and antagonists in the IL-4/IL-13 receptor system. Biochim Biophys Acta. 1592:237–250. 2002. View Article : Google Scholar : PubMed/NCBI | |
Schlaak JF, Pfers I, Meyer Zum Büschenfelde KH and Märker-Hermann E: Different cytokine profiles in the synovial fluid of patients with osteoarthritis, rheumatoid arthritis and seronegative spondylarthropathies. Clin Exp Rheumatol. 14:155–162. 1996.PubMed/NCBI | |
Brown MA and Hural J: Functions of IL-4 and control of its expression. Crit Rev Immunol. 17:1–32. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Wu P, Siegel MI, Egan RW and Billah MM: Interleukin (IL)-10 inhibits nuclear factor kappa B (NF kappa B) activation in human monocytes. IL-10 and IL-4 suppress cytokine synthesis by different mechanisms. J Biol Chem. 270:9558–9563. 1995. View Article : Google Scholar : PubMed/NCBI | |
te Velde AA, Huijbens RJ, Heije K, de Vries JE and Figdor CG: Interleukin-4 (IL-4) inhibits secretion of IL-1beta, tumor necrosis factor alpha, and human IL-6 by human monocytes. Blood. 76:1392–1397. 1990. View Article : Google Scholar : PubMed/NCBI | |
Paul WE: Interleukin-4: A prototypic immunoregulatory lymphokine. Blood. 77:1859–1870. 1991. View Article : Google Scholar : PubMed/NCBI | |
Vannier E, Miller MC and Dinarello CA: Coordinated antiinflammatory effects of interleukin 4: Interleukin 4 suppresses interleukin 1 production but up-regulates gene expression and synthesis of interleukin 1 receptor antagonist. Proc Natl Acad Sci USA. 89:4076–4080. 1992. View Article : Google Scholar : PubMed/NCBI | |
Hart PH, Vitti GF, Burgess DR, Whitty GA, Piccoli DS and Hamilton JA: Potential anti-inflammatory effects of interleukin 4: Suppression of human monocyte tumor necrosis factor alpha, interleukin 1, and prostaglandin E2. Proc Natl Acad Sci USA. 86:3803–3807. 1989. View Article : Google Scholar : PubMed/NCBI | |
Yeh LA, Augustine AJ, Lee P, Riviere LR and Sheldon A: Interleukin-4, an inhibitor of cartilage breakdown in bovine articular cartilage explants. J Rheumatol. 22:1740–1746. 1995.PubMed/NCBI | |
Van Meegeren ME, Roosendaal G, Jansen NW, Wenting MJ, van Wesel AC, van Roon JA and Lafeber FP: IL-4 alone and in combination with IL-10 protects against blood-Induced cartilage damage. Osteoarthritis Cartilage. 20:764–772. 2012. View Article : Google Scholar : PubMed/NCBI | |
van Lent PL, Holthuysen AE, Slöetjes A, Lubberts E and van den Berg WB: Local overexpression of adeno-viral IL-4 protects cartilage from metallo proteinase-induced destruction during immune complex-mediated arthritis by preventing activation of pro-MMPs. Osteoarthritis Cartilage. 10:234–243. 2002. View Article : Google Scholar : PubMed/NCBI | |
Doi H, Nishida K, Yorimitsu M, Komiyama T, Kadota Y, Tetsunaga T, Yoshida A, Kubota S, Takigawa M and Ozaki T: Interleukin-4 downregulates the cyclic tensile stress-induced matrix metalloproteinases-13 and cathepsin B expression by rat normal chondrocytes. Acta Medica Okayama. 62:119–126. 2008.PubMed/NCBI | |
Yorimitsu M, Nishida K, Shimizu A, Doi H, Miyazawa S, Komiyama T, Nasu Y, Yoshida A, Watanabe S and Ozaki T: Intra-articular injection of interleukin-4 decreases nitric oxide production by chondrocytes and ameliorates subsequent destruction of cartilage in instability-induced osteoarthritis in rat knee joints. Osteoarthritis Cartilage. 16:764–771. 2008. View Article : Google Scholar : PubMed/NCBI | |
von Kaeppler EP, Wang Q, Raghu H, Bloom MS, Wong H and Robinson WH: Interleukin 4 promotes anti-inflammatory macrophages that clear cartilage debris and inhibits osteoclast development to protect against osteoarthritis. Clin Immunol. 229:1087842021. View Article : Google Scholar : PubMed/NCBI | |
Shah SS and Mithoefer K: Current Applications of growth factors for knee cartilage repair and osteoarthritis treatment. Curr Rev Musculoskelet Med. 13:641–650. 2020. View Article : Google Scholar : PubMed/NCBI | |
McAlindon TE, Teale JD and Dieppe PA: Levels of insulin related growth factor 1 in osteoarthritis of the knee. Ann Rheum Dis. 52:229–231. 1993. View Article : Google Scholar : PubMed/NCBI | |
McQuillan DJ, Handley CJ, Campbell MA, Bolis S, Milway VE and Herington AC: Stimulation of proteoglycan biosynthesis by serum and insulin-like growth factor-I in cultured bovine articular cartilage. Biochem J. 240:423–430. 1986. View Article : Google Scholar : PubMed/NCBI | |
van Osch GJ, van den Berg WB, Hunziker EB, Hunziker EB and Häuselmann HJ: Differential effects of IGF-1 and TGF beta-2 on the assembly of proteoglycans in pericellular and territorial matrix by cultured bovine articular chondrocytes. Osteoarthritis Cartilage. 6:187–195. 1998. View Article : Google Scholar : PubMed/NCBI | |
Sah RL, Chen AC, Grodzinsky AJ and Trippel SB: Differential effects of bFGF and IGF-I on matrix metabolism in calf and adult bovine cartilage explants. Arch Biochem Biophys. 308:137–147. 1994. View Article : Google Scholar : PubMed/NCBI | |
Yaeger PC, Masi TL, de Ortiz JL, Binette F, Tubo R and McPherson JM: Synergistic action of transforming growth factor-beta and insulin-like growth factor-I induces expression of type II collagen and aggrecan genes in adult human articular chondrocytes. Exp Cell Res. 237:318–325. 1997. View Article : Google Scholar : PubMed/NCBI | |
Madry H, Kaul G, Cucchiarini M, Stein U, Zurakowski D, Remberger K, Menger MD, Kohn D and Trippel SB: Enhanced repair of articular cartilage defects in vivo by transplanted chondrocytes overexpressing insulin-like growth factor I (IGF-I). Gene Ther. 12:1171–1179. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fortier LA, Mohammed HO, Lust G and Nixon AJ: Insulin-like growth factor-I enhances cell-based repair of articular cartilage. J Bone Joint Surg Br. 84:276–288. 2002. View Article : Google Scholar : PubMed/NCBI | |
Davies LC, Blain EJ, Gilbert SJ, Caterson B and Duance VC: The potential of IGF-1 and TGFbeta1 for promoting ‘adult’ articular cartilage repair: An in vitro study. Tissue Eng Part A. 14:1251–1261. 2008. View Article : Google Scholar : PubMed/NCBI | |
Longobardi L, O'Rear L, Aakula S, Johnstone B, Shimer K, Chytil A, Horton WA, Moses HL and Spagnoli A: Effect of IGF-I in the chondrogenesis of bone marrow mesenchymal stem cells in the presence or absence of TGF-beta signaling. J Bone Miner Res. 21:626–636. 2006. View Article : Google Scholar : PubMed/NCBI | |
Morisset S, Frisbie DD, Robbins PD, Nixon AJ and McIlwraith CW: IL-1ra/IGF-1 gene therapy modulates repair of microfractured chondral defects. Clin Orthop Relat Res. 462:221–228. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mushtaq T, Bijman P, Ahmed SF and Farquharson C: Insulin-like growth factor-I augments chondrocyte hypertrophy and reverses glucocorticoid-mediated growth retardation in fetal mice metatarsal cultures. Endocrinology. 145:2478–2486. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koike M, Yamanaka Y, Inoue M, Tanaka H, Nishimura R and Seino Y: Insulin-like growth factor-1 rescues the mutated FGF receptor 3 (G380R) expressing ATDC5 cells from apoptosis through phosphatidylinositol 3-kinase and MAPK. J Bone Miner Res. 18:2043–2051. 2003. View Article : Google Scholar : PubMed/NCBI | |
Fytili P, Giannatou E, Karachalios T, Malizos K and Tsezou A: Interleukin-10G and interleukin-10R microsatellite polymorphisms and osteoarthritis of the knee. Clin Exp Rheumatol. 23:621–627. 2005.PubMed/NCBI | |
Jansen NWD, Roosendaal G, Hooiveld MJJ, Bijlsma JW, van Roon JA, Theobald M and Lafeber FP: Interleukin-10 protects against blood-induced joint damage. Br J Haematol. 142:953–961. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Lou S: Direct protective effect of interleukin-10 on articular chondrocytes in vitro. Chin Med J (Engl). 114:723–725. 2001.PubMed/NCBI | |
Behrendt P, Preusse-Prange A, Klüter T, Haake M, Rolauffs B, Grodzinsky AJ, Lippross S and Kurz B: IL-10 reduces apoptosis and extracellular matrix degradation after injurious compression of mature articular cartilage. Osteoarthritis Cartilage. 24:1981–1988. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rudwaleit M, Yin Z, Siegert S, Grolms M, Radbruch A, Braun J and Sieper J: Response to methotrexate in early rheumatoid arthritis is associated with a decrease of T cell derived tumour necrosis factor alpha, increase of interleukin 10, and predicted by the initial concentration of interleukin 4. Ann Rheum Dis. 59:311–314. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zeng L, Kempf H, Murtaugh LC, Sato ME and Lassar AB: Shh establishes an Nkx3.2/Sox9 autoregulatory loop that is maintained by BMP signals to induce somitic chondrogenesis. Genes Dev. 16:1990–2005. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chimal-Monroy J, Rodriguez-Leon J, Montero JA, Gañan Y, Macias D, Merino R and Hurle JM: Analysis of the molecular cascade responsible for mesodermal limb chondrogenesis: Sox genes and BMP signaling. Dev Biol. 257:292–301. 2003. View Article : Google Scholar : PubMed/NCBI | |
Horbelt D, Denkis A and Knaus P: A portrait of transforming growth factor β superfamily signalling: Background matters. Int J Biochem Cell Biol. 44:469–474. 2012. View Article : Google Scholar : PubMed/NCBI | |
Massagué J, Blain SW and Lo RS: TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 103:295–309. 2000. View Article : Google Scholar : PubMed/NCBI | |
Siegel PM and Massagué J: Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer. 3:807–821. 2003. View Article : Google Scholar : PubMed/NCBI | |
Santo VE, Gomes ME, Mano JF and Reis RL: Controlled release strategies for bone, cartilage, and osteochondral engineering-part I: Recapitulation of native tissue healing and variables for the design of delivery systems. Tissue Eng Part B Rev. 19:308–326. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cals FL, Hellingman CA, Koevoet W, Baatenburg de Jong RJ and van Osch GJ: Effects of transforming growth factor-β subtypes on in vitro cartilage production and mineralization of human bone marrow stromal-derived mesenchymal stem cells. J Tissue Eng Regen Med. 6:68–76. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fortier LA, Barker JU, Strauss EJ, McCarrel TM and Cole BJ: The role of growth factors in cartilage repair. Clin Orthop Relat Res. 469:2706–2715. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang RK, Li GW, Zeng C, Lin CX, Huang LS, Huang GX, Zhao C, Feng SY and Fang H: Mechanical stress contributes to osteoarthritis development through the activation of transforming growth factor beta 1 (TGF-β1). Bone Joint Res. 7:587–594. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rosen DM, Stempien SA, Thompson AY, Brennan JE, Ellingsworth LR and Seyedin SM: Differentiation of rat mesenchymal cells by cartilage-inducing factor. Enhanced phenotypic expression by dihydrocytochalasin B. Exp Cell Res. 165:127–138. 1986. View Article : Google Scholar : PubMed/NCBI | |
Seyedin SM, Thompson AY, Bentz H, Rosen DM, McPherson JM, Conti A, Siegel NR, Galluppi GR and Piez KA: Cartilage-inducing factor-A. Apparent identity to transforming growth factor-beta. J Biol Chem. 261:5693–5695. 1986. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Iwamoto M, Koike T, Suzuki F and Takano Y: Terminal differentiation and calcification in rabbit chondrocyte cultures grown in centrifuge tubes: Regulation by transforming growth factor beta and serum factors. Proc Natl Acad Sci USA. 85:9552–9556. 1988. View Article : Google Scholar : PubMed/NCBI | |
Leonard CM, Fuld HM, Frenz DA, Downie SA, Massagué J and Newman SA: Role of transforming growth factor-beta in chondrogenic pattern formation in the embryonic limb: Stimulation of mesenchymal condensation and fibronectin gene expression by exogenenous TGF-beta and evidence for endogenous TGF-beta-like activity. Dev Biol. 145:99–109. 1991. View Article : Google Scholar : PubMed/NCBI | |
Xu C, Oyajobi BO, Frazer A, Kozaci LD, Russell RG and Hollander AP: Effects of growth factors and interleukin-1 alpha on proteoglycan and type II collagen turnover in bovine nasal and articular chondrocyte pellet cultures. Endocrinology. 137:3557–3565. 1996. View Article : Google Scholar : PubMed/NCBI | |
Ito T, Sawada R, Fujiwara Y, Seyama Y and Tsuchiya T: FGF-2 suppresses cellular senescence of human mesenchymal stem cells by down-regulation of TGF-beta2. Biochem Biophys Res Commun. 359:108–114. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lin Y, Luo E, Chen X, Liu L, Qiao J, Yan Z, Li Z, Tang W, Zheng X and Tian W: Molecular and cellular characterization during chondrogenic differentiation of adipose tissue-derived stromal cells in vitro and cartilage formation in vivo. J Cell Mol Med. 9:929–939. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bian L, Zhai DY, Tous E, Rai R, Mauck RL and Burdick JA: Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in-vitro and in vivo. Biomaterials. 2:6425–6434. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bhang SH, Jeon JY, La WG, Seong JY, Hwang JW, Ryu SE and Kim BS: Enhanced chondrogenic marker expression of human mesenchymal stem cells by interaction with both TGF-β3 and hyaluronic acid. Biotechnol Appl Biochem. 58:271–276. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barry F, Boynton RE, Liu B and Murphy JM: Chondrogenic differentiation of mesenchymal stem cells from bone marrow: Differentiation-dependent gene expression of matrix components. Exp Cell Res. 268:189–200. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dave K and Gomes VG: Interactions at scaffold interfaces: Effect of surface chemistry, structural attributes and bioaffinity. Mater Sci Eng C Mater Biol Appl. 105:1100782019. View Article : Google Scholar : PubMed/NCBI | |
Huang BJ, Hu JC and Athanasiou KA: Cell-based tissue engineering strategies used in the clinical repair of articular cartilage. Biomaterials. 98:1–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Zhang YS, Yue K and Khademhosseini A: Cell-laden hydrogels for osteochondral and cartilage tissue engineering. Acta Biomater. 57:1–25. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim YG, Choi J and Kim K: Mesenchymal stem cell-derived exosomes for effective cartilage tissue repair and treatment of osteoarthritis. Biotechnol J. 15:e20000822020. View Article : Google Scholar : PubMed/NCBI | |
Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S and Marshak DR: Multilineage potential of adult human mesenchymal stem cells. Science. 284:143–147. 1999. View Article : Google Scholar : PubMed/NCBI | |
Traggiai E, Volpi S, Schena F, Gattorno M, Ferlito F, Moretta L and Martini A: Bone marrow-derived mesenchymal stem cells induce both polyclonal expansion and differentiation of B cells isolated from healthy donors and systemic lupus erythematosus patients. Stem Cells. 6:562–569. 2008. View Article : Google Scholar : PubMed/NCBI | |
Rasmusson I, Le Blanc K, Sundberg B and Ringdén O: Mesenchymal stem cells stimulate antibody secretion in human B cells. Scand J Immunol. 65:336–343. 2007. View Article : Google Scholar : PubMed/NCBI | |
Spaggiari GM, Capobianco A, Becchetti S, Mingari MC and Moretta L: Mesenchymal stem cell-natural killer cell interactions: Evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood. 107:1484–1490. 2006. View Article : Google Scholar : PubMed/NCBI | |
Liang X, Ding Y, Zhang Y, Tse HF and Lian Q: Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplant. 23:1045–1059. 2014. View Article : Google Scholar : PubMed/NCBI | |
Théry C, Witwer KW, Aikawa E, Alcaraz MJ, Anderson JD, Andriantsitohaina R, Antoniou A, Arab T, Archer F, Atkin-Smith GK, et al: Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the international society for extracellular vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles. 7:15357502018. View Article : Google Scholar : PubMed/NCBI | |
Li X, Ellman M, Muddasani P, Wang JH, Cs-Szabo G, van Wijnen AJ and Im HJ: Prostaglandin E2 and its cognate EP receptors control human adult articular cartilage homeostasis and are linked to the pathophysiology of osteoarthritis. Arthritis Rheum. 60:513–523. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cosenza S, Ruiz M, Toupet K, Jorgensen C and Noël D: Mesenchymal stem cells derived exosomes and microparticles protect cartilage and bone from degradation in osteoarthritis. Sci Rep. 7:162142017. View Article : Google Scholar : PubMed/NCBI | |
Song Y, Zhang TJ, Li Y and Gao Y: Mesenchymal stem cells decrease M1/M2 ratio and alleviate inflammation to improve limb ischemia in mice. Med Sci Monit. 26:e9232872020. View Article : Google Scholar : PubMed/NCBI | |
Toh WS, Zhang B, Lai RC and Lim SK: Immune regulatory targets of mesenchymal stromal cell exosomes/small extracellular vesicles in tissue regeneration. Cytotherapy. 20:1419–1426. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chang YH, Wu KC, Harn HJ, Lin SZ and Ding DC: Exosomes and stem cells in degenerative disease diagnosis and therapy. Cell Transplant. 27:349–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Yu D, Liu Z, Zhou F, Dai J, Wu B, Zhou J, Heng BC, Zou XH, Ouyang H and Liu H: Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther. 8:1892017. View Article : Google Scholar : PubMed/NCBI | |
Temenoff JS and Mikos AG: Review: Tissue engineering for regeneration of articular cartilage. Biomaterials. 21:431–440. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hutmacher DW: Scaffolds in tissue engineering bone and cartilage. Biomaterials. 21:2529–2543. 2000. View Article : Google Scholar : PubMed/NCBI | |
Zuluaga M, Gregnanin G, Cencetti C, Di Meo C, Gueguen V, Letourneur D, Meddahi-Pellé A, Pavon-Djavid G and Matricardi P: PVA/Dextran hydrogel patches as delivery system of antioxidant astaxanthin: A cardiovascular approach. Biomed Mater. 13:0150202017. View Article : Google Scholar : PubMed/NCBI | |
Jiang T, Heng S, Huang X, Zheng L, Kai D, Loh XJ and Zhao J: Biomimetic poly(poly(ε-caprolactone)-Polytetrahydrofuran urethane) based nanofibers enhanced chondrogenic differentiation and cartilage regeneration. J Biomed Nanotechnol. 15:1005–1017. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fasolino I, Raucci MG, Soriente A, Demitri C, Madaghiele M, Sannino A and Ambrosio L: Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Mater Sci Eng C Mater Biol Appl. 105:1100462019. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj N, Singh YP and Mandal BB: Silk fibroin scaffold-based 3D Co-culture model for modulation of chondrogenesis without hypertrophy via reciprocal Cross-talk and paracrine signaling. ACS Biomater Sci Eng. 5:5240–5254. 2019. View Article : Google Scholar : PubMed/NCBI | |
Campo GM, Avenoso A, Campo S, D'Ascola A, Traina P and Calatroni A: Chondroitin-4-sulphate inhibits NF-kB translocation and caspase activation in collagen-induced arthritis in mice. Osteoarthritis Cartilage. 16:1474–1483. 2008. View Article : Google Scholar : PubMed/NCBI | |
Avenoso A, D'Ascola A, Scuruchi M, Mandraffino G, Calatroni A, Saitta A, Campo S and Campo GM: Hyaluronan in the experimental injury of the cartilage: Biochemical action and protective effects. Inflamm Res. 67:5–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Liu J, Guan M, Zhou T, Duan X and Xiang Z: Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine. 15:6097–6111. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park E, Hart ML, Rolauffs B, Stegemann JP and T Annamalai R: Bioresponsive microspheres for on-demand delivery of anti-inflammatory cytokines for articular cartilage repair. J Biomed Mater Res A. 108:722–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Moutos FT, Glass KA, Compton SA, Ross AK, Gersbach CA, Guilak F and Estes BT: Anatomically shaped tissue-engineered cartilage with tunable and inducible anticytokine delivery for biological joint resurfacing. Proc Natl Acad Sci USA. 113:E4513–E4522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Levinson C, Lee M, Applegate LA and Zenobi-Wong M: An injectable heparin-conjugated hyaluronan scaffold for local delivery of transforming growth factor β1 promotes successful chondrogenesis. Acta Biomater. 99:168–180. 2019. View Article : Google Scholar : PubMed/NCBI | |
Armiento AR, Stoddart MJ, Alini M and Eglin D: Biomaterials for articular cartilage tissue engineering: Learning from biology. Acta Biomater. 65:1–20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qasim M, Chae DS and Lee NY: Advancements and frontiers in nano-based 3D and 4D scaffolds for bone and cartilage tissue engineering. Int J Nanomedicine. 14:4333–4351. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li Y, Qu R, Chen X, Wang W, Qiu C, Liu B, Pan X, Liu L, Vasilev K, et al: Cortistatin binds to TNF-α receptors and protects against osteoarthritis. EBioMedicine. 41:556–570. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui Z, Crane J, Xie H, Jin X, Zhen G, Li C, Xie L, Wang L, Bian Q, Qiu T, et al: Halofuginone attenuates osteoarthritis by inhibition of TGF-β activity and H-type vessel formation in subchondral bone. Ann Rheum Dis. 75:1714–1721. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chavez RD and Serra R: Scaffoldless tissue-engineered cartilage for studying transforming growth factor beta-mediated cartilage formation. Biotechnol Prog. 36:e28972020. View Article : Google Scholar : PubMed/NCBI | |
Goldring MB, Otero M, Plumb DA, Dragomir C, Favero M, El Hachem K, Hashimoto K, Roach HI, Olivotto E, Borzì RM and Marcu KB: Roles of inflammatory and anabolic cytokines in cartilage metabolism: Signals and multiple effectors converge upon MMP-13 regulation in osteoarthritis. Eur Cell Mater. 21:202–220. 2011. View Article : Google Scholar : PubMed/NCBI | |
Contentin R, Demoor M, Concari M, Desancé M, Audigié F, Branly T and Galéra P: Comparison of the chondrogenic potential of mesenchymal stem cells derived from bone marrow and umbilical cord blood intended for cartilage tissue engineering. Stem Cell Rev Rep. 16:126–143. 2020. View Article : Google Scholar : PubMed/NCBI |