Effects of transcranial magnetic stimulation on neurobiological changes in Alzheimer's disease (Review)
- Authors:
- Shahid Bashir
- Mohammad Uzair
- Turki Abualait
- Muhammad Arshad
- Roaa A. Khallaf
- Asim Niaz
- Ziyad Thani
- Woo-Kyoung Yoo
- Isaac Túnez
- Asli Demirtas‑Tatlidede
- Sultan Ayoub Meo
-
Affiliations: Neuroscience Center, King Fahad Specialist Hospital Dammam, Dammam, Eastern Province 32253, Saudi Arabia, Department of Biological Sciences, Faculty of Basic and Applied Sciences, International Islamic University Islamabad, Islamabad 44000, Pakistan, College of Applied Medical Sciences, Imam Abdulrahman Bin Faisal University, Dammam, Eastern Province 34212, Saudi Arabia, Department of Physical Medicine and Rehabilitation, Hallym University College of Medicine, Anyang, Gyeonggi‑do 24252, Republic of Korea, Department of Biochemistry and Molecular Biology, Faculty of Medicine and Nursing/ Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), University of Cordoba, Cordoba 14071, Spain, Department of Neurology, Bahcesehir University School of Medicine, Istanbul 34734, Turkey, Department of Physiology, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia - Published online on: February 1, 2022 https://doi.org/10.3892/mmr.2022.12625
- Article Number: 109
-
Copyright: © Bashir et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Guarino A, Favieri F, Boncompagni I, Agostini F, Cantone M and Casagrande M: Executive functions in Alzheimer disease: A systematic review. Front Aging Neurosci. 10:4372019. View Article : Google Scholar : PubMed/NCBI | |
Weiler M, Stieger KC, Long JM and Rapp PR: Transcranial magnetic stimulation in Alzheimer's disease. Are we ready? eNeuro. 7:2020.PubMed/NCBI | |
Weller J and Budson A: Current understanding of Alzheimer's disease diagnosis and treatment. F1000Res. 7:F1000 Faculty Rev. 11612018. View Article : Google Scholar : PubMed/NCBI | |
2020 Alzheimer's disease facts and figures. Alzheimers Dement. 16:391–460. 2020. View Article : Google Scholar | |
Uddin M, Kabir M, Jakaria M, Sobarzo-Sánchez E, Barreto GE, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM and Ashraf GM: Exploring the potential of neuroproteomics in Alzheimer's disease. Curr Top Med Chem. 20:2263–2278. 2020. View Article : Google Scholar : PubMed/NCBI | |
Koper MJ, Van Schoor E, Ospitalieri S, Vandenberghe R, Vandenbulcke M, von Arnim CAF, Tousseyn T, Balusu S, De Strooper B and Thal DR: Necrosome complex detected in granulovacuolar degeneration is associated with neuronal loss in Alzheimer's disease. Acta Neuropathol. 139:463–484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hur JY, Frost GR, Wu X, Crump C, Pan SJ, Wong E, Barros M, Li T, Nie P, Zhai Y, et al: The innate immunity protein IFITM3 modulates γ-secretase in Alzheimer's disease. Nat Aust. 586:735–740. 2020. View Article : Google Scholar : PubMed/NCBI | |
Butterfield DA and Mattson MP: Apolipoprotein E and oxidative stress in brain with relevance to Alzheimer's disease. Neurobiol Dis. 138:1047952020. View Article : Google Scholar : PubMed/NCBI | |
Bhatt S, Puli L and Patil CR: Role of reactive oxygen species in the progression of Alzheimer's disease. Drug Discov Today. 26:794–803. 2021. View Article : Google Scholar : PubMed/NCBI | |
Olajide OJ, Gbadamosi IT, Yawson EO, Arogundade T, Lewu FS, Ogunrinola KY, Adigun OO, Bamisi O, Lambe E, Arietarhire LO, et al: Hippocampal degeneration and behavioral impairment during Alzheimer-like pathogenesis involves glutamate excitotoxicity. J Mol Neurosci. 71:1205–1220. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Zhan JK and Liu Y: A perspective on roles played by immunosenescence in the pathobiology of Alzheimer's disease. Aging Dis. 11:1594–1607. 2020. View Article : Google Scholar : PubMed/NCBI | |
Uddin MS, Al Mamun A, Rahman M, Behl T, Perveen A, Hafeez A, Bin-Jumah MN, Abdel-Daim MM and Ashraf GM: Emerging proof of protein misfolding and interactions in multifactorial Alzheimer's disease. Curr Top Med Chem. 20:2380–2390. 2020. View Article : Google Scholar : PubMed/NCBI | |
Butterfield DA and Boyd-Kimball DA: Mitochondrial oxidative and nitrosative stress and Alzheimer disease. Antioxidants (Basel). 9:8182020. View Article : Google Scholar : PubMed/NCBI | |
Sengoku R: Aging and Alzheimer's disease pathology. Neuropathol Appl Neurobiol. 40:22–29. 2020. | |
Wegiel J, Flory M, Kuchna I, Nowicki K, Ma SY, Wegiel J, Badmaev E, Leon M, Wisniewski T and Reisberg B: Clinicopathological staging of dynamics of neurodegeneration and neuronal loss in Alzheimer disease. J Neuropathol Exp Neurol. 80:21–44. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pei YA, Davies J, Zhang M and Zhang HT: The role of synaptic dysfunction in Alzheimer's disease. J Alzheimer's Dis. 76:49–62. 2020. View Article : Google Scholar : PubMed/NCBI | |
Teipel SJ, Fritz HC and Grothe MJ; Alzheimer's Disease Neuroimaging Initiative, : Neuropathologic features associated with basal forebrain atrophy in Alzheimer disease. Neurology. 95:e1301–e1311. 2020. View Article : Google Scholar : PubMed/NCBI | |
Amini M, Pedram MM, Moradi A, Jamshidi M and Ouchani M: Single and combined neuroimaging techniques for Alzheimer's disease detection. Comput Intell Neurosci. 2021:95230392021. View Article : Google Scholar : PubMed/NCBI | |
Zetterberg H and Burnham SC: Blood-based molecular biomarkers for Alzheimer's disease. Mol Brain. 12:262019. View Article : Google Scholar : PubMed/NCBI | |
Jack CR Jr, Bennett DA, Blennow K, Carrillo MC, Dunn B, Haeberlein SB, Holtzman DM, Jagust W, Jessen F, Karlawish J, et al: NIA-AA research framework: Toward a biological definition of Alzheimer's disease. Alzheimer's Dement. 14:535–562. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee JC, Kim SJ, Hong S and Kim Y: Diagnosis of Alzheimer's disease utilizing amyloid and tau as fluid biomarkers. Exp Mol Med. 51:1–10. 2019. View Article : Google Scholar | |
Park JE, Lim DS, Cho YH, Choi KY, Lee JJ, Kim BC, Lee KH and Lee JS: Plasma contact factors as novel biomarkers for diagnosing Alzheimer's disease. Biomark Res. 9:52021. View Article : Google Scholar : PubMed/NCBI | |
Zetterberg H: Blood-based biomarkers for Alzheimer's disease-An update. J Neurosci Methods. 319:2–6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Young PNE, Estarellas M, Coomans E, Srikrishna M, Beaumont H, Maass A, Venkataraman AV, Lissaman R, Jiménez D, Betts MJ, et al: Imaging biomarkers in neurodegeneration: Current and future practices. Alzheimers Res Ther. 12:492020. View Article : Google Scholar : PubMed/NCBI | |
O'Dell RS, Mecca AP, Chen MK, Naganawa M, Toyonaga T, Lu Y, Godek TA, Harris JE, Bartlett HH, Banks ER, et al: Association of Aβ deposition and regional synaptic density in early Alzheimer's disease: A PET imaging study with [11C]UCB-J. Alzheimer's Res Ther. 13:112021. View Article : Google Scholar : PubMed/NCBI | |
Sujathakumari B, Shetty MC, Lakshitha H, Mehulkumar PJ and Suma S: Predictive analysis for early detection of Alzheimer's disease. Data Intelligence and Cognitive Informatics. Springer; pp. 709–723. 2021, View Article : Google Scholar | |
Song A, Johnson N, Ayala A and Thompson AC: Brain Optical coherence tomography in patients with Alzheimer's disease: What can it tell us? Eye. 13:1–20. 2021. | |
Segal Y, Segal L, Blumenfeld-Katzir T, Sasson E, Poliansky V, Loeb E, Levy A, Alter A and Bregman N: The effect of electromagnetic field treatment on recovery from ischemic stroke in a rat stroke model: Clinical, imaging, and pathological findings. Stroke Res Treat. 2016:69419462016.PubMed/NCBI | |
Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J, Di Lazzaro V, Filipović SR, Grefkes C, Hasan A, Hummel FC, et al: Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clinical neurophysiology. 131:474–528. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ba M, Ma G, Ren C, Sun X and Kong M: Repetitive transcranial magnetic stimulation for treatment of lactacystin-induced Parkinsonian rat model. Oncotarget. 8:50921–50929. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tasset I, Medina FJ, Jimena I, Agüera E, Gascón F, Feijóo M, Sánchez-López F, Luque E, Peña J, Drucker-Colín R and Túnez I: Neuroprotective effects of extremely low-frequency electromagnetic fields on a Huntington's disease rat model: Effects on neurotrophic factors and neuronal density. Neuroscience. 209:54–63. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choung JS, Kim JM, Ko MH, Cho DS and Kim M: Therapeutic efficacy of repetitive transcranial magnetic stimulation in an animal model of Alzheimer's disease. Sci Rep. 11:4372021. View Article : Google Scholar : PubMed/NCBI | |
Chou YH, Ton That V and Sundman M: A systematic review and meta-analysis of rTMS effects on cognitive enhancement in mild cognitive impairment and Alzheimer's disease. Neurobiol Aging. 86:1–10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Weise K, Numssen O, Thielscher A, Hartwigsen G and Knösche TR: A novel approach to localize cortical TMS effects. NeuroImage. 209:1164862020. View Article : Google Scholar : PubMed/NCBI | |
Zorzo C, Higarza SG, Méndez M, Martínez JA, Pernía AM and Arias JL: High frequency repetitive transcranial magnetic stimulation improves neuronal activity without affecting astrocytes and microglia density. Brain Res Bull. 150:13–20. 2019. View Article : Google Scholar : PubMed/NCBI | |
Velioglu HA, Hanoglu L, Bayraktaroglu Z, Toprak G, Guler EM, Bektay MY, Mutlu-Burnaz O and Yulug B: Left lateral parietal rTMS improves cognition and modulates resting brain connectivity in patients with Alzheimer's disease: Possible role of BDNF and oxidative stress. Neurobiol Learn Mem. 180:1074102021. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Zheng H, Zhang L, Zhang Q, Li L, Pei Z and Hu X: High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int J Mol Sci. 18:4552017. View Article : Google Scholar : PubMed/NCBI | |
Heath A, Taylor J and McNerney MW: rTMS for the treatment of Alzheimer's disease: Where should we be stimulating? Expert Rev Neurother. 18:903–905. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bashir S, Mizrahi I, Weaver K, Fregni F and Pascual-Leone A: Assessment and modulation of neural plasticity in rehabilitation with transcranial magnetic stimulation. PM R. 2 12 Suppl 2:S253–S268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mann SK and Malhi NK: Repetitive transcranial magnetic stimulation. StatPearls StatPearls Publishing Copyright©. 2021, StatPearls Publishing LLC.; Treasure Island (FL): 2021 | |
Miniussi C and Ruzzoli M: Transcranial stimulation and cognition. Handb Clin Neurol. 116:739–750. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barker AT, Jalinous R and Freeston IL: Non-invasive magnetic stimulation of human motor cortex. Lancet. 1:1106–1107. 1985. View Article : Google Scholar : PubMed/NCBI | |
Uzair M, Abualait T, Arshad M, Yoo WK, Mir A, Bunyan RF and Bashir S: Transcranial magnetic stimulation in animal models of neurodegeneration. Neural Regen Res. 17:251–265. 2022. View Article : Google Scholar : PubMed/NCBI | |
Perera T, George MS, Grammer G, Janicak PG, Pascual-Leone A and Wirecki TS: The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 9:336–346. 2016. View Article : Google Scholar : PubMed/NCBI | |
George MS: Transcranial magnetic stimulation for the treatment of depression. Expert Rev Neurother. 10:1761–1772. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hawken ER, Dilkov D, Kaludiev E, Simek S, Zhang F and Milev R: Transcranial magnetic stimulation of the supplementary motor area in the treatment of obsessive-compulsive disorder: A multi-site study. Int J Mol Sci. 17:4202016. View Article : Google Scholar : PubMed/NCBI | |
Starling AJ, Tepper SJ, Marmura MJ, Shamim EA, Robbins MS, Hindiyeh N, Charles AC, Goadsby PJ, Lipton RB, Silberstein SD, et al: A multicenter, prospective, single arm, open label, observational study of sTMS for migraine prevention (ESPOUSE Study). Cephalalgia. 38:1038–1048. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moussavi Z, Rutherford G, Lithgow B, Millikin C, Modirrousta M, Mansouri B, Wang X, Omelan C, Fellows L, Fitzgerald P and Koski L: Repeated transcranial magnetic stimulation for improving cognition in patients with Alzheimer disease: Protocol for a randomized, double-blind, placebo-controlled trial. JMIR Res Protoc. 10:e251442021. View Article : Google Scholar : PubMed/NCBI | |
Li X, Qi G, Yu C, Lian G, Zheng H, Wu S, Yuan TF and Zhou D: Cortical plasticity is correlated with cognitive improvement in Alzheimer's disease patients after rTMS treatment. Brain Stimul. 14:503–510. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mi TM, Garg S, Ba F, Liu AP, Liang PP, Gao LL, Jia Q, Xu EH, Li KC, Chan P and McKeown MJ: Repetitive transcranial magnetic stimulation improves Parkinson's freezing of gait via normalizing brain connectivity. NPJ Parkinsons Dis. 6:162020. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Song L and Liu Z: The effect of repetitive transcranial magnetic stimulation on a model rat of Parkinson's disease. Neuroreport. 21:268–272. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wagner T, Valero-Cabre A and Pascual-Leone A: Noninvasive human brain stimulation. Annu Rev Biomed Eng. 9:527–65. 2007. View Article : Google Scholar : PubMed/NCBI | |
Klomjai W, Katz R and Lackmy-Vallée A: Basic principles of transcranial magnetic stimulation (TMS) and repetitive TMS (rTMS). Ann Phys Rehabil Med. 58:208–213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Bolognini N and Ro T: Transcranial magnetic stimulation: Disrupting neural activity to alter and assess brain function. J Neurosci. 30:9647–9650. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cuypers K and Marsman A: Transcranial magnetic stimulation and magnetic resonance spectroscopy: Opportunities for a bimodal approach in human neuroscience. Neuroimage. 224:1173942021. View Article : Google Scholar : PubMed/NCBI | |
Chail A, Saini RK, Bhat P, Srivastava K and Chauhan V: Transcranial magnetic stimulation: A review of its evolution and current applications. Ind Psychiatry J. 27:1722018. View Article : Google Scholar : PubMed/NCBI | |
Habib S, Hamid U, Jamil A, Zainab AZ, Yousuf T, Habib S, Tariq SM and Ali F: Transcranial magnetic stimulation as a therapeutic option for neurologic and psychiatric illnesses. Cureus. 10:e34562018.PubMed/NCBI | |
Eldaief MC, Press DZ and Pascual-Leone A: Transcranial magnetic stimulation in neurology: A review of established and prospective applications. Neurol Clin Pract. 3:519–526. 2013. View Article : Google Scholar : PubMed/NCBI | |
Alomar M, Yoo W-K, Vernet M, Murtaza G, Rotenberg A and Bashir S: Human brain connectivity in response to paired pulse TMS paradigm. Brain Stimul. 10:3532017. View Article : Google Scholar | |
Kim TD, Hong G, Kim J and Yoon S: Cognitive enhancement in neurological and psychiatric disorders using transcranial magnetic stimulation (TMS): A review of modalities, potential mechanisms and future implications. Exp Neurobiol. 28:1–16. 2019. View Article : Google Scholar : PubMed/NCBI | |
Fried PJ, Jannati A, Davila-Pérez P and Pascual-Leone A: Reproducibility of single-pulse, paired-pulse, and intermittent theta-burst TMS measures in healthy aging, type-2 diabetes, and Alzheimer's disease. Front Aging Neurosci. 9:2632017. View Article : Google Scholar : PubMed/NCBI | |
Chervyakov AV, Chernyavsky AY, Sinitsyn DO and Piradov MA: Possible mechanisms underlying the therapeutic effects of transcranial magnetic stimulation. Front Hum Neurosci. 9:3032015. View Article : Google Scholar : PubMed/NCBI | |
Agarwal S, Koch G, Hillis AE, Huynh W, Ward NS, Vucic S and Kiernan MC: Interrogating cortical function with transcranial magnetic stimulation: Insights from neurodegenerative disease and stroke. J Neurol Neurosurg Psychiatry. 90:47–57. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jackson J, Jambrina E, Li J, Marston H, Menzies F, Phillips K and Gilmour G: Targeting the synapse in Alzheimer's disease. Front Neurosci. 13:7352019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Mao Z, Ling Z and Yu X: Repetitive transcranial magnetic stimulation for cognitive impairment in Alzheimer's disease: A meta-analysis of randomized controlled trials. J Neurol. 267:791–801. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holczer A, Németh VL, Vékony T, Vécsei L, Klivényi P and Must A: Non-invasive brain stimulation in Alzheimer's disease and mild cognitive impairment-a state-of-the-art review on methodological characteristics and stimulation parameters. Front Hum Neurosci. 14:1792020. View Article : Google Scholar : PubMed/NCBI | |
Guerra A, Assenza F, Bressi F, Scrascia F, Del Duca M, Ursini F, Vollaro S, Trotta L, Tombini M, Chisari C and Ferreri F: Transcranial magnetic stimulation studies in Alzheimer's disease. Int J Alzheimers Dis. 2011:2638172011.PubMed/NCBI | |
Yang HY, Liu Y, Xie JC, Liu NN and Tian X: Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behav Brain Res. 281:149–155. 2015. View Article : Google Scholar : PubMed/NCBI | |
Capelli E, Torrisi F, Venturini L, Granato M, Fassina L, Lupo GFD and Ricevuti G: Low-frequency pulsed electromagnetic field is able to modulate miRNAs in an experimental cell model of Alzheimer's disease. J Healthcare Eng. 2017:25302702017. View Article : Google Scholar : PubMed/NCBI | |
Xiao N and Le QT: Neurotrophic factors and their potential applications in tissue regeneration. Arch Immunol Ther Exp (Warsz). 64:89–99. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sampaio TB, Savall AS, Gutierrez MEZ and Pinton S: Neurotrophic factors in Alzheimer's and Parkinson's diseases: Implications for pathogenesis and therapy. Neural Regen Res. 12:549–557. 2017. View Article : Google Scholar : PubMed/NCBI | |
Budni J, Bellettini-Santos T, Mina F, Garcez ML and Zugno AI: The involvement of BDNF, NGF and GDNF in aging and Alzheimer's disease. Aging Dis. 6:331–341. 2015. View Article : Google Scholar : PubMed/NCBI | |
Miranda M, Morici JF, Zanoni MB and Bekinschtein P: Brain-derived neurotrophic factor: A key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 13:3632019. View Article : Google Scholar : PubMed/NCBI | |
Ballinger EC, Ananth M, Talmage DA and Role LW: Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron. 91:1199–1218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martinez JL, Zammit MD, West NR, Christian BT and Bhattacharyya A: Basal forebrain cholinergic neurons: Linking down syndrome and Alzheimer's disease. Front Aging Neurosci. 13:7038762021. View Article : Google Scholar : PubMed/NCBI | |
Serrano-Pozo A, Frosch MP, Masliah E and Hyman BT: Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med. 1:a0061892011. View Article : Google Scholar : PubMed/NCBI | |
Pang Y and Shi M: Repetitive transcranial magnetic stimulation improves mild cognitive impairment associated with Alzheimer's disease in mice by modulating the miR-567/NEUROD2/PSD95 axis. Neuropsychiatr Dis Treat. 17:2151–2161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang ZH, Xiang J, Liu X, Yu SP, Manfredsson FP, Sandoval IM, Wu S, Wang JZ and Ye K: Deficiency in BDNF/TrkB neurotrophic activity stimulates δ-secretase by upregulating C/EBPβ in Alzheimer's disease. Cell Rep. 28:655–669.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ng TKS, Ho CSH, Tam WWS, Kua EH and Ho RC: Decreased serum brain-derived neurotrophic factor (BDNF) levels in patients with Alzheimer's disease (AD): A systematic review and meta-analysis. Int J Mol Sci. 20:2572019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Dong GY and Wang LX: High-frequency transcranial magnetic stimulation protects APP/PS1 mice against Alzheimer's disease progress by reducing APOE and enhancing autophagy. Brain Behavior. 10:e017402020. View Article : Google Scholar : PubMed/NCBI | |
Tan T, Xie J, Liu T, Chen X, Zheng X, Tong Z and Tian X: Low-frequency (1Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1–42)-mediated memory deficits in rats. Exp Gerontol. 48:786–794. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Chen S, Liang W and Ba F: Administration of repetitive transcranial magnetic stimulation attenuates A β1-42-induced Alzheimer's disease in mice by activating β-catenin signaling. Biomed Res Int. 2019:14317602019.PubMed/NCBI | |
Schaller G, Sperling W, Richter-Schmidinger T, Mühle C, Heberlein A, Maihöfner C, Kornhuber J and Lenz B: Serial repetitive transcranial magnetic stimulation (rTMS) decreases BDNF serum levels in healthy male volunteers. J Neural Transm (Vienna). 121:307–313. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gaede G, Hellweg R, Zimmermann H, Brandt AU, Dörr J, Bellmann-Strobl J, Zangen A, Paul F and Pfueller CF: Effects of deep repetitive transcranial magnetic stimulation on brain-derived neurotrophic factor serum concentration in healthy volunteers. Neuropsychobiology. 69:112–119. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yulug B, Hanoglu L, Khanmammadov E, Duz OA, Polat B, Hanoglu T, Gunal MY and Kilic E: Beyond the therapeutic effect of rTMS in Alzheimer's disease: A possible neuroprotective role of hippocampal BDNF?: A minireview. Mini Rev Med Chem. 18:1479–1485. 2018. View Article : Google Scholar : PubMed/NCBI | |
Huang WJ, Zhang X and Chen WW: Role of oxidative stress in Alzheimer's disease. Biomed Rep. 4:519–522. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheignon C, Tomas M, Bonnefont-Rousselot D, Faller P, Hureau C and Collin F: Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol. 14:450–464. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Zhong C: Oxidative stress in Alzheimer's disease. Neurosci Bull. 30:271–281. 2014. View Article : Google Scholar : PubMed/NCBI | |
Perry G, Cash AD and Smith MA: Alzheimer disease and oxidative stress. J Biomed Biotechnol. 2:120–123. 2002. View Article : Google Scholar : PubMed/NCBI | |
Butterfield DA and Halliwell B: Oxidative stress, dysfunctional glucose metabolism and Alzheimer disease. Nat Rev Neurosci. 20:148–160. 2019. View Article : Google Scholar : PubMed/NCBI | |
Molinari C, Morsanuto V, Ruga S, Notte F, Farghali M, Galla R and Uberti F: The role of BDNF on aging-modulation markers. Brain Sci. 10:2852020. View Article : Google Scholar : PubMed/NCBI | |
Umeno A, Biju V and Yoshida Y: In vivo ROS production and use of oxidative stress-derived biomarkers to detect the onset of diseases such as Alzheimer's disease, Parkinson's disease, and diabetes. Free Radical Res. 51:413–427. 2017. View Article : Google Scholar : PubMed/NCBI | |
Durmaz O, Ispir E, Baykan H, Alisik M and Erel Ö: The impact of repetitive transcranial magnetic stimulation on oxidative stress in subjects with medication-resistant depression. J ECT. 34:127–131. 2018. View Article : Google Scholar : PubMed/NCBI | |
Niimi M, Hashimoto K, Kakuda W, Miyano S, Momosaki R, Ishima T and Abo M: Role of brain-derived neurotrophic factor in beneficial effects of repetitive transcranial magnetic stimulation for upper limb hemiparesis after stroke. PLoS One. 11:e01522412016. View Article : Google Scholar : PubMed/NCBI | |
Medina-Fernandez FJ, Escribano BM, Agüera E, Aguilar-Luque M, Feijoo M, Luque E, Garcia-Maceira FI, Pascual-Leone A, Drucker-Colin R and Tunez I: Effects of transcranial magnetic stimulation on oxidative stress in experimental autoimmune encephalomyelitis. Free Radical Res. 51:460–469. 2017. View Article : Google Scholar : PubMed/NCBI | |
Snowden SG, Ebshiana AA, Hye A, Pletnikova O, O'Brien R, Yang A, Troncoso J, Legido-Quigley C and Thambisetty M: Neurotransmitter imbalance in the brain and Alzheimer's disease pathology. J Alzheimers Dis. 72:35–43. 2019. View Article : Google Scholar : PubMed/NCBI | |
Svob Strac D, Muck-Seler D and Pivac N: Neurotransmitter measures in the cerebrospinal fluid of patients with Alzheimer's disease: A review. Psychiatr Danub. 27:14–24. 2015.PubMed/NCBI | |
Kaur S, DasGupta G and Singh S: Altered neurochemistry in Alzheimer's disease: Targeting neurotransmitter receptor mechanisms and therapeutic strategy. Neurophysiology. 51:293–309. 2019. View Article : Google Scholar | |
Speranza L, di Porzio U, Viggiano D, de Donato A and Volpicelli F: Dopamine: The neuromodulator of long-term synaptic plasticity, reward and movement control. Cells. 10:7352021. View Article : Google Scholar : PubMed/NCBI | |
He Z, Jiang Y, Gu S, Wu D, Feng G, Ma X, Huang JH and Wang F: The aversion function of the limbic dopaminergic neurons and their roles in functional neurological disorders. Front Cell Dev Biol. 9:7137622021. View Article : Google Scholar : PubMed/NCBI | |
Pan X, Kaminga AC, Wen SW, Wu X, Acheampong K and Liu A: Dopamine and dopamine receptors in Alzheimer's disease: A systematic review and network meta-analysis. Front Aging Neurosci. 11:1752019. View Article : Google Scholar : PubMed/NCBI | |
D'Amelio M, Puglisi-Allegra S and Mercuri N: The role of dopaminergic midbrain in Alzheimer's disease: Translating basic science into clinical practice. Pharmacol Res. 130:414–419. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nobili A, Latagliata EC, Viscomi MT, Cavallucci V, Cutuli D, Giacovazzo G, Krashia P, Rizzo FR, Marino R, Federici M, et al: Dopamine neuronal loss contributes to memory and reward dysfunction in a model of Alzheimer's disease. Nat Commun. 8:147272017. View Article : Google Scholar : PubMed/NCBI | |
Malik S, Jacobs M, Cho SS, Boileau I, Blumberger D, Heilig M, Wilson A, Daskalakis ZJ, Strafella AP, Zangen A and Le Foll B: Deep TMS of the insula using the H-coil modulates dopamine release: A crossover [11C] PHNO-PET pilot trial in healthy humans. Brain Imaging Behav. 12:1306–1317. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cho SS and Strafella AP: rTMS of the left dorsolateral prefrontal cortex modulates dopamine release in the ipsilateral anterior cingulate cortex and orbitofrontal cortex. PLoS One. 4:e67252009. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Chang L, Song Y, Li H and Wu Y: The role of NMDA receptors in Alzheimer's disease. Front Neurosci. 13:432019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Li P, Feng J and Wu M: Dysfunction of NMDA receptors in Alzheimer's disease. Neurol Sci. 37:1039–1047. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kodis EJ, Choi S, Swanson E, Ferreira G and Bloom GS: Dementia N-methyl-D-aspartate receptor-mediated calcium influx connects amyloid-β oligomers to ectopic neuronal cell cycle reentry in Alzheimer's disease. Alzheimers Dement. 14:1302–1312. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tsang SW, Vinters HV, Cummings JL, Wong PT, Chen CP and Lai MK: Alterations in NMDA receptor subunit densities and ligand binding to glycine recognition sites are associated with chronic anxiety in Alzheimer's disease. Neurobiol. Aging. 29:1524–1532. 2008.PubMed/NCBI | |
Battaglia F, Wang HY, Ghilardi MF, Gashi E, Quartarone A, Friedman E and Nixon RA: Cortical plasticity in Alzheimer's disease in humans and rodents. Biol Psychiatry. 62:1405–1412. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhang N, Xing M, Wang Y, Tao H and Cheng Y: Repetitive transcranial magnetic stimulation enhances spatial learning and synaptic plasticity via the VEGF and BDNF-NMDAR pathways in a rat model of vascular dementia. Neuroscience. 311:284–291. 2015. View Article : Google Scholar : PubMed/NCBI | |
Niimi M, Fujita Y, Ishima T, Hashimoto K, Sasaki N, Hara T, Yamada N and Abo M: Role of D-serine in the beneficial effects of repetitive transcranial magnetic stimulation in post-stroke patients. Acta Neuropsychiatr. 32:1–22. 2020. View Article : Google Scholar | |
Chi H, Chang H-Y and Sang TK: Neuronal cell death mechanisms in major neurodegenerative diseases. Int J Mol Sci. 19:30822018. View Article : Google Scholar : PubMed/NCBI | |
Obulesu M and Lakshmi MJ: Apoptosis in Alzheimer's disease: An understanding of the physiology, pathology and therapeutic avenues. Neurochem Res. 39:2301–2312. 2014. View Article : Google Scholar : PubMed/NCBI | |
Paradis E, Douillard H, Koutroumanis M, Goodyer C and LeBlanc A: Amyloid beta peptide of Alzheimer's disease downregulates Bcl-2 and upregulates bax expression in human neurons. J Neurosci. 16:7533–7539. 1996. View Article : Google Scholar : PubMed/NCBI | |
Guo F, Lou J, Han X, Deng Y and Huang X: Repetitive transcranial magnetic stimulation ameliorates cognitive impairment by enhancing neurogenesis and suppressing apoptosis in the hippocampus in rats with ischemic stroke. Front Physiol. 8:5592017. View Article : Google Scholar : PubMed/NCBI | |
Yulug B, Hanoglu L, Kilic E, Polat B and Rüdiger Schabitz W: The neuroprotective role of repetitive transcranial magnetic stimulation (rTMS) for neurodegenerative diseases: A short review on experimental studies. Mini Rev Med Chem. 16:1269–1273. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cappa SF, Binetti G, Pezzini A, Padovani A, Rozzini L and Trabucchi M: Object and action naming in Alzheimer's disease and frontotemporal dementia [see comment]. Neurology. 50:351–355. 1998. View Article : Google Scholar : PubMed/NCBI | |
Almor A, Aronoff JM, MacDonald MC, Gonnerman LM, Kempler D, Hintiryan H, Hayes UL, Arunachalam S and Andersen ES: A common mechanism in verb and noun naming deficits in Alzheimer's patients. Brain Lang. 111:8–19. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Almeida RG, Mobayyen F, Antal C, Kehayia E, Nair VP and Schwartz G: Category-specific verb-semantic deficits in Alzheimer's disease: Evidence from static and dynamic action naming. Cogn Neuropsychol. 38:1–26. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Zomorrodi R, Ghazala Z, Goodman MS, Blumberger DM, Cheam A, Fischer C, Daskalakis ZJ, Mulsant BH, Pollock BG and Rajji TK: Extent of dorsolateral prefrontal cortex plasticity and its association with working memory in patients with Alzheimer disease. JAMA Psychiatry. 74:1266–1274. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kumar S, Iwata Y, Zomorrodi R, Blumberger DM, Fischer CE, Daskalakis ZJ, Mulsant BH, Pollock BG, Graff-Guerrero A and Rajji TK: Dorsolateral prefrontal cortex metabolites and their relationship with plasticity in Alzheimer's disease: Biomarkers (non-neuroimaging)/novel biomarkers. Alzheimers Dement. 16:e0458792020. View Article : Google Scholar | |
Alder G, Signal N, Olsen S and Taylor D: A systematic review of paired associative stimulation (PAS) to modulate lower limb corticomotor excitability: Implications for stimulation parameter selection and experimental design. Front Neurosci. 13:8952019. View Article : Google Scholar : PubMed/NCBI | |
Silverstein J, Cortes M, Tsagaris KZ, Climent A, Gerber LM, Oromendia C, Fonzetti P, Ratan RR, Kitago T, Iacoboni M, et al: Paired associative stimulation as a tool to assess plasticity enhancers in chronic stroke. Front Neurosci. 13:7922019. View Article : Google Scholar : PubMed/NCBI | |
Motta C, Di Lorenzo F, Ponzo V, Pellicciari MC, Bonnì S, Picazio S, Mercuri NB, Caltagirone C, Martorana A and Koch G: Transcranial magnetic stimulation predicts cognitive decline in patients with Alzheimer's disease. J Neurol Neurosurg Psychiatry. 89:1237–1242. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bashir S, Al-Hussain F, Hamza A, Shareefi GF, Abualait T and Yoo WK: Role of single low pulse intensity of transcranial magnetic stimulation over the frontal cortex for cognitive function. Front Hum Neurosci. 14:2052020. View Article : Google Scholar : PubMed/NCBI | |
Nardone R, Tezzon F, Höller Y, Golaszewski S, Trinka E and Brigo F: Transcranial magnetic stimulation (TMS)/repetitive TMS in mild cognitive impairment and Alzheimer's disease. Acta Neurol Scand. 129:351–366. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cappa SF, Sandrini M, Rossini PM, Sosta K and Miniussi C: The role of the left frontal lobe in action naming rTMS evidence. Neurology. 59:720–723. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cotelli M, Manenti R, Cappa SF, Geroldi C, Zanetti O, Rossini PM and Miniussi C: Effect of transcranial magnetic stimulation on action naming in patients with Alzheimer disease. Arch Neurol. 63:1602–1604. 2006. View Article : Google Scholar : PubMed/NCBI | |
Cotelli M, Manenti R, Cappa SF, Zanetti O and Miniussi C: Transcranial magnetic stimulation improves naming in Alzheimer disease patients at different stages of cognitive decline. Eur J Neurol. 15:1286–1292. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cotelli M, Calabria M, Manenti R, Rosini S, Zanetti O, Cappa SF and Miniussi C: Improved language performance in Alzheimer disease following brain stimulation. J Neurol Neurosurg Psychiatry. 82:794–797. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ahmed MA, Darwish ES, Khedr EM, El Serogy YM and Ali AM: Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer's dementia. J Neurology. 259:83–92. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Qin Y, Xie L, Zheng C, Huang X and Zhang M: High-frequency repetitive transcranial magnetic stimulation combined with cognitive training improves cognitive function and cortical metabolic ratios in Alzheimer's disease. J Neural Transm (Vienna). 126:1081–1094. 2019. View Article : Google Scholar : PubMed/NCBI | |
Turriziani P, Smirni D, Mangano GR, Zappalà G, Giustiniani A, Cipolotti L and Oliveri M: Low-frequency repetitive transcranial magnetic stimulation of the right dorsolateral prefrontal cortex enhances recognition Memory in Alzheimer's disease. J Alzheimers Dis. 72:613–622. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Tan T, Du Y, Chen L, Fu M, Yu Y, Zhang L, Song W and Dong Z: Low-frequency repetitive transcranial magnetic stimulation ameliorates cognitive function and synaptic plasticity in APP23/PS45 mouse model of Alzheimer's disease. Front Aging Neurosci. 9:2922017. View Article : Google Scholar : PubMed/NCBI | |
Bagattini C, Zanni M, Barocco F, Caffarra P, Brignani D, Miniussi C and Defanti CA: Enhancing cognitive training effects in Alzheimer's disease: rTMS as an add-on treatment. Brain Stimul. 13:1655–1664. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huerta PT and Volpe BT: Transcranial magnetic stimulation, synaptic plasticity and network oscillations. J Neuroeng Rehabil. 6:72009. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Ma R and Yuan Y: Post-transcriptional regulation of genes related to biological behaviors of gastric cancer by long noncoding RNAs and MicroRNAs. J Cancer. 8:4141–4154. 2017. View Article : Google Scholar : PubMed/NCBI | |
Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Yue D, Zhou Y, Jia L, Wang H, Guo M, Xu H, Chen C, Zhang J and Xu L: The role of MicroRNAs in Aβ deposition and Tau phosphorylation in Alzheimer's disease. Front Neurol. 8:3422017. View Article : Google Scholar : PubMed/NCBI | |
Konovalova J, Gerasymchuk D, Parkkinen I, Chmielarz P and Domanskyi A: Interplay between MicroRNAs and oxidative stress in neurodegenerative diseases. Int J Mol Sci. 20:60552019. View Article : Google Scholar : PubMed/NCBI | |
Friedman RC, Farh KK, Burge CB and Bartel DP: Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 19:92–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rooda I, Hensen K, Kaselt B, Kasvandik S, Pook M, Kurg A, Salumets A and Velthut-Meikas A: Target prediction and validation of microRNAs expressed from FSHR and aromatase genes in human ovarian granulosa cells. Sci Rep. 10:23002020. View Article : Google Scholar : PubMed/NCBI | |
Song M: miRNAs-dependent regulation of synapse formation and function. Genes Genomics. 42:837–845. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Z and Li Z: miRNAs in synapse development and synaptic plasticity. Curr Opin Neurobiol. 45:24–31. 2017. View Article : Google Scholar : PubMed/NCBI | |
Siedlecki-Wullich D, Català-Solsona J, Fábregas C, Hernández I, Clarimon J, Lleó A, Boada M, Saura CA, Rodríguez-Álvarez J and Miñano-Molina AJ: Altered microRNAs related to synaptic function as potential plasma biomarkers for Alzheimer's disease. Alzheimers Res Ther. 11:462019. View Article : Google Scholar : PubMed/NCBI | |
Wei W, Wang ZY, Ma LN, Zhang TT, Cao Y and Li H: MicroRNAs in Alzheimer's disease: Function and potential applications as diagnostic biomarkers. Front Mol Neurosci. 13:1602020. View Article : Google Scholar : PubMed/NCBI | |
Angelucci F, Cechova K, Valis M, Kuca K, Zhang B and Hort J: MicroRNAs in Alzheimer's disease: Diagnostic markers or therapeutic agents? Front Pharmacol. 10:6652019. View Article : Google Scholar : PubMed/NCBI | |
Amakiri N, Kubosumi A, Tran J and Reddy PH: Amyloid beta and microRNAs in Alzheimer's disease. Front Neurosci. 13:4302019. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Han XH, Chen H, Zheng CX, Yang Y and Huang XL: Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro. J Huazhong Univ Sci Technolog Med Sci. 35:766–772. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Li G, Ma C, Chen Y, Wang J and Yang Y: Repetitive magnetic stimulation promotes the proliferation of neural progenitor cells via modulating the expression of miR-106b. Int J Mol Med. 42:3631–3639. 2018.PubMed/NCBI | |
Aydin-Abidin S, Trippe J, Funke K, Eysel UT and Benali A: High- and low-frequency repetitive transcranial magnetic stimulation differentially activates c-Fos and zif268 protein expression in the rat brain. Exp Brain Res. 188:249–261. 2008. View Article : Google Scholar : PubMed/NCBI | |
Perez FP, Maloney B, Chopra N, Morisaki JJ and Lahiri DK: Repeated electromagnetic field stimulation lowers amyloid-β peptide levels in primary human mixed brain tissue cultures. Sci Rep. 11:6212021. View Article : Google Scholar : PubMed/NCBI | |
Loo CK, McFarquhar TF and Mitchell PB: A review of the safety of repetitive transcranial magnetic stimulation as a clinical treatment for depression. Int J Neuropsychopharmacol. 11:131–147. 2008. View Article : Google Scholar : PubMed/NCBI | |
Najib U and Horvath J: Transcranial magnetic stimulation (TMS) safety considerations and recommendations. Neuromethods. 89:15–30. 2014. View Article : Google Scholar | |
Wassermann EM: Side effects of repetitive transcranial magnetic stimulation. Depress Anxiety. 12:124–129. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dhamne SC, Kothare RS, Yu C, Hsieh TH, Anastasio EM, Oberman L, Pascual-Leone A and Rotenberg A: A measure of acoustic noise generated from transcranial magnetic stimulation coils. Brain Stimul. 7:432–434. 2014. View Article : Google Scholar : PubMed/NCBI | |
Varone G, Hussain Z, Sheikh Z, Howard A, Boulila W, Mahmud M, Howard N, Morabito FC and Hussain A: Real-time artifacts reduction during TMS-EEG co-registration: A comprehensive review on technologies and procedures. Sensors (Basel). 21:6372021. View Article : Google Scholar : PubMed/NCBI | |
Duecker F and Sack AT: Rethinking the role of sham TMS. Front Psychol. 6:2102015. View Article : Google Scholar : PubMed/NCBI | |
Wassermann EM: Risk and safety of repetitive transcranial magnetic stimulation: Report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation, June 5–7, 1996. Electroencephalogr Clin Neurophysiol. 108:1–16. 1998. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Gerloff C, Classen J, Wassermann EM, Hallett M and Cohen LG: Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol. 105:415–421. 1997. View Article : Google Scholar : PubMed/NCBI | |
Rossi S, Hallett M, Rossini PM and Pascual-Leone A; Safety of TMS Consensus Group, : Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 120:2008–2039. 2009. View Article : Google Scholar : PubMed/NCBI | |
DeTure MA and Dickson DW: The neuropathological diagnosis of Alzheimer's disease. Mol Neurodegener. 14:322019. View Article : Google Scholar : PubMed/NCBI | |
Jellinger KA: Neuropathology of the Alzheimer's continuum: An update. Free Neuropathol. 1:32. 2020. | |
Speer AM, Kimbrell TA, Wassermann EM, D Repella J, Willis MW, Herscovitch P and Post RM: Opposite effects of high and low frequency rTMS on regional brain activity in depressed patients. Biol Psychiatry. 48:1133–1141. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ilmoniemi RJ, Mäki H, Saari J, Salvador R and Miranda PC: The frequency-dependent neuronal length constant in transcranial magnetic stimulation. Front Cell Neurosci. 10:1942016. View Article : Google Scholar : PubMed/NCBI | |
Freedberg M, Reeves JA, Hussain SJ, Zaghloul KA and Wassermann EM: Identifying site- and stimulation-specific TMS-evoked EEG potentials using a quantitative cosine similarity metric. PLoS One. 15:e02161852020. View Article : Google Scholar : PubMed/NCBI |