
Interactions of circRNAs with methylation: An important aspect of circRNA biogenesis and function (Review)
- Authors:
- Chunlei Zhang
- Han Cui
- Chuang Huang
- Feiyan Kong
- Qi Yang
- Pengcheng Miao
- Zhigang Cao
- Weijun Zhang
- Dehui Chang
-
Affiliations: Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China, The First Clinic, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China, Department of Urology, Beijing Fengtai Hospital of Integrated Traditional and Modern Medicine, Beijing 100072, P.R. China, Department of Urology, The 940 Hospital of Joint Logistics Support Force of Chinese People's Liberation Army, Lanzhou, Gansu 730050, P.R. China - Published online on: March 16, 2022 https://doi.org/10.3892/mmr.2022.12685
- Article Number: 169
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Razin A and Cedar H: DNA methylation and gene expression. Microbiol Rev. 55:451–458. 1991. View Article : Google Scholar : PubMed/NCBI | |
Covelo-Molares H, Bartosovic M and Vanacova S: RNA methylation in nuclear pre-mRNA processing. Wiley Interdiscip Rev RNA. 9:e14892018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H and He C: N(6)-methyladenosine modulates messenger RNA translation efficiency. Cell. 161:1388–1399. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ehrlich M: DNA hypermethylation in disease: Mechanisms and clinical relevance. Epigenetics. 14:1141–1163. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Hu Y, Zhou B, Bao Y, Li Z, Gong C, Yang H, Wang S and Xiao Y: The role of m6A modification in physiology and disease. Cell Death Dis. 11:9602020. View Article : Google Scholar : PubMed/NCBI | |
Chen LL and Yang L: Regulation of circRNA biogenesis. RNA Biol. 12:381–388. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jones PA: Functions of DNA methylation: Islands, start sites, gene bodies and beyond. Nat Rev Genet. 13:484–492. 2012. View Article : Google Scholar : PubMed/NCBI | |
Breiling A and Lyko F: Epigenetic regulatory functions of DNA modifications: 5-methylcytosine and beyond. Epigenetics Chromatin. 8:242015. View Article : Google Scholar : PubMed/NCBI | |
Sobiak B and Leśniak W: The effect of single CpG demethylation on the pattern of DNA-protein binding. Int J Mol Sci. 20:9142019. View Article : Google Scholar : PubMed/NCBI | |
Cedar H and Bergman Y: Programming of DNA methylation patterns. Ann Rev Biochem. 81:97–117. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI | |
Goll MG and Bestor TH: Eukaryotic cytosine methyltransferases. Ann Rev Biochem. 74:481–514. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gibbons RJ, McDowell TL, Raman S, O'Rourke DM, Garrick D, Ayyub H and Higgs DR: Mutations in ATRX, encoding a SWI/SNF-like protein, cause diverse changes in the pattern of DNA methylation. Nat Genet. 24:368–371. 2000. View Article : Google Scholar : PubMed/NCBI | |
Shamma A, Suzuki M, Hayashi N, Kobayashi M, Sasaki N, Nishiuchi T, Doki Y, Okamoto T, Kohno S, Muranaka H, et al: ATM mediates pRB function to control DNMT1 protein stability and DNA methylation. Mol Cell Biol. 33:3113–3124. 2013. View Article : Google Scholar : PubMed/NCBI | |
Bhutani N, Burns DM and Blau HM: DNA demethylation dynamics. Cell. 146:866–872. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dean W: Pathways of DNA demethylation. Adv Exp Med Biol. 945:247–274. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bochtler M, Kolano A and Xu GL: DNA demethylation pathways: Additional players and regulators. Bioessays. 39:1–13. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature. 393:386–389. 1998. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, He L, Wan Y and Song J: H3K9me-enhanced DNA hypermethylation of the p16INK4a gene: An epigenetic signature for spontaneous transformation of rat mesenchymal stem cells. Stem Cells Dev. 22:256–267. 2013. View Article : Google Scholar : PubMed/NCBI | |
Gujar H, Weisenberger DJ and Liang G: The roles of Human DNA methyltransferases and their isoforms in shaping the epigenome. Genes (Basel). 10:1722019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Zhang Y: Role of mammalian DNA methyltransferases in development. Ann Rev Biochem. 89:135–158. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang FL, Yang Y, Liu ZY, Qin Y and Jin T: Correlation between methylation of the p16 promoter and cervical cancer incidence. Eur Rev Med Pharmacol Sci. 21:2351–2356. 2017.PubMed/NCBI | |
Allameh A, Moazeni-Roodi A, Harirchi I, Ravanshad M, Motiee-Langroudi M, Garajei A, Hamidavi A and Mesbah-Namin SA: Promoter DNA methylation and mRNA expression level of p16 gene in oral squamous cell carcinoma: Correlation with Clinicopathological characteristics. Pathol Oncol Res. 25:1535–1543. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang T, Zhang H, Wang X, Liu X, Huang Q and Li L: Clinical significance of P16 gene methylation in lung cancer. Adv Exp Med Biol. 1255:133–142. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huang H, Weng H, Deng X and Chen J: RNA modifications in cancer: Functions, mechanisms, and therapeutic implications. Ann Rev Cancer Biol. 4:221–240. 2020. View Article : Google Scholar | |
Karthiya R and Khandelia P: m6A RNA methylation: Ramifications for gene expression and human health. Mol Biotechnol. 62:467–484. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zaccara S, Ries RJ and Jaffrey SR: Reading, writing and erasing mRNA methylation. Nat Rev Mol Cell Biol. 20:608–624. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Sun YZ, Liu H, Zhang L, Li JQ and Meng J: RNA methylation and diseases: Experimental results, databases, Web servers and computational models. Brief Bioinform. 20:896–917. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lan Q, Liu PY, Haase J, Bell JL, Hüttelmaier S and Liu T: The critical role of RNA m6A methylation in cancer. Cancer Res. 79:1285–1292. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ferreira HJ, Davalos V, de Moura MC, Soler M, Perez-Salvia M, Bueno-Costa A, Setien F, Moran S, Villanueva A and Esteller M: Circular RNA CpG island hypermethylation-associated silencing in human cancer. Oncotarget. 9:29208–29219. 2018. View Article : Google Scholar : PubMed/NCBI | |
Su H, Wang G, Wu L, Ma X, Ying K and Zhang R: Transcriptome-wide map of m6A circRNAs identified in a rat model of hypoxia mediated pulmonary hypertension. BMC Genomics. 21:392020. View Article : Google Scholar : PubMed/NCBI | |
Li P, Yu H, Zhang G, Kang L, Qin B, Cao Y, Luo J, Chen X, Wang Y, Qin M, et al: Identification and characterization of N6-methyladenosine circRNAs and methyltransferases in the lens epithelium cells from age-related cataract. Invest Ophthalmol Vis Sci. 61:132020. View Article : Google Scholar | |
Zhou M, Li H, Chen K, Ding W, Yang C and Wang X: CircSKA3 downregulates miR-1 through methylation in glioblastoma to promote cancer cell proliferation. Cancer Manag Res. 13:509–514. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang J, Geng X, Tu J, Gao H, Li L, Zhou X, Wu H, Jing J, Pan W and Mou Y: Circular RNA expression profile and m6A modification analysis in poorly differentiated adenocarcinoma of the stomach. Epigenomics. 12:1027–1040. 2020. View Article : Google Scholar : PubMed/NCBI | |
Niu X, Xu J, Liu J, Chen L, Qiao X and Zhong M: Landscape of N6-methyladenosine modification patterns in human ameloblastoma. Front Oncol. 10:5564972020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N6-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roundtree IA, Luo GZ, Zhang Z, Wang X, Zhou T, Cui Y, Sha J, Huang X, Guerrero L, Xie P, et al: YTHDC1 mediates nuclear export of N6-methyladenosine methylated mRNAs. Elife. 6:e313112017. View Article : Google Scholar : PubMed/NCBI | |
Zhou C, Molinie B, Daneshvar K, Pondick JV, Wang J, Van Wittenberghe N, Xing Y, Giallourakis CC and Mullen AC: Genome-wide maps of m6A circRNAs identify widespread and cell-type-specific methylation patterns that are distinct from mRNAs. Cell Rep. 20:2262–2276. 2017. View Article : Google Scholar : PubMed/NCBI | |
Di Timoteo G, Dattilo D, Centrón-Broco A, Colantoni A, Guarnacci M, Rossi F, Incarnato D, Oliviero S, Fatica A, Morlando M and Bozzoni I: Modulation of circRNA Metabolism by m6A modification. Cell Rep. 31:1076412020. View Article : Google Scholar : PubMed/NCBI | |
Chen RX, Chen X, Xia LP, Zhang JX, Pan ZZ, Ma XD, Han K, Chen JW, Judde JG, Deas O, et al: N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat Commun. 10:46952019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, et al: N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 505:117–120. 2014. View Article : Google Scholar : PubMed/NCBI | |
Xu J, Wan Z, Tang M, Lin Z, Jiang S, Ji L, Gorshkov K, Mao Q, Xia S, Cen D, et al: N6-methyladenosine-modified circRNA-SORE sustains sorafenib resistance in hepatocellular carcinoma by regulating β-catenin signaling. Mol Cancer. 19:1632020. View Article : Google Scholar : PubMed/NCBI | |
Coots RA, Liu XM, Mao Y, Dong L, Zhou J, Wan J, Zhang X and Qian SB: m6A Facilitates eIF4F-independent mRNA translation. Mol Cell. 68:504–514.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li A, Chen YS, Ping XL, Yang X, Xiao W, Yang Y, Sun HY, Zhu Q, Baidya P, Wang X, et al: Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res. 27:444–447. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C and He C: YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res. 27:315–328. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar : PubMed/NCBI | |
Jakobi T, Siede D, Eschenbach J, Heumüller AW, Busch M, Nietsch R, Meder B, Most P, Dimmeler S, Backs J, et al: Deep characterization of circular RNAs from human cardiovascular cell models and cardiac tissue. Cells. 9:16162020. View Article : Google Scholar : PubMed/NCBI | |
Kmietczyk V, Riechert E, Kalinski L, Boileau E, Malovrh E, Malone B, Gorska A, Hofmann C, Varma E, Jürgensen L, et al: m6A-mRNA methylation regulates cardiac gene expression and cellular growth. Life Sci Alliance. 2:e2018002332019. View Article : Google Scholar : PubMed/NCBI | |
Du H, Zhao Y, He J, Zhang Y, Xi H, Liu M, Ma J and Wu L: YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat Commun. 7:126262016. View Article : Google Scholar : PubMed/NCBI | |
Park OH, Ha H, Lee Y, Boo SH, Kwon DH, Song HK and Kim YK: Endoribonucleolytic cleavage of m6A-containing RNAs by RNase P/MRP complex. Mol Cell. 74:494–507.e8. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Choe J, Park OH and Kim YK: Molecular mechanisms driving mRNA degradation by m6A modification. Trends Genet. 36:177–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Yuan W, Zhou Q, Shao B, Guo Y, Wang W, Yang S, Guo Y, Zhao L, Dang Q, et al: N6-methyladenosine-induced circ1662 promotes metastasis of colorectal cancer by accelerating YAP1 nuclear localization. Theranostics. 11:4298–4315. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Lan T, Li H, Xu L, Chen X, Liao H, Chen X, Du J, Cai Y, Wang J, et al: Circular RNA circDLC1 inhibits MMP1-mediated liver cancer progression via interaction with HuR. Theranostics. 11:1396–1411. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rao X, Lai L, Li X, Wang L, Li A and Yang Q: N6-methyladenosine modification of circular RNA circ-ARL3 facilitates Hepatitis B virus-associated hepatocellular carcinoma via sponging miR-1305. IUBMB Life. 73:408–417. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Lee EE, Kim J, Yang R, Chamseddin B, Ni C, Gusho E, Xie Y, Chiang CM, Buszczak M, et al: Transforming activity of an oncoprotein-encoding circular RNA from human papillomavirus. Nat Commun. 10:23002019. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Ling K, Zhu Y, Deng L, Li Y and Liang Z: circ0000069 promotes cervical cancer cell proliferation and migration by inhibiting miR-4426. Biochem Biophys Res Commun. 551:114–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li B, Zhu L, Lu C, Wang C, Wang H, Jin H, Ma X, Cheng Z, Yu C, Wang S, et al: circNDUFB2 inhibits non-small cell lung cancer progression via destabilizing IGF2BPs and activating anti-tumor immunity. Nat Commun. 12:2952021. View Article : Google Scholar : PubMed/NCBI | |
Nan A, Chen L, Zhang N, Jia Y, Li X, Zhou H, Ling Y, Wang Z, Yang C, Liu S and Jiang Y: Circular RNA circNOL10 inhibits lung cancer development by promoting SCLM1-mediated transcriptional regulation of the humanin polypeptide family. Adv Sci (Weinh). 6:18006542019. View Article : Google Scholar : PubMed/NCBI | |
Marur S and Forastiere AA: Head and neck squamous cell carcinoma: Update on epidemiology, diagnosis, and treatment. Mayo Clinic Proc. 91:386–396. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu P, Fang X, Liu Y, Tang Y, Wang W, Li X and Fan Y: N6-methyladenosine modification of circCUX1 confers radioresistance of hypopharyngeal squamous cell carcinoma through caspase1 pathway. Cell Death Dis. 12:2982021. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Yang HY, Dai XY, Zhang X, Huang YZ, Shi L, Wei JF and Ding Q: CircMETTL3, upregulated in a m6A-dependent manner, promotes breast cancer progression. Int J Biol Sci. 17:1178–1190. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Hu X, Huang M, Liu J, Gu Y, Ma L, Zhou Q and Cao X: Mettl3-mediated mRNA m6A methylation promotes dendritic cell activation. Nat Commun. 10:18982019. View Article : Google Scholar : PubMed/NCBI | |
Chen YG, Chen R, Ahmad S, Verma R, Kasturi SP, Amaya L, Broughton JP, Kim J, Cadena C, Pulendran B, et al: N6-methyladenosine modification controls circular RNA immunity. Mol Cell. 76:96–109.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Yan R, Yao H, Duan L, Sun M, Xue Z and Jia Y: IFN regulatory Factor 1 mediates macrophage pyroptosis induced by oxidized low-density lipoprotein in patients with acute coronary syndrome. Mediators Inflamm. 2019:29171282019. View Article : Google Scholar : PubMed/NCBI | |
Guo M, Yan R, Ji Q, Yao H, Sun M, Duan L, Xue Z and Jia Y: IFN regulatory Factor-1 induced macrophage pyroptosis by modulating m6A modification of circ_0029589 in patients with acute coronary syndrome. Int Immunopharmacol. 86:1068002020. View Article : Google Scholar : PubMed/NCBI | |
Li X, Tian G and Wu J: Novel circGFRα1 promotes self-renewal of female germline stem cells mediated by m6A Writer METTL14. Front Cell Dev Biol. 9:6404022021. View Article : Google Scholar : PubMed/NCBI | |
Tang C, Xie Y, Yu T, Liu N, Wang Z, Woolsey RJ, Tang Y, Zhang X, Qin W, Zhang Y, et al: m6A-dependent biogenesis of circular RNAs in male germ cells. Cell Res. 30:211–228. 2020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Zhang Q, Zheng Q, Yu X and Guo W: Distinct 5-methylcytosine profiles of circular RNA in human hepatocellular carcinoma. Am J Transl Res. 12:5719–5729. 2020.PubMed/NCBI | |
Zhao Z, Song J, Tang B, Fang S, Zhang D, Zheng L, Wu F, Gao Y, Chen C, Hu X, et al: CircSOD2 induced epigenetic alteration drives hepatocellular carcinoma progression through activating JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 39:2592020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Yu Y, Huang Z, Kong Y, Hu X, Xiao W, Quan J and Fan X: circRNA-5692 inhibits the progression of hepatocellular carcinoma by sponging miR-328-5p to enhance DAB2IP expression. Cell Death Dis. 10:9002019. View Article : Google Scholar : PubMed/NCBI | |
An J, Rao A and Ko M: TET family dioxygenases and DNA demethylation in stem cells and cancers. Exp Mol Med. 49:e3232017. View Article : Google Scholar : PubMed/NCBI | |
Pei YF, Tao R, Li JF, Su LP, Yu BQ, Wu XY, Yan M, Gu QL, Zhu ZG and Liu BY: TET1 inhibits gastric cancer growth and metastasis by PTEN demethylation and re-expression. Oncotarget. 7:31322–31335. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Zhang Y, Mu J, He X, Shao B, Zhou D, Peng W, Tang J, Jiang Y, Ren G and Xiang T: TET1 exerts its anti-tumor functions via demethylating DACT2 and SFRP2 to antagonize Wnt/β-catenin signaling pathway in nasopharyngeal carcinoma cells. Clin Epigenetics. 10:1032018. View Article : Google Scholar : PubMed/NCBI | |
Zhang PF, Wei CY, Huang XY, Peng R, Yang X, Lu JC, Zhang C, Gao C, Cai JB, Gao PT, et al: Circular RNA circTRIM33-12 acts as the sponge of MicroRNA-191 to suppress hepatocellular carcinoma progression. Mol Cancer. 18:1052019. View Article : Google Scholar : PubMed/NCBI | |
Dong ZR, Ke AW, Li T, Cai JB, Yang YF, Zhou W, Shi GM and Fan J: CircMEMO1 modulates the promoter methylation and expression of TCF21 to regulate hepatocellular carcinoma progression and sorafenib treatment sensitivity. Mol Cancer. 20:752021. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Gao J, Zhou S, Li Y, Wang Y, Jin L, Li J, Liu B, Zhang B, Han S, et al: A novel circular RNA circ-LRIG3 facilitates the malignant progression of hepatocellular carcinoma by modulating the EZH2/STAT3 signaling. J Exp Clin Cancer Res. 39:2522020. View Article : Google Scholar : PubMed/NCBI | |
Chi F, Cao Y and Chen Y: Analysis and validation of circRNA-miRNA network in regulating m6A RNA methylation modulators reveals CircMAP2K4/miR-139-5p/YTHDF1 axis involving the proliferation of hepatocellular carcinoma. Front Oncol. 11:5605062021. View Article : Google Scholar : PubMed/NCBI | |
Miao B, Bauer AS, Hufnagel K, Wu Y, Trajkovic-Arsic M, Pirona AC, Giese N, Taipale J, Siveke JT, Hoheisel JD and Lueong S: The transcription factor FLI1 promotes cancer progression by affecting cell cycle regulation. Int J Cancer. 147:189–201. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar : PubMed/NCBI | |
Xie F, Huang C, Liu F, Zhang H, Xiao X, Sun J, Zhang X and Jiang G: CircPTPRA blocks the recognition of RNA N6-methyladenosine through interacting with IGF2BP1 to suppress bladder cancer progression. Mol Cancer. 20:682021. View Article : Google Scholar : PubMed/NCBI | |
Huang ZM, Wang H and Ji ZG: circRNA-100284 activates aurora kinase B by inducing methylation of HSP70 via microRNA-217 to promote proliferation of bladder cancer cells. J Cancer Res Clin Oncol. 147:703–712. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mo WL, Deng LJ, Cheng Y, Yu WJ, Yang YH and Gu WD: Circular RNA hsa_circ_0072309 promotes tumorigenesis and invasion by regulating the miR-607/FTO axis in non-small cell lung carcinoma. Aging. 13:11629–11645. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Zhu H and Hu J: circRAB11FIP1 promoted autophagy flux of ovarian cancer through DSC1 and miR-129. Cell Death Dis. 12:2192021. View Article : Google Scholar : PubMed/NCBI | |
Lin J, Zhang Y, Zeng X, Xue C and Lin X: circRNA circRIMS acts as a MicroRNA sponge to promote gastric cancer metastasis. ACS Omega. 5:23237–23246. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wan H, Yuan B, Jiang K, Wei J, Feng X, Sun B and Wang F: circRNA circRIMS is overexpressed in esophageal squamous cell carcinoma and downregulate miR-613 through methylation to increase cell proliferation. Cancer Manag Res. 13:4587–4595. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang P, Yun K and Zhang R: circRNA circ-ATAD1 is downregulated in endometrial cancer and suppresses cell invasion and migration by downregulating miR-10a through methylation. Mamm Genome. 32:488–494. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wu W, Zhou J, Wu Y, Tang X and Zhu W: Overexpression of circRNA circFAT1 in endometrial cancer cells increases their stemness by upregulating miR-21 through methylation. Cancer Biother Radiopharm. Jul 27–2021.(Epub ahead of print). doi: 10.1089/cbr.2020.4506. View Article : Google Scholar | |
Du WW, Yang W, Li X, Fang L, Wu N, Li F, Chen Y, He Q, Liu E, Yang Z, et al: The circular RNA circSKA3 binds integrin β1 to induce invadopodium formation enhancing breast cancer invasion. Mol Ther. 28:1287–1298. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, Gupta S, Yang W and Yang BB: The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 25:2062–2074. 2017. View Article : Google Scholar : PubMed/NCBI | |
Domingues RG and Hepworth MR: Immunoregulatory sensory circuits in group 3 innate lymphoid cell (ILC3) function and tissue homeostasis. Front Immunol. 11:1162020. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Liu N, Zhu X, Yang L, Ye B, Li H, Zhu P, Lu T, Tian Y and Fan Z: Circular RNA circZbtb20 maintains ILC3 homeostasis and function via Alkbh5-dependent m6A demethylation of Nr4a1 mRNA. Cell Mol Immunol. 18:1412–1424. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhang C, Wu Z, Chen Y and Shi W: CircIBTK inhibits DNA demethylation and activation of AKT signaling pathway via miR-29b in peripheral blood mononuclear cells in systemic lupus erythematosus. Arthritis Res Ther. 20:1182018. View Article : Google Scholar : PubMed/NCBI | |
Zhao M, Sun Y, Gao F, Wu X, Tang J, Yin H, Luo Y, Richardson B and Lu Q: Epigenetics and SLE: RFX1 downregulation causes CD11a and CD70 overexpression by altering epigenetic modifications in lupus CD4+ T cells. J Autoimmun. 35:58–69. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang X, Chen Y, Wu Z, Zhang C and Shi W: The down-regulation of hsa_circ_0012919, the sponge for miR-125a-3p, contributes to DNA methylation of CD11a and CD70 in CD4+ T cells of systemic lupus erythematous. Clin Sci (Lond). 132:2285–2298. 2018. View Article : Google Scholar : PubMed/NCBI | |
Corsetti G, Chen-Scarabelli C, Romano C, Pasini E, Dioguardi FS, Onorati F, Knight R, Patel H, Saravolatz L, Faggian G and Scarabelli TM: Autophagy and Oncosis/Necroptosis are enhanced in cardiomyocytes from heart failure patients. Med Sci Monit Basic Res. 25:33–44. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhou LY, Zhai M, Huang Y, Xu S, An T, Wang YH, Zhang RC, Liu CY, Dong YH, Wang M, et al: The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway. Cell Death Differ. 26:1299–1315. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang R, Zhang Y, Bai Y, Han B, Ju M, Chen B, Yang L, Wang Y, Zhang H, Zhang H, et al: N6-Methyladenosine modification of fatty acid amide hydrolase messenger RNA in circular RNA STAG1-regulated astrocyte dysfunction and depressive-like behaviors. Biol Psychiatry. 88:392–404. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Ge J and Lu X: CircFADS2 is downregulated in osteoarthritis and suppresses LPS-induced apoptosis of chondrocytes by regulating miR-195-5p methylation. Arch Gerontol Geriatr. 96:1044772021. View Article : Google Scholar : PubMed/NCBI | |
Tang Z, Li X, Zhao J, Qian F, Feng C, Li Y, Zhang J, Jiang Y, Yang Y, Wang Q and Li C: TRCirc: A resource for transcriptional regulation information of circRNAs. Brief Bioinform. 20:2327–2333. 2019. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Ling Y, Zhang S, Xia Q, Cao R, Fan X, Fang Z, Wang Z and Zhang G: TransCirc: An interactive database for translatable circular RNAs based on multi-omics evidence. Nucleic Acids Res. 49:D236–D242. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z and Ren J: m6AVar: A database of functional variants involved in m6A modification. Nucleic Acids Res. 46:D139–D145. 2018. View Article : Google Scholar : PubMed/NCBI | |
Luo X, Li H, Liang J, Zhao Q, Xie Y, Ren J and Zuo Z: RMVar: An updated database of functional variants involved in RNA modifications. Nucleic Acids Res. 49:D1405–D1412. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Zeng P, Li YH, Zhang Z and Cui Q: SRAMP: Prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 44:e912016. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Flores MA, Meng J, Zhang L, Zhao X, Rao MK, Chen Y and Huang Y: MeT-DB: A database of transcriptome methylation in mammalian cells. Nucleic Acids Res. 43:(Database Issue). D197–D203. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Wang Q, Shen J, Yang BB and Ding X: Circbank: A comprehensive database for circRNA with standard nomenclature. RNA Biol. 16:899–905. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tate JG, Bamford S, Jubb HC, Sondka Z, Beare DM, Bindal N, Boutselakis H, Cole CG, Creatore C, Dawson E, et al: COSMIC: The catalogue of somatic mutations in cancer. Nucleic Acids Res. 47:D941–D947. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N 6-methyladenosine (m 6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar : PubMed/NCBI | |
Wang Z, Zhang Y, Dai K, Liang Z, Zhu M, Zhang M, Pan J, Hu X, Zhang X, Xue R, et al: circEgg regulates histone H3K9me3 by sponging bmo-miR-3391-5p and encoding circEgg-P122 protein in the silkworm, Bombyx mori. Insect Biochem Mol Biol. 124:1034302020. View Article : Google Scholar : PubMed/NCBI | |
Yu A, Li M, Xing C, Chen D, Wang C, Xiao Q, Zhang L, Pang Y, Wang Y, Zu X and Liu L: A Comprehensive analysis identified the key differentially expressed circular ribonucleic acids and methylation-related function in pheochromocytomas and paragangliomas. Front Genet. 11:152020. View Article : Google Scholar : PubMed/NCBI | |
Mehta SL, Dempsey RJ and Vemuganti R: Role of circular RNAs in brain development and CNS diseases. Prog Neurobiol. 186:1017462020. View Article : Google Scholar : PubMed/NCBI | |
Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI |