1
|
Francis JM, Beck LH Jr and Salant DJ:
Membranous nephropathy: A journey from bench to bedside. Am J
Kidney Dis. 68:138–147. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Cai Q and Hendricks AR: Membranous
nephropathy: A ten-year journey of discoveries. Semin Diagn Pathol.
37:116–120. 2020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Tang L, Yao J, Kong X, Sun Q, Wang Z,
Zhang Y, Wang P, Liu Y, Li W, Cui M, et al: Increasing prevalence
of membranous nephropathy in patients with primary glomerular
diseases: A cross-sectional study in China. Nephrology (Carlton).
22:168–173. 2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Cattran DC: Idiopathic membranous
glomerulonephritis. Kidney Int. 59:1983–1994. 2001. View Article : Google Scholar : PubMed/NCBI
|
5
|
Cattran D: Management of membranous
nephropathy: When and what for treatment. J Am Soc Nephrol.
16:1188–1194. 2005. View Article : Google Scholar : PubMed/NCBI
|
6
|
Sekirov I, Russell SL, Antunes LC and
Finlay BB: Gut microbiota in health and disease. Physiol Rev.
90:859–904. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Sharma S and Tripathi P: Gut microbiome
and type 2 diabetes: Where we are and where to go? J Nutr Biochem.
63:101–108. 2019. View Article : Google Scholar : PubMed/NCBI
|
8
|
Lin C, Cai X, Zhang J, Wang W, Sheng Q,
Hua H and Zhou X: Role of gut microbiota in the development and
treatment of colorectal cancer. Digestion. 100:72–78. 2019.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Yu W, Shang J, Guo R, Zhang F, Zhang W,
Zhang Y, Wu F, Ren H, Liu C, Xiao J and Zhao Z: The gut microbiome
in differential diagnosis of diabetic kidney disease and membranous
nephropathy. Ren Fail. 42:1100–1110. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pflughoeft KJ and Versalovic J: Human
microbiome in health and disease. Annu Rev Pathol. 7:99–122. 2012.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Duan X, Chen X, Gupta M, Seriwatanachai D,
Xue H, Xiong Q, Xu T, Li D, Mo A, Tang X, et al: Salivary
microbiome in patients undergoing hemodialysis and its associations
with the duration of the dialysis. BMC Nephrol. 21:4142020.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Luan S, Zhang S, Zhong H, Zhang Y, Wei X,
Lin R, Li C, Zeng P, Wang X, Li W and Gao H: Salivary microbial
analysis of Chinese patients with immunoglobulin A nephropathy. Mol
Med Rep. 20:2219–2226. 2019.PubMed/NCBI
|
13
|
Ehrenreich T and Churg J: Pathology of
membranous nephropathy. Pathol Ann. 145–186. 1968.
|
14
|
Bolger AM, Lohse M and Usadel B:
Trimmomatic: A flexible trimmer for Illumina sequence data.
Bioinformatics. 30:2114–2120. 2014. View Article : Google Scholar : PubMed/NCBI
|
15
|
Schloss PD, Westcott SL, Ryabin T, Hall
JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH,
Robinson CJ, et al: Introducing mothur: Open-source,
platform-independent, community-supported software for describing
and comparing microbial communities. Appl Environ Microbiol.
75:7537–7541. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Magoc T and Salzberg SL: FLASH: Fast
length adjustment of short reads to improve genome assemblies.
Bioinformatics. 27:2957–2963. 2011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Edgar R: Taxonomy annotation and guide
tree errors in 16S rRNA databases. PeerJ. 6:e50302018. View Article : Google Scholar : PubMed/NCBI
|
18
|
Edgar RC: UPARSE: Highly accurate OTU
sequences from microbial amplicon reads. Nat Methods. 10:996–998.
2013. View Article : Google Scholar : PubMed/NCBI
|
19
|
Caporaso JG, Kuczynski J, Stombaugh J,
Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich
JK, Gordon JI, et al: QIIME allows analysis of high-throughput
community sequencing data. Nat Methods. 7:335–336. 2010. View Article : Google Scholar : PubMed/NCBI
|
20
|
Edgar RC, Haas BJ, Clemente JC, Quince C
and Knight R: UCHIME improves sensitivity and speed of chimera
detection. Bioinformatics. 27:2194–2200. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Escapa IF, Chen T, Huang Y, Gajare P,
Dewhirst FE and Lemon KP: New insights into human nostril
microbiome from the expanded human oral microbiome database
(eHOMD): A resource for the microbiome of the human aerodigestive
tract. mSystems. 3:e00187–18. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
R Core Team: R, . A language and
environment for statistical computing (V 4.1.1). R Foundation for
Statistical Computing; Vienna: 2021, http://www.R-project.org/
|
23
|
Langille MG, Zaneveld J, Caporaso JG,
McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega
Thurber RL, Knight R, et al: Predictive functional profiling of
microbial communities using 16S rRNA marker gene sequences. Nat
Biotechnol. 31:814–821. 2013. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Segata N, Izard J, Waldron L, Gevers D,
Miropolsky L, Garrett WS and Huttenhower C: Metagenomic biomarker
discovery and explanation. Genome Biol. 12:R602011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Wang J, Gu X, Yang J, Wei Y and Zhao Y:
Gut microbiota dysbiosis and increased plasma LPS and TMAO levels
in patients with preeclampsia. Front Cell Infect Microbiol.
9:4092019. View Article : Google Scholar : PubMed/NCBI
|
26
|
Fu M, Zhang X, Liang Y, Lin S, Qian W and
Fan S: Alterations in vaginal microbiota and associated metabolome
in women with recurrent implantation failure. mBio. 11:e03242–19.
2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Riquelme E, Zhang Y, Zhang L, Montiel M,
Zoltan M, Dong W, Quesada P, Sahin I, Chandra V, San Lucas A, et
al: Tumor microbiome diversity and composition influence pancreatic
cancer outcomes. Cell. 178:795–806.e12. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Kumar PS, Griffen AL, Moeschberger ML and
Leys EJ: Identification of candidate periodontal pathogens and
beneficial species by quantitative 16S clonal analysis. J Clin
Microbiol. 43:3944–3955. 2005. View Article : Google Scholar : PubMed/NCBI
|
29
|
Piccolo M, De Angelis M, Lauriero G,
Montemurno E, Di Cagno R, Gesualdo L and Gobbetti M: Salivary
microbiota associated with immunoglobulin a nephropathy. Microb
Ecol. 70:557–565. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Kanehisa M, Furumichi M, Sato Y,
Ishiguro-Watanabe M and Tanabe M: KEGG: Integrating viruses and
cellular organisms. Nucleic Acids Res. 49:D545–D551. 2021.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Levey AS, Becker C and Inker LA:
Glomerular filtration rate and albuminuria for detection and
staging of acute and chronic kidney disease in adults: A systematic
review. JAMA. 313:837–846. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
de Azevedo FVA, Maia DG, de Carvalho JF
and Rodrigues CEM: Renal involvement in antiphospholipid syndrome.
Rheumatol Int. 38:1777–1789. 2018. View Article : Google Scholar : PubMed/NCBI
|
33
|
Turrent-Carriles A, Herrera-Felix JP and
Amigo MC: Renal involvement in antiphospholipid syndrome. Front
Immunol. 9:10082018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Wang L, Xing Y, Yu X, Ming J, Liu X, Li X,
Fu J, Zhou J, Gao B, Hu D, et al: Greater macrovascular and
microvascular morbidity from type 2 diabetes in northern compared
with southern China: A cross-sectional study. J Diabetes Investig.
11:1285–1294. 2020. View Article : Google Scholar : PubMed/NCBI
|