1
|
De Kouchkovsky I and Abdul-Hay M: Acute
myeloid leukemia: A comprehensive review and 2016 update. Blood
Cancer J. 6:e4412016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Thol F and Ganser A: Treatment of relapsed
acute myeloid leukemia. Curr Treat Options Oncol. 21:662020.
View Article : Google Scholar : PubMed/NCBI
|
3
|
Čolović N, Denčić-Fekete M, Peruničić M
and Jurišić V: Clinical characteristics and treatment outcome of
hypocellular acute myeloid leukemia based on WHO classification.
Indian J Hematol Blood Transfus. 36:59–63. 2020. View Article : Google Scholar : PubMed/NCBI
|
4
|
Feng L, Li Y, Li Y, Jiang Y, Wang N, Yuan
D and Fan J: Whole exome sequencing detects CHST3 mutation in
patient with acute promyelocytic leukemia: A case report. Medicine
(Baltimore). 97:e122142018. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chen X and Cherian S: Acute myeloid
leukemia immunophenotyping by flow cytometric analysis. Clin Lab
Med. 37:753–769. 2017. View Article : Google Scholar : PubMed/NCBI
|
6
|
Gorczyca W, Sun ZY, Cronin W, Li X, Mau S
and Tugulea S: Immunophenotypic pattern of myeloid populations by
flow cytometry analysis. Methods Cell Biol. 103:221–266. 2011.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Matsuo T, Kuriyama K, Miyazaki Y, Yoshida
S, Tomonaga M, Emi N, Kobayashi T, Miyawaki S, Matsushima T,
Shinagawa K, et al: Japan adult leukemia study group. The
percentage of myeloperoxidase-positive blast cells is a strong
independent prognostic factor in acute myeloid leukemia, even in
the patients with normal karyotype. Leukemia. 17:1538–1543. 2003.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lee YJ, Huang YT, Kim SJ, Maloy M, Tamari
R, Giralt SA, Papadopoulos EB, Jakubowski AA and Papanicolaou GA:
Adenovirus viremia in adult CD34(+) selected hematopoietic cell
transplant recipients: Low incidence and high clinical impact. Biol
Blood Marrow Transplant. 22:174–178. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang JJ, Park TS and Wan TS: Recurrent
cytogenetic abnormalities in acute myeloid leukemia. Methods Mol
Biol. 1541:223–245. 2017. View Article : Google Scholar : PubMed/NCBI
|
10
|
Kishtagari A, Levine RL and Viny AD:
Driver mutations in acute myeloid leukemia. Curr Opin Hematol.
27:49–57. 2020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Jurisić V, Pavlović S, Colović N,
Djordjevic V, Bunjevacki V, Janković G and Colović M: Single
institute study of FLT3 mutation in acute myeloid leukemia with
near tetraploidy in Serbia. J Genet. 88:149–152. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Jurisic V, Radenkovic S and Konjevic G:
The actual role of LDH as tumor marker, biochemical and clinical
aspects. Adv Exp Med Biol. 867:115–124. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Kavianpour M, Ahmadzadeh A, Shahrabi S and
Saki N: Significance of oncogenes and tumor suppressor genes in AML
prognosis. Tumour Biol. 37:10041–10052. 2016. View Article : Google Scholar : PubMed/NCBI
|
14
|
Liberti MV and Locasale JW: The warburg
effect: How does it benefit cancer cells? Trends Biochem Sci.
41:211–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Vaupel P, Schmidberger H and Mayer A: The
warburg effect: Essential part of metabolic reprogramming and
central contributor to cancer progression. Int J Radiat Biol.
95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Xu XD, Shao SX, Jiang HP, Cao YW, Wang YH,
Yang XC, Wang YL, Wang XS and Niu HT: Warburg effect or reverse
warburg effect? A review of cancer metabolism. Oncol Res Treat.
38:117–122. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Baccelli I, Gareau Y, Lehnertz B, Gingras
S, Spinella JF, Corneau S, Mayotte N, Girard S, Frechette M,
Blouin-Chagnon V, et al: Mubritinib targets the electron transport
chain complex I and reveals the landscape of OXPHOS dependency in
acute myeloid leukemia. Cancer Cell. 36:84–99. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Herst PM and Berridge MV: Cell surface
oxygen consumption: A major contributor to cellular oxygen
consumption in glycolytic cancer cell lines. Biochim Biophys Acta.
1767:170–177. 2007. View Article : Google Scholar : PubMed/NCBI
|
19
|
Molina JR, Sun Y, Protopopova M, Gera S,
Bandi M, Bristow C, McAfoos T, Morlacchi P, Ackroyd J, Agip ANA, et
al: An inhibitor of oxidative phosphorylation exploits cancer
vulnerability. Nat Med. 24:1036–1046. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Toth A, Meyrat A, Stoldt S, Santiago R,
Wenzel D, Jakobs S, von Ballmoos C and Ott M: Kinetic coupling of
the respiratory chain with ATP synthase, but not proton gradients,
drives ATP production in cristae membranes. Proc Natl Acad Sci USA.
117:2412–2421. 2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li T and Le A: Glutamine metabolism in
cancer. Adv Exp Med Biol. 1063:13–32. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
van der Bliek AM, Sedensky MM and Morgan
PG: Cell biology of the mitochondrion. Genetics. 207:843–871. 2017.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Hardeland R: Melatonin and the electron
transport chain. Cell Mol Life Sci. 74:3883–3896. 2017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Tatarková Z, Kuka S, Račay P, Lehotský J,
Dobrota D, Mištuna D and Kaplán P: Effects of aging on activities
of mitochondrial electron transport chain complexes and oxidative
damage in rat heart. Physiol Res. 60:281–289. 2011. View Article : Google Scholar : PubMed/NCBI
|
25
|
Ji Y, Liang M, Zhang J, Zhang M, Zhu J,
Meng X, Zhang S, Gao M, Zhao F, Wei QP, et al: Mitochondrial
haplotypes may modulate the phenotypic manifestation of the
LHON-associated ND1 G3460A mutation in Chinese families. J Hum
Genet. 59:134–40. 2014. View Article : Google Scholar : PubMed/NCBI
|
26
|
Rezvani Z, Didari E, Arastehkani A,
Ghodsinejad V, Aryani O, Kamalidehghan B and Houshmand M: Fifteen
novel mutations in the mitochondrial NADH dehydrogenase subunit 1,
2, 3, 4, 4L, 5 and 6 genes from Iranian patients with Leber's
hereditary optic neuropathy (LHON). Mol Biol Rep. 40:6837–6841.
2013. View Article : Google Scholar : PubMed/NCBI
|
27
|
Nguyen L, Martens JWM, Van Hoeck A and
Cuppen E: Pan-cancer landscape of homologous recombination
deficiency. Nat Commun. 11:55842020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Blum A, Wang P and Zenklusen JC: SnapShot:
TCGA-analyzed tumors. Cell. 173:5302018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Bennett JM, Catovsky D, Daniel MT,
Flandrin G, Galton DA, Gralnick HR and Sultan C: Proposals for the
classification of the acute leukaemias. French-American-British
(FAB) co-operative group. Br J Haematol. 33:451–458. 1976.
View Article : Google Scholar : PubMed/NCBI
|
30
|
O'Donnell MR, Tallman MS, Abboud CN,
Altman JK, Appelbaum FR, Arber DA, Attar E, Borate U, Coutre SE,
Damon LE, et al: Acute myeloid leukemia, version 2.2013. J Natl
Compr Canc Netw. 11:1047–1055. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
du Sert N, Ahluwalia A, Alam S, Avey MT,
Baker M, Browne WJ, Clark A, Cuthill IC, Dirnagl U, Emerson M, et
al: Reporting animal research: Explanation and elaboration for the
ARRIVE guidelines 2.0. PLoS Biol. 18:e30004112020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Riemondy KA, Sheridan RM, Gillen A, Yu Y,
Bennett CG and Hesselberth JR: valr: Reproducible genome interval
analysis in R. F1000Res. 6:10252017. View Article : Google Scholar : PubMed/NCBI
|
33
|
Mangiola S, Doyle MA and Papenfuss AT:
Interfacing Seurat with the R tidy universe. Bioinformatics.
24:btab4042021. View Article : Google Scholar
|
34
|
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW,
Shi W and Smyth GK: Limma powers differential expression analyses
for RNA-sequencing and microarray studies. Nucleic Acids Res.
43:e472015. View Article : Google Scholar : PubMed/NCBI
|
35
|
R Core Team R: A language and environment
for statistical computing. R Foundation for Statistical Computing,
Vienna, Austria. 2019. https://www.R-project.org/
|
36
|
Hu K: Become competent in generating
RNA-Seq heat maps in one day for novices without prior R
experience. Methods Mol Biol. 2239:269–303. 2021. View Article : Google Scholar : PubMed/NCBI
|
37
|
Tang Z, Li C, Kang B, Gao G, Li C and
Zhang Z: GEPIA: A web server for cancer and normal gene expression
profiling and interactive analyses. Nucleic Acids Res.
45W:W98–W102. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Muz B, de la Puente P, Azab F and Azab AK:
The role of hypoxia in cancer progression, angiogenesis,
metastasis, and resistance to therapy. Hypoxia (Auckl). 3:83–92.
2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Hassan C, Afshinnekoo E, Li S, Wu S and
Mason CE: Genetic and epigenetic heterogeneity and the impact on
cancer relapse. Exp Hematol. 54:26–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
41
|
Jiang Z, Bahr T, Zhou C, Jin T, Chen H,
Song S, Ikeno Y, Tian H and Bai Y: Diagnostic value of circulating
cell-free mtDNA in patients with suspected thyroid cancer: ND4/ND1
ratio as a new potential plasma marker. Mitochondrion. 55:145–153.
2020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Liu ZW, Guo ZJ, Chu AL, Zhang Y, Liang B,
Guo X, Chai T, Song R, Hou G and Yuan JJ: High incidence of coding
gene mutations in mitochondrial DNA in esophageal cancer. Mol Med
Rep. 16:8537–8541. 2017. View Article : Google Scholar : PubMed/NCBI
|
43
|
Payen VL, Brisson L, Dewhirst MW and
Sonveaux P: Common responses of tumors and wounds to hypoxia.
Cancer J. 21:75–87. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
de Bièvre C and Dujon B: Organisation of
the mitochondrial genome of Trichophyton rubrum III. DNA sequence
analysis of the NADH dehydrogenase subunits 1, 2, 3, 4, 5 and the
cytochrome b gene. Curr Genet. 35:30–35. 1999. View Article : Google Scholar : PubMed/NCBI
|
45
|
Cardol P, Lapaille M, Minet P, Franck F,
Matagne RF and Remacle C: ND3 and ND4L subunits of mitochondrial
complex I, both nucleus encoded in Chlamydomonas reinhardtii, are
required for activity and assembly of the enzyme. Eukaryot Cell.
5:1460–1467. 2006. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zhang C, Liu T, Luo P, Gao L, Liao X, Ma
L, Jiang Z, Liu D, Yang Z, Jiang Q, et al: Near-infrared oxidative
phosphorylation inhibitor integrates acute myeloid
leukemia-targeted imaging and therapy. Sci Adv. 7:eabb61042021.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Carter JL, Hege K, Kalpage HA, Edwards H,
Hüttemann M, Taub JW and Ge Y: Targeting mitochondrial respiration
for the treatment of acute myeloid leukemia. Biochem Pharmacol.
182:1142532020. View Article : Google Scholar : PubMed/NCBI
|