1
|
Lusis AJ: Atherosclerosis. Nature.
407:233–241. 2000. View
Article : Google Scholar : PubMed/NCBI
|
2
|
Welsh P, Grassia G, Botha S, Sattar N and
Maffia P: Targeting inflammation to reduce cardiovascular disease
risk: A realistic clinical prospect? Br J Pharmacol. 174:3898–3913.
2017. View Article : Google Scholar
|
3
|
Miao EA, Leaf IA, Treuting PM, Mao DP,
Dors M, Sarkar A, Warren SE, Wewers MD and Aderem A:
Caspase-1-induced pyroptosis is an innate immune effector mechanism
against intracellular bacteria. Nat Immunol. 11:1136–1142. 2010.
View Article : Google Scholar
|
4
|
Miao EA, Rajan JV and Aderem A:
Caspase-1-induced pyroptotic cell death. Immunol Rev. 243:206–214.
2011. View Article : Google Scholar : PubMed/NCBI
|
5
|
Lin J, Shou X, Mao X, Dong J, Mohabeer N,
Kushwaha KK, Wang L, Su Y, Fang H and Li D: Oxidized low density
lipoprotein induced caspase-1 mediated pyroptotic cell death in
macrophages: implication in lesion instability? PLoS One.
8:e621482013. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W
and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced
cardiac dysfunction, inflammation, apoptosis and pyroptosis by
activating NLRP3. Redox Biol. 24:1012152019. View Article : Google Scholar
|
7
|
Yang F, Qin Y, Lv J, Wang Y, Che H, Chen
X, Jiang Y, Li A, Sun X, Yue E, et al: Silencing long non-coding
RNA Kcnq1ot1 alleviates pyroptosis and fibrosis in diabetic
cardiomyopathy. Cell Death Dis. 9:10002018. View Article : Google Scholar : PubMed/NCBI
|
8
|
Chen X, He WT, Hu L, Li J, Fang Y, Wang X,
Xu X, Wang Z, Huang K and Han J: Pyroptosis is driven by
non-selective gasdermin-D pore and its morphology is different from
MLKL channel-mediated necroptosis. Cell Res. 26:1007–1020. 2016.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Mollace V, Gliozzi M, Musolino V, Carresi
C, Muscoli S, Mollace R, Tavernese A, Gratteri S, Palma E, Morabito
C, et al: Oxidized LDL attenuates protective autophagy and induces
apoptotic cell death of endothelial cells: Role of oxidative stress
and LOX-1 receptor expression. Int J Cardiol. 184:152–158. 2015.
View Article : Google Scholar
|
10
|
Jensen HA and Mehta JL: Endothelial cell
dysfunction as a novel therapeutic target in atherosclerosis.
Expert Rev Cardiovasc Ther. 14:1021–1033. 2016. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yin Y, Li X, Sha X, Xi H, Li YF, Shao Y,
Mai J, Virtue A, Lopez-Pastrana J, Meng S, et al: Early
hyperlipidemia promotes endothelial activation via a
caspase-1-sirtuin 1 pathway. Arterioscler Thromb Vasc Biol.
35:804–816. 2015. View Article : Google Scholar
|
12
|
Prasad S, Gupta SC, Tyagi AK and Aggarwal
BB: Curcumin, a component of golden spice: from bedside to bench
and back. Biotechnol Adv. 32:1053–1064. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Yin H, Guo Q, Li X, Tang T, Li C, Wang H,
Sun Y, Feng Q, Ma C, Gao C, et al: Curcumin suppresses IL-1β
secretion and prevents inflammation through inhibition of the NLRP3
inflammasome. J Immunol. 200:2835–2846. 2018. View Article : Google Scholar
|
14
|
Saeedi-Boroujeni A, Mahmoudian-Sani MR,
Bahadoram M and Alghasi A: COVID-19: A case for inhibiting NLRP3
inflammasome, suppression of inflammation with curcumin? Basic Clin
Pharmacol Toxicol. 128:37–45. 2021. View Article : Google Scholar
|
15
|
Liang WF, Gong YX, Li HF, Sun FL, Li WL,
Chen DQ, Xie DP, Ren CX, Guo XY, Wang ZY, et al: Curcumin activates
ROS signaling to promote pyroptosis in hepatocellular carcinoma
HepG2 cells. In Vivo. 35:249–257. 2021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kocaadam B and Sanlier N: Curcumin, an
active component of turmeric (Curcuma longa), and its
effects on health. Crit Rev Food Sci Nutr. 57:2889–2895. 2017.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Menon VP and Sudheer AR: Antioxidant and
anti-inflammatory properties of curcumin. Adv Exp Med Biol.
595:105–125. 2007. View Article : Google Scholar
|
18
|
Seguin J, Nicolazzi C, Mignet N, Scherman
D and Chabot GG: Vascular density and endothelial cell expression
of integrin alpha v beta 3 and E-selectin in murine tumours. Tumour
Biol. 33:1709–1717. 2012. View Article : Google Scholar
|
19
|
Filippi A, Constantin A, Alexandru N,
Voicu G, Constantinescu CA, Rebleanu D, Fenyo M, Simionescu D,
Simionescu A, Manduteanu I and Georgescu A: Integrins α4β1 and αVβ3
are reduced in endothelial progenitor cells from diabetic
dyslipidemic mice and may represent new targets for therapy in
aortic valve disease. Cell Transplant. 29:9636897209462772020.
View Article : Google Scholar
|
20
|
Brewster LM, Garcia VP, Levy MV,
Stockelman KA, Goulding A, DeSouza NM, Greiner JJ, Hijmans JG and
DeSouza CA: Endothelin-1-induced endothelial microvesicles impair
endothelial cell function. J Appl Physiol (1985). 128:1497–1505.
2020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Mathew V, Hasdai D and Lerman A: The role
of endothelin in coronary atherosclerosis. Mayo Clin Proc.
71:769–777. 1996. View Article : Google Scholar
|
22
|
Förstermann U, Xia N and Li H: Roles of
vascular oxidative stress and nitric oxide in the pathogenesis of
atherosclerosis. Circ Res. 120:713–735. 2017. View Article : Google Scholar
|
23
|
Schroder K and Tschopp J: The
inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar
|
24
|
Zhao Y, Wang Z, Feng D, Zhao H, Lin M, Hu
Y, Zhang N, Lv L, Gao Z, Zhai X, et al: p66Shc contributes to liver
fibrosis through the regulation of mitochondrial reactive oxygen
species. Theranostics. 9:1510–1522. 2019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Yang Q, Xu J, Ma Q, Liu Z, Sudhahar V, Cao
Y, Wang L, Zeng X, Zhou Y, Zhang M, et al: PRKAA1/AMPKα1-driven
glycolysis in endothelial cells exposed to disturbed flow protects
against atherosclerosis. Nat Commun. 9:46672018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chan SH, Hung CH, Shih JY, Chu PM, Cheng
YH, Lin HC, Hsieh PL and Tsai KL: Exercise intervention attenuates
hyperhomocysteinemia-induced aortic endothelial oxidative injury by
regulating SIRT1 through mitigating NADPH oxidase/LOX-1 signaling.
Redox Biol. 14:116–125. 2018. View Article : Google Scholar
|
27
|
Thornton CC, Al-Rashed F, Calay D, Birdsey
GM, Bauer A, Mylroie H, Morley BJ, Randi AM, Haskard DO, Boyle JJ
and Mason JC: Methotrexate-mediated activation of an
AMPK-CREB-dependent pathway: A novel mechanism for vascular
protection in chronic systemic inflammation. Ann Rheum Dis.
75:439–448. 2016. View Article : Google Scholar : PubMed/NCBI
|
28
|
Felding-Habermann B, Silletti S, Mei F,
Siu CH, Yip PM, Brooks PC, Cheresh DA, O'Toole TE, Ginsberg MH and
Montgomery AM: A single immunoglobulin-like domain of the human
neural cell adhesion molecule L1 supports adhesion by multiple
vascular and platelet integrins. J Cell Biol. 139:1567–1581. 1997.
View Article : Google Scholar
|
29
|
Hao D, Xiao W, Liu R, Kumar P, Li Y, Zhou
P, Guo F, Farmer DL, Lam KS, Wang F and Wang A: Discovery and
characterization of a potent and specific peptide ligand targeting
endothelial progenitor cells and endothelial cells for tissue
regeneration. ACS Chem Biol. 12:1075–1086. 2017. View Article : Google Scholar
|
30
|
Lerman A, Holmes DR Jr, Bell MR, Garratt
KN, Nishimura RA and Burnett JC Jr: Endothelin in coronary
endothelial dysfunction and early atherosclerosis in humans.
Circulation. 92:2426–2431. 1995. View Article : Google Scholar : PubMed/NCBI
|
31
|
Noshad H, Argani H, Nezami N, Ghojazadeh
M, Zomorrodi A, Bohlouli A, Bonyadi MR, Fakhrjou A, Ghorbanihaghjo
A, Gharedaghi A, et al: Arterial atherosclerosis in patients with
chronic kidney disease and its relationship with serum and tissue
endothelin-1. (corrected). Iran J Kidney Dis. 3:203–209.
2009.PubMed/NCBI
|