1
|
Mouronte-Roibas C, Leiro-Fernandez V,
Fernandez-Villar A, Botana-Rial M, Ramos-Hernandez C and
Ruano-Ravina A: COPD, emphysema and the onset of lung cancer. A
systematic review. Cancer Lett. 382:240–244. 2016. View Article : Google Scholar
|
2
|
Lopez-Campos JL, Tan W and Soriano JB:
Global burden of COPD. Respirology. 21:14–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rabe KF and Watz H: Chronic obstructive
pulmonary disease. Lancet. 389:1931–1940. 2017. View Article : Google Scholar
|
4
|
Singh D, Agusti A, Anzueto A, Barnes PJ,
Bourbeau J, Celli BR, Criner GJ, Frith P, Halpin DMG, Han M, et al:
Global strategy for the diagnosis, management, and prevention of
chronic obstructive lung disease: The GOLD science committee report
2019. Eur Respir J. 53:19001642019. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou L, Tao Y, Li H, Niu Y, Li L, Kan H,
Xie J and Chen R: Acute effects of fine particulate matter
constituents on cardiopulmonary function in a panel of COPD
patients. Sci Total Environ. 770:1447532021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Hirano T, Matsunaga K, Oishi K, Doi K,
Harada M, Suizu J, Murakawa K, Chikumoto A, Ohteru Y, Matsuda K, et
al: Abundant TNF-LIGHT expression in the airways of patients with
asthma with persistent airflow limitation: Association with
nitrative and inflammatory profiles. Respir Investig. 59:651–660.
2021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bettoncelli G, Blasi F, Brusasco V,
Centanni S, Corrado A, De Benedetto F, De Michele F, Di Maria GU,
Donner CF, Falcone F, et al: The clinical and integrated management
of COPD. Sarcoidosis Vasc Diffuse Lung Dis. 31 (Suppl 1):S3–S21.
2014.
|
8
|
Salazar LM and Herrera AM: Fibrotic
response of tissue remodeling in COPD. Lung. 189:101–109. 2011.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Krimmer DI, Burgess JK, Wooi TK, Black JL
and Oliver BG: Matrix proteins from smoke-exposed fibroblasts are
pro-proliferative. Am J Respir Cell Mol Biol. 46:34–39. 2012.
View Article : Google Scholar
|
10
|
Di T, Yang Y, Fu C, Zhang Z, Qin C, Sai X,
Liu J, Hu C, Zheng M, Wu Y and Bian T: Let-7 mediated airway
remodelling in chronic obstructive pulmonary disease via the
regulation of IL-6. Eur J Clin Invest. 51:e134252021. View Article : Google Scholar
|
11
|
Spanjer AI, Baarsma HA, Oostenbrink LM,
Jansen SR, Kuipers CC, Lindner M, Postma DS, Meurs H, Heijink IH,
Gosens R and Königshoff M: TGF-beta-induced profibrotic signaling
is regulated in part by the WNT receptor frizzled-8. FASEB J.
30:1823–1835. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Barnes PJ: Small airway fibrosis in COPD.
Int J Biochem Cell Biol. 116:1055982019. View Article : Google Scholar
|
13
|
Henson PM, Vandivier RW and Douglas IS:
Cell death, remodeling, and repair in chronic obstructive pulmonary
disease? Proc Am Thorac Soc. 3:713–717. 2006. View Article : Google Scholar
|
14
|
Conlon TM, John-Schuster G, Heide D,
Pfister D, Lehmann M, Hu Y, Ertuz Z, Lopez MA, Ansari M, Strunz M,
et al: Inhibition of LTbetaR signalling activates WNT-induced
regeneration in lung. Nature. 588:151–156. 2020. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li T, Fanning KV, Nyunoya T, Chen Y and
Zou C: Cigarette smoke extract induces airway epithelial cell death
via repressing PRMT6/AKT signaling. Aging (Albany NY).
12:24301–24317. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Riegman M, Sagie L, Galed C, Levin T,
Steinberg N, Dixon SJ, Wiesner U, Bradbury MS, Niethammer P,
Zaritsky A and Overholtzer M: Ferroptosis occurs through an osmotic
mechanism and propagates independently of cell rupture. Nat Cell
Biol. 22:1042–1048. 2020. View Article : Google Scholar
|
17
|
Cho SJ, Hong KS, Jeong JH, Lee M, Choi
AMK, Stout-Delgado HW and Moon JS: DROSHA-dependent AIM2
inflammasome activation contributes to lung inflammation during
idiopathic pulmonary fibrosis. Cells. 8:9382019. View Article : Google Scholar
|
18
|
Shi J, Gao W and Shao F: Pyroptosis:
Gasdermin-mediated programmed necrotic cell death. Trends Biochem
Sci. 42:245–254. 2017. View Article : Google Scholar
|
19
|
Cao R, Fang D, Wang J, Yu Y, Ye H, Kang P,
Li Z, Wang H and Gao Q: ALDH2 overexpression alleviates high
glucose-induced cardiotoxicity by inhibiting nlrp3 inflammasome
activation. J Diabetes Res. 2019:48579212019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Franklin BS, Bossaller L, De Nardo D,
Ratter JM, Stutz A, Engels G, Brenker C, Nordhoff M, Mirandola SR,
Al-Amoudi A, et al: The adaptor ASC has extracellular and
‘prionoid’ activities that propagate inflammation. Nat Immunol.
15:727–737. 2014. View
Article : Google Scholar
|
21
|
Wang L, Chen Q, Yu Q, Xiao J and Zhao H:
TREM-1 aggravates chronic obstructive pulmonary disease development
via activation NLRP3 inflammasome-mediated pyroptosis. Inflamm Res.
70:971–980. 2021. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang MY, Jiang YX, Yang YC, Liu JY, Huo
C, Ji XL and Qu YQ: Cigarette smoke extract induces pyroptosis in
human bronchial epithelial cells through the ROS/NLRP3/caspase-1
pathway. Life Sci. 269:1190902021. View Article : Google Scholar
|
23
|
Xue C, Chen C, Gu X and Li L: Progress and
assessment of lncRNA DGCR5 in malignant phenotype and immune
infiltration of human cancers. Am J Cancer Res. 11:1–13.
2021.PubMed/NCBI
|
24
|
Schmitt AM and Chang HY: Long noncoding
RNAs in cancer pathways. Cancer Cell. 29:452–463. 2016. View Article : Google Scholar
|
25
|
Peng WX, Koirala P and Mo YY:
LncRNA-mediated regulation of cell signaling in cancer. Oncogene.
36:5661–5667. 2017. View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong
F, Ren D, Ye X, Li C, Wang Y, et al: Circular RNAs function as
ceRNAs to regulate and control human cancer progression. Mol
Cancer. 17:792018. View Article : Google Scholar : PubMed/NCBI
|
27
|
Song YX, Sun JX, Zhao JH, Yang YC, Shi JX,
Wu ZH, Chen XW, Gao P, Miao ZF and Wang ZN: Non-coding RNAs
participate in the regulatory network of CLDN4 via ceRNA mediated
miRNA evasion. Nat Commun. 8:2892017. View Article : Google Scholar : PubMed/NCBI
|
28
|
Shen Q, Zheng J, Wang X, Hu W and Jiang Y
and Jiang Y: LncRNA SNHG5 regulates cell apoptosis and inflammation
by miR-132/PTEN axis in COPD. Biomed Pharmacother. 126:1100162020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Li N, Liu Y and Cai J: LncRNA MIR155HG
regulates M1/M2 macrophage polarization in chronic obstructive
pulmonary disease. Biomed Pharmacother. 117:1090152019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang Y, Chen J, Chen W, Liu L, Dong M, Ji
J, Hu D and Zhang N: LINC00987 ameliorates COPD by regulating
LPS-induced cell apoptosis, oxidative stress, inflammation and
autophagy through Let-7b-5p/SIRT1 axis. Int J Chron Obstruct Pulmon
Dis. 15:3213–3225. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Ye K, Wang S, Zhang H, Han H, Ma B and Nan
W: Long noncoding RNA GAS5 suppresses cell growth and
epithelial-mesenchymal transition in osteosarcoma by regulating the
miR-221/ARHI pathway. J Cell Biochem. 118:4772–4781. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Lyu K, Xu Y, Yue H, Li Y, Zhao J, Chen L,
Wu J, Zhu X, Chai L, Li C, et al: Long noncoding RNA GAS5 acts as a
tumor suppressor in laryngeal squamous cell carcinoma via miR-21.
Cancer Manag Res. 11:8487–8498. 2019. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xu W, Zhang L, Geng Y, Liu Y and Zhang N:
Long noncoding RNA GAS5 promotes microglial inflammatory response
in parkinson's disease by regulating NLRP3 pathway through sponging
miR-223-3p. Int Immunopharmacol. 85:1066142020. View Article : Google Scholar
|
34
|
Li G, Du P, Qiang X, Jin D, Liu H, Li B
and Guo J: Low-expressed GAS5 injure myocardial cells and
progression of chronic heart failure via regulation of miR-223-3P.
Exp Mol Pathol. 117:1045292020. View Article : Google Scholar
|
35
|
He X, Wang S, Li M, Zhong L, Zheng H, Sun
Y, Lai Y, Chen X, Wei G, Si X, et al: Long noncoding RNA GAS5
induces abdominal aortic aneurysm formation by promoting smooth
muscle apoptosis. Theranostics. 9:5558–5576. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Mazar J, Rosado A, Shelley J, Marchica J
and Westmoreland TJ: The long non-coding RNA GAS5 differentially
regulates cell cycle arrest and apoptosis through activation of
BRCA1 and p53 in human neuroblastoma. Oncotarget. 8:6589–6607.
2017. View Article : Google Scholar
|
37
|
Li D and He S: MAGE3 and Survivin
activated dendritic cell immunotherapy for the treatment of
non-small cell lung cancer. Oncol Lett. 15:8777–8783. 2018.
|
38
|
Chen L, Yang H, Xiao Y, Tang X, Li Y, Han
Q, Fu J, Yang Y and Zhu Y: LncRNA GAS5 is a critical regulator of
metastasis phenotype of melanoma cells and inhibits tumor growth in
vivo. Onco Targets Ther. 9:4075–4087. 2016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Chu H, Qu X, Wang F, Chang J, Cheng R,
Song X, Chen T and Zhang G: MicroRNA-206 promotes
lipopolysaccharide-induced inflammation injury via regulation of
IRAK1 in MRC-5 cells. Int Immunopharmacol. 73:590–598. 2019.
View Article : Google Scholar
|
40
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Liu C, Wang F, Wang B, Wu T, Wang Y, Huo
W, Zhang S, Su Y, Liu J, Liu Y and Yu J: Pseudolaric acid B induces
apoptosis in human rhabdomyosarcoma RD cells. Oncol Lett.
20:3582020. View Article : Google Scholar
|
42
|
Lian L, Xue J, Li W, Ren J, Tang F, Liu Y,
Xue F and Dai J: VscF in T3SS1 helps to translocate VPA0226 in
vibrio parahaemolyticus. Front Cell Infect Microbiol.
11:6524322021. View Article : Google Scholar
|
43
|
Stoll L, Rodriguez-Trejo A, Guay C, Brozzi
F, Bayazit MB, Gattesco S, Menoud V, Sobel J, Marques AC, Veno MT,
et al: A circular RNA generated from an intron of the insulin gene
controls insulin secretion. Nat Commun. 11:56112020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Tang R, Mei X, Wang YC, Cui XB, Zhang G,
Li W and Chen SY: LncRNA GAS5 regulates vascular smooth muscle cell
cycle arrest and apoptosis via p53 pathway. Biochim Biophys Acta
Mol Basis Dis. 1865:2516–2525. 2019. View Article : Google Scholar : PubMed/NCBI
|
45
|
Xie MY and Hou LJ: LncRNA GAS5 aggravates
myocardial infarction by sponging miR-26b. Int J Cardiol.
331:2102021. View Article : Google Scholar
|
46
|
Tang X, Wang T, Qiu C, Zheng F, Xu J and
Zhong B: Long non-coding RNA (lncRNA) CRNDE regulated
lipopolysaccharides (LPS)-induced MRC-5 inflammation injury through
targeting MiR-141. Med Sci Monit. 26:e9209282020. View Article : Google Scholar
|
47
|
Ni W, Yao S, Zhou Y, Liu Y, Huang P, Zhou
A, Liu J, Che L and Li J: Long noncoding RNA GAS5 inhibits
progression of colorectal cancer by interacting with and triggering
YAP phosphorylation and degradation and is negatively regulated by
the m(6)A reader YTHDF3. Mol Cancer. 18:1432019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Filippova EA, Fridman MV, Burdennyy AM,
Loginov VI, Pronina IV, Lukina SS, Dmitriev AA and Braga EA: Long
noncoding RNA GAS5 in breast cancer: Epigenetic mechanisms and
biological functions. Int J Mol Sci. 22:68102021. View Article : Google Scholar
|
49
|
Yang X, Xie Z, Lei X and Gan R: Long
non-coding RNA GAS5 in human cancer. Oncol Lett. 20:2587–2594.
2020. View Article : Google Scholar
|
50
|
Qiu YY, Wu Y, Lin MJ, Bian T, Xiao YL and
Qin C: LncRNA-MEG3 functions as a competing endogenous RNA to
regulate Treg/Th17 balance in patients with asthma by targeting
microRNA-17/RORgammat. Biomed Pharmacother. 111:386–394. 2019.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Keenan CR, Schuliga MJ and Stewart AG:
Pro-inflammatory mediators increase levels of the noncoding RNA
GAS5 in airway smooth muscle and epithelial cells. Can J Physiol
Pharmacol. 93:203–206. 2015. View Article : Google Scholar
|
52
|
Cao L, Chen J, Ou B, Liu C, Zou Y and Chen
Q: GAS5 knockdown reduces the chemo-sensitivity of non-small cell
lung cancer (NSCLC) cell to cisplatin (DDP) through regulating
miR-21/PTEN axis. Biomed Pharmacother. 93:570–579. 2017. View Article : Google Scholar : PubMed/NCBI
|
53
|
Yang Y, Jin X, Jiao X, Li J, Liang L, Ma
Y, Liu R and Li Z: Advances in pharmacological actions and
mechanisms of flavonoids from traditional chinese medicine in
treating chronic obstructive pulmonary disease. Evid Based
Complement Alternat Med. 2020:88711052020. View Article : Google Scholar : PubMed/NCBI
|
54
|
Yao H and Rahman I: Current concepts on
oxidative/carbonyl stress, inflammation and epigenetics in
pathogenesis of chronic obstructive pulmonary disease. Toxicol Appl
Pharmacol. 254:72–85. 2011. View Article : Google Scholar
|
55
|
Li F, Xu D, Hou K, Gou X, Lv N, Fang W and
Li Y: Pretreatment of indobufen and aspirin and their combinations
with clopidogrel or ticagrelor alleviates inflammasome mediated
pyroptosis via inhibiting NF-κB/NLRP3 pathway in ischemic stroke. J
Neuroimmune Pharmacol. 16:835–853. 2021. View Article : Google Scholar
|
56
|
Fawzy MS, Toraih EA, Ageeli EA,
Al-Qahtanie SA, Hussein MH and Kandil E: Noncoding RNAs orchestrate
cell growth, death and drug resistance in renal cell carcinoma.
Epigenomics. 12:199–219. 2020. View Article : Google Scholar : PubMed/NCBI
|
57
|
Chen L, Yang W, Guo Y, Chen W, Zheng P,
Zeng J and Tong W: Exosomal lncRNA GAS5 regulates the apoptosis of
macrophages and vascular endothelial cells in atherosclerosis. PLoS
One. 12:e01854062017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Shi X, Sun M, Liu H, Yao Y, Kong R, Chen F
and Song Y: A critical role for the long non-coding RNA GAS5 in
proliferation and apoptosis in non-small-cell lung cancer. Mol
Carcinog. 54 (Suppl 1):E1–E12. 2015. View Article : Google Scholar : PubMed/NCBI
|
59
|
Ma C, Wang W and Li P: LncRNA GAS5
overexpression downregulates IL-18 and induces the apoptosis of
fibroblast-like synoviocytes. Clin Rheumatol. 38:3275–3280. 2019.
View Article : Google Scholar
|
60
|
Li J and Liu S: LncRNA GAS5 suppresses
inflammatory responses and apoptosis of alveolar epithelial cells
by targeting miR-429/DUSP1. Exp Mol Pathol. 113:1043572020.
View Article : Google Scholar
|
61
|
Nagata K and Nishiyama C: IL-10 in mast
cell-mediated immune responses: Anti-inflammatory and
proinflammatory roles. Int J Mol Sci. 22:49722021. View Article : Google Scholar
|
62
|
Castellucci M, Rossato M, Calzetti F,
Tamassia N, Zeminian S, Cassatella MA and Bazzoni F: IL-10 disrupts
the Brd4-docking sites to inhibit LPS-induced CXCL8 and TNF-alpha
expression in monocytes: Implications for chronic obstructive
pulmonary disease. J Allergy Clin Immunol. 136:781–791. 2015.
View Article : Google Scholar
|
63
|
Wei B and Li CS: Changes in
Th1/Th2-producing cytokines during acute exacerbation chronic
obstructive pulmonary disease. J Int Med Res. 46:3890–3902. 2018.
View Article : Google Scholar : PubMed/NCBI
|
64
|
He Y, Hara H and Núñez G: Mechanism and
regulation of NLRP3 inflammasome activation. Trends Biochem Sci.
41:1012–1021. 2016. View Article : Google Scholar
|
65
|
Zheng W, Chu Q and Xu T: The long
noncoding RNA NARL regulates immune responses via microRNA-mediated
NOD1 downregulation in teleost fish. J Biol Chem. 296:1004142021.
View Article : Google Scholar : PubMed/NCBI
|
66
|
Mofidi M, Rahgozar S and Pouyanrad S:
Increased level of long non coding RNA H19 is correlated with the
downregulation of miR-326 and BCL-2 genes in pediatric acute
lymphoblastic leukemia, a possible hallmark for leukemogenesis. Mol
Biol Rep. 48:1531–1538. 2021. View Article : Google Scholar : PubMed/NCBI
|
67
|
Sui YX, Zhao DL, Yu Y and Wang LC: The
role, function, and mechanism of long intergenic noncoding RNA1184
(linc01184) in colorectal cancer. Dis Markers. 2021:88979062021.
View Article : Google Scholar : PubMed/NCBI
|
68
|
Liu P, Zhang H, Zeng H, Meng Y, Gao H,
Zhang M and Zhao L: LncRNA CASC2 is involved in the development of
chronic obstructive pulmonary disease via targeting miR-18a-5p/IGF1
axis. Ther Adv Respir Dis. 15:175346662110280722021. View Article : Google Scholar : PubMed/NCBI
|
69
|
Zhao J, Pu J, Hao B, Huang L, Chen J, Hong
W, Zhou Y, Li B and Ran P: LncRNA RP11-86H7.1 promotes airway
inflammation induced by TRAPM2.5 by acting as a ceRNA of miRNA-9-5p
to regulate NFKB1 in HBECS. Sci Rep. 10:115872020. View Article : Google Scholar : PubMed/NCBI
|
70
|
Roffel MP, Maes T, Brandsma CA, van den
Berge M, Vanaudenaerde BM, Joos GF, Brusselle GG, Heijink IH and
Bracke KR: MiR-223 is increased in lungs of patients with COPD and
modulates cigarette smoke-induced pulmonary inflammation. Am J
Physiol Lung Cell Mol Physiol. 321:L1091–L1104. 2021. View Article : Google Scholar
|
71
|
Luo P, Wang Q, Ye Y, Zhang J, Lu D, Cheng
L, Zhou H, Xie M and Wang B: MiR-223-3p functions as a tumor
suppressor in lung squamous cell carcinoma by miR-223-3p-mutant p53
regulatory feedback loop. J Exp Clin Cancer Res. 38:742019.
View Article : Google Scholar : PubMed/NCBI
|
72
|
Chai B, Guo Y, Cui X, Liu J, Suo Y, Dou Z
and Li N: MiR-223-3p promotes the proliferation, invasion and
migration of colon cancer cells by negative regulating PRDM1. Am J
Transl Res. 11:4516–4523. 2019.PubMed/NCBI
|
73
|
Wei Y, Yang J, Yi L, Wang Y, Dong Z, Liu
Z, Ou-yang S, Wu H, Zhong Z, Yin Z, et al: MiR-223-3p targeting
SEPT6 promotes the biological behavior of prostate cancer. Sci Rep.
4:75462014. View Article : Google Scholar : PubMed/NCBI
|
74
|
Fang G, Liu J, Wang Q, Huang X, Yang R,
Pang Y and Yang M: MicroRNA-223-3p regulates ovarian cancer cell
proliferation and invasion by targeting SOX11 expression. Int J Mol
Sci. 18:12082017. View Article : Google Scholar
|
75
|
Long FQ, Kou CX, Li K, Wu J and Wang QQ:
MiR-223-3p inhibits rTp17-induced inflammasome activation and
pyroptosis by targeting NLRP3. J Cell Mol Med. 24:14405–14414.
2020. View Article : Google Scholar : PubMed/NCBI
|
76
|
Xie Y, Qian Y, Wang Y, Liu K and Li X:
Mechanical stretch and LPS affect the proliferation, extracellular
matrix remodeling and viscoelasticity of lung fibroblasts. Exp Ther
Med. 20:52020. View Article : Google Scholar : PubMed/NCBI
|