Cardiomyocyte death in sepsis: Mechanisms and regulation (Review)
- Authors:
- Geping Zhang
- Dan Dong
- Xianyao Wan
- Yongli Zhang
-
Affiliations: Department of Critical Care Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, P.R. China - Published online on: June 15, 2022 https://doi.org/10.3892/mmr.2022.12773
- Article Number: 257
-
Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, et al: The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 315:801–810. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fleischmann C, Scherag A, Adhikari NKJ, Hartog CS, Tsaganos T, Schlattmann P, Angus DC and Reinhart K; International Forum of Acute Care Trialists, : Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations. Am J Respir Crit Care Med. 193:259–272. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bergmann O, Bhardwaj RD, Bernard S, Zdunek S, Barnabé-Heider F, Walsh S, Zupicich J, Alkass K, Buchholz BA, Druid H, et al: Evidence for cardiomyocyte renewal in humans. Science. 324:98–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al: Molecular mechanisms of cell death: Recommendations of the nomenclature committee on cell death 2018. Cell Death Differ. 25:486–541. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nedeva C: Inflammation and cell death of the innate and adaptive immune system during sepsis. Biomolecules. 11:10112021. View Article : Google Scholar : PubMed/NCBI | |
Picca A, Calvani R, Coelho-Junior HJ and Marzetti E: Cell death and inflammation: The role of mitochondria in health and disease. Cells. 10:5372021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
Pinheiro Da Silva F and Nizet V: Cell death during sepsis: Integration of disintegration in the inflammatory response to overwhelming infection. Apoptosis. 14:509–521. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lengeler JW: Metabolic networks: A signal-oriented approach to cellular models. Biol Chem. 381:911–920. 2000. View Article : Google Scholar : PubMed/NCBI | |
Hotchkiss RS, Strasser A, McDunn JE and Swanson PE: Cell death. N Engl J Med. 361:1570–1583. 2009. View Article : Google Scholar : PubMed/NCBI | |
Raff M: Cell suicide for beginners. Nature. 396:119–122. 1998. View Article : Google Scholar : PubMed/NCBI | |
Norbury CJ and Hickson ID: Cellular responses to DNA damage. Annu Rev Pharmacol Toxicol. 41:367–401. 2001. View Article : Google Scholar : PubMed/NCBI | |
Shi Y: Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell. 9:459–470. 2002. View Article : Google Scholar : PubMed/NCBI | |
Guo R and Li G: Tanshinone modulates the expression of Bcl-2 and Bax in cardiomyocytes and has a protective effect in a rat model of myocardial ischemia-reperfusion. Hellenic J Cardiol. 59:323–328. 2018. View Article : Google Scholar : PubMed/NCBI | |
Savill J and Fadok V: Corpse clearance defines the meaning of cell death. Nature. 407:784–788. 2000. View Article : Google Scholar : PubMed/NCBI | |
Haslett C: Granulocyte apoptosis and inflammatory disease. Br Med Bull. 53:669–683. 1997. View Article : Google Scholar : PubMed/NCBI | |
Zorc-Pleskovic R, Alibegović A, Zorc M, Milutinović A, Radovanović N and Petrović D: Apoptosis of cardiomyocytes in myocarditis. Folia Biol (Praha). 52:6–9. 2006.PubMed/NCBI | |
Fajardo G, Zhao M, Powers J and Bernstein D: Differential cardiotoxic/cardioprotective effects of beta-adrenergic receptor subtypes in myocytes and fibroblasts in doxorubicin cardiomyopathy. J Mol Cell Cardiol. l40:375–383. 2006. View Article : Google Scholar : PubMed/NCBI | |
Zechendorf E, O'riordan CE, Stiehler L, Wischmeyer N, Chiazza F, Collotta D, Denecke B, Ernst S, Müller-Newen G, Coldewey SM, et al: Ribonuclease 1 attenuates septic cardiomyopathy and cardiac apoptosis in a murine model of polymicrobial sepsis. JCI Insight. 5:e1315712020. View Article : Google Scholar : PubMed/NCBI | |
Díez J: Apoptosis in cardiovascular diseases. Rev Esp Cardiol. 53:267–274. 2000.(In Spanish). View Article : Google Scholar : PubMed/NCBI | |
Chao J, Yin H, Yao YY, Shen B, Smith RS Jr and Chao L: Novel role of kallistatin in protection against myocardial ischemia-reperfusion injury by preventing apoptosis and inflammation. Hum Gene Ther. 17:1201–1213. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu X, Dai S, Wu WJ, Tan W, Zhu X, Mu J, Guo Y, Bolli R and Rokosh G: Stromal cell derived factor-1 alpha confers protection against myocardial ischemia/reperfusion injury: Role of the cardiac stromal cell derived factor-1 alpha CXCR4 axis. Circulation. 116:654–663. 2007. View Article : Google Scholar : PubMed/NCBI | |
Saxena A, Fish JE, White MD, Yu S, Smyth JW, Shaw RM, Dimaio JM and Srivastava D: Stromal cell-derived factor-1alpha is cardioprotective after myocardial infarction. Circulation. 117:2224–2231. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sun Z, Shen L, Sun X, Tong G, Sun D, Han T, Yang G, Zhang J, Cao F, Yao L and Wang H: Variation of NDRG2 and c-Myc expression in rat heart during the acute stage of ischemia/reperfusion injury. Histochem Cell Biol. 135:27–35. 2011. View Article : Google Scholar : PubMed/NCBI | |
Oberholzer C, Oberholzer A, Clare-Salzler M and Moldawer LL: Apoptosis in sepsis: A new target for therapeutic exploration. FASEB J. 15:879–892. 2001. View Article : Google Scholar : PubMed/NCBI | |
Wencker D, Chandra M, Nguyen K, Miao W, Garantziotis S, Factor SM, Shirani J, Armstrong RC and Kitsis RN: A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest. 111:1497–1504. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nevière R, Fauvel H, Chopin C, Formstecher P and Marchetti P: Caspase inhibition prevents cardiac dysfunction and heart apoptosis in a rat model of sepsis. Am J Respir Crit Care Med. 163:218–225. 2001. View Article : Google Scholar : PubMed/NCBI | |
Manetti AC, Maiese A, Paolo MD, Matteis AD, La Russa R, Turillazzi E, Frati P and Fineschi V: MicroRNAs and sepsis-induced cardiac dysfunction: A systematic review. Int J Mol Sci. 22:3212020. View Article : Google Scholar : PubMed/NCBI | |
Lv H, Tian M, Hu P, Wang B and Yang L: Overexpression of miR-365a-3p relieves sepsis-induced acute myocardial injury by targeting MyD88/NF-κB pathway. Can J Physiol Pharmacol. 99:1007–1015. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mirna M, Paar V, Rezar R, Topf A, Eber M, Hoppe UC, Lichtenauer M and Jung C: MicroRNAs in inflammatory heart diseases and sepsis-induced cardiac dysfunction: A potential scope for the future? Cells. 8:13522019. View Article : Google Scholar : PubMed/NCBI | |
Pasparakis M and Vandenabeele P: Necroptosis and its role in inflammation. Nature. 517:311–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
Han J, Zhong CQ and Zhang DW: Programmed necrosis: Backup to and competitor with apoptosis in the immune system. Nat Immunol. 12:1143–1149. 2011. View Article : Google Scholar : PubMed/NCBI | |
Newton K, Dugger DL, Maltzman A, Greve JM, Hedehus M, Martin-Mcnulty B, Carano RaD, Cao TC, Van Bruggen N, Bernstein L, et al: RIPK3 deficiency or catalytically inactive RIPK1 provides greater benefit than MLKL deficiency in mouse models of inflammation and tissue injury. Cell Death Differ. 23:1565–1576. 2016. View Article : Google Scholar : PubMed/NCBI | |
Christofferson DE and Yuan J: Necroptosis as an alternative form of programmed cell death. Curr Opin Cell Biol. 22:263–268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M and Chan FK: Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 137:1112–1123. 2009. View Article : Google Scholar : PubMed/NCBI | |
He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang DW, Shao J, Lin J, Zhang N, Lu BJ, Lin SC, Dong MQ and Han J: RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science. 325:332–336. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signalling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhu H and Sun A: Programmed necrosis in heart disease: Molecular mechanisms and clinical implications. J Mol Cell Cardiol. 116:125–134. 2018. View Article : Google Scholar : PubMed/NCBI | |
Moreno-Gonzalez G, Vandenabeele P and Krysko DV: Necroptosis: A novel cell death modality and its potential relevance for critical care medicine. Am J Respir Crit Care Med. 194:415–428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Van Der Poll T, Van De Veerdonk FL, Scicluna BP and Netea MG: The immunopathology of sepsis and potential therapeutic targets. Nat Rev Immunol. 17:407–420. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vanden Berghe T, Kaiser WJ, Bertrand MJ and Vandenabeele P: Molecular crosstalk between apoptosis, necroptosis, and survival signaling. Mol Cell Oncol. 2:e9750932015. View Article : Google Scholar : PubMed/NCBI | |
Lafont E, Hartwig T and Walczak H: Paving trail's path with ubiquitin. Trends Biochem Sci. 43:44–60. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weinlich R, Oberst A, Beere HM and Green DR: Necroptosis in development, inflammation and disease. Nat Rev Mol Cell Biol. 18:127–136. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oeckinghaus A, Hayden MS and Ghosh S: Crosstalk in NF-κB signalling pathways. Nat Immunol. 12:695–708. 2011. View Article : Google Scholar : PubMed/NCBI | |
Newton K and Manning G: Necroptosis and inflammation. Annu Rev Biochem. 85:743–763. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Huang Z, Ren J, Zhang Z, He P, Li Y, Ma J, Chen W, Zhang Y, Zhou X, et al: Mlkl knockout mice demonstrate the indispensable role of Mlkl in necroptosis. Cell Res. 23:994–1006. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum DM, Degterev A, David J, Rosenbaum PS, Roth S, Grotta JC, Cuny GD, Yuan J and Savitz SI: Necroptosis, a novel form of caspase-independent cell death, contributes to neuronal damage in a retinal ischemia-reperfusion injury model. J Neurosci Res. 88:1569–1576. 2010.PubMed/NCBI | |
Kaczmarek A, Vandenabeele P and Krysko DV: Necroptosis: The release of damage-associated molecular patterns and its physiological relevance. Immunity. 38:209–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Schenck EJ, Ma KC, Price DR, Nicholson T, Oromendia C, Gentzler ER, Sanchez E, Baron RM, Fredenburgh LE, Huh JW, et al: Circulating cell death biomarker trail is associated with increased organ dysfunction in sepsis. JCI Insight. 4:e1271432019. View Article : Google Scholar : PubMed/NCBI | |
Kitur K, Wachtel S, Brown A, Wickersham M, Paulino F, Peñaloza HF, Soong G, Bueno S, Parker D and Prince A: Necroptosis promotes Staphylococcus aureus clearance by inhibiting excessive inflammatory signalling. Cell Rep. 16:2219–2230. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vucur M, Roderburg C, Kaiser L, Schneider AT, Roy S, Loosen SH, Luedde M, Trautwein C, Koch A, Tacke F and Luedde T: Elevated serum levels of mixed lineage kinase domain-like protein predict survival of patients during intensive care unit treatment. Dis Markers. 2018:19834212018. View Article : Google Scholar : PubMed/NCBI | |
Peng S, Xu J, Ruan W, Li S and Xiao F: PPAR-γ activation prevents septic cardiac dysfunction via inhibition of apoptosis and necroptosis. Oxid Med Cell Longev. 2017:83267492017. View Article : Google Scholar : PubMed/NCBI | |
Beno SM, Riegler AN, Gilley RP, Brissac T, Wang Y, Kruckow KL, Jadapalli JK, Wright GM, Shenoy AT, Stoner SN, et al: Inhibition of necroptosis to prevent long-term cardiac damage during pneumococcal pneumonia and invasive disease. J Infect Dis. 222:1882–1893. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zechendorf E, Vaßen P, Zhang J, Hallawa A, Martincuks A, Krenkel O, Müller-Newen G, Schuerholz T, Simon TP, Marx G, et al: Heparan sulfate induces necroptosis in murine cardiomyocytes: A medical-in silico approach combining in vitro experiments and machine learning. Front Immunol. 9:3932018. View Article : Google Scholar : PubMed/NCBI | |
Yu S, Yang H, Guo X and Sun Y: Klotho attenuates angiotensin II-induced cardiotoxicity through suppression of necroptosis and oxidative stress. Mol Med Rep. 23:662021. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Ruan Y, Huang X, Dou L, Lan M, Cui J, Chen B, Gong H, Wang Q, Yan M, et al: Dexrazoxane ameliorates doxorubicin-induced cardiotoxicity by inhibiting both apoptosis and necroptosis in cardiomyocytes. Biochem Biophys Res Commun. 523:140–146. 2020. View Article : Google Scholar : PubMed/NCBI | |
Drosatos K, Khan RS, Trent CM, Jiang H, Son NH, Blaner WS, Homma S, Schulze PC and Goldberg IJ: Peroxisome proliferator-activated receptor-γ activation prevents sepsis-related cardiac dysfunction and mortality in mice. Circ Heart Fail. 6:550–562. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Lu H, Xie H, Zhang B, Nie T, Fan C, Yang T, Xu Y, Su H, Tang W and Zhou B: Potent and selective RIPK1 inhibitors targeting dual-pockets for the treatment of systemic inflammatory response syndrome and sepsis. Angew Chem Int Ed Engl. 61:e2021149222022.PubMed/NCBI | |
Fu G, Wang B, He B, Feng M and Yu Y: LPS induces cardiomyocyte necroptosis through the Ripk3/Pgam5 signaling pathway. J Recept Signal Transduct Res. 41:32–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, et al: Classification of cell death: Recommendations of the nomenclature committee on cell death 2009. Cell Death Differ. 16:3–11. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kayar SR and Banchero N: Volume density and distribution of mitochondria in myocardial growth and hypertrophy. Respir Physiol. 70:275–286. 1987. View Article : Google Scholar : PubMed/NCBI | |
Beretta M, Santos CX, Molenaar C, Hafstad AD, Miller CC, Revazian A, Betteridge K, Schröder K, Streckfuß-Bömeke K, Doroshow JH, et al: Nox4 regulates InsP3 receptor-dependent Ca2+ release into mitochondria to promote cell survival. EMBO J. 39:e1035302020. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kwon J, Kim M, Do J, Lee D and Han H: Low-dielectric-constant polyimide aerogel composite films with low water uptake. Polym J. 48:829–834. 2016. View Article : Google Scholar | |
Weiss JN, Korge P, Honda HM and Ping P: Role of the mitochondrial permeability transition in myocardial disease. Circ Res. 93:292–301. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kroemer G, Galluzzi L and Brenner C: Mitochondrial membrane permeabilization in cell death. Physiol Rev. 87:99–163. 2007. View Article : Google Scholar : PubMed/NCBI | |
Izzo V, Bravo-San Pedro JM, Sica V, Kroemer G and Galluzzi L: Mitochondrial permeability transition: New findings and persisting uncertainties. Trends Cell Biol. 26:655–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Isoyama S and Nitta-Komatsubara Y: Acute and chronic adaptation to hemodynamic overload and ischemia in the aged heart. Heart Fail Rev. 7:63–69. 2002. View Article : Google Scholar : PubMed/NCBI | |
Larche J, Lancel S, Hassoun SM, Favory R, Decoster B, Marchetti P, Chopin C and Neviere R: Inhibition of mitochondrial permeability transition prevents sepsis-induced myocardial dysfunction and mortality. J Am Coll Cardiol. 48:377–385. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nesci S: The mitochondrial permeability transition pore in cell death: A promising drug binding bioarchitecture. Med Res Rev. 40:811–817. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bauer TM and Murphy E: Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res. 126:280–293. 2020. View Article : Google Scholar : PubMed/NCBI | |
Azzolin L, Antolini N, Calderan A, Ruzza P, Sciacovelli M, Marin O, Mammi S, Bernardi P and Rasola A: Antamanide, a derivative of amanita phalloides, is a novel inhibitor of the mitochondrial permeability transition pore. PLoS One. 6:e162802011. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Xie M, Zhu J, Yi Q, Tan B, Li Y, Ye L, Zhang X, Zhang Y, Tian J and Xu H: PINK1 contained in huMSC-derived exosomes prevents cardiomyocyte mitochondrial calcium overload in sepsis via recovery of mitochondrial Ca2+ efflux. Stem Cell Res Ther. 12:2692021. View Article : Google Scholar : PubMed/NCBI | |
Fernandes-Alnemri T, Wu J, Yu JW, Datta P, Miller B, Jankowski W, Rosenberg S, Zhang J and Alnemri ES: The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ. 14:1590–1604. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bergsbaken T, Fink SL and Cookson BT: Pyroptosis: Host cell death and inflammation. Nat Rev Microbiol. 7:99–109. 2009. View Article : Google Scholar : PubMed/NCBI | |
Robinson N, Ganesan R, Hegedűs C, Kovács K, Kufer TA and Virág L: Programmed necrotic cell death of macrophages: Focus on pyroptosis, necroptosis, and parthanatos. Redox Biol. 26:1012392019. View Article : Google Scholar : PubMed/NCBI | |
Jorgensen I and Miao EA: Pyroptotic cell death defends against intracellular pathogens. Immunol Rev. 265:130–142. 2015. View Article : Google Scholar : PubMed/NCBI | |
Frank D and Vince JE: Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 26:99–114. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Gao W and Shao F: Pyroptosis: Gasdermin-mediated programmed necrotic cell death. Trends Biochem Sci. 42:245–254. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fink SL and Cookson BT: Caspase-1-dependent pore formation during pyroptosis leads to osmotic lysis of infected host macrophages. Cell Microbiol. 8:1812–1825. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Espinosa-Oliva AM, García-Revilla J, Alonso-Bellido IM and Burguillos MA: Brainiac caspases: Beyond the wall of apoptosis. Front Cell Neurosci. 13:5002019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu X, Bai X, Lin Y, Li Z, Fu J, Li M, Zhao T, Yang H, Xu R, et al: Melatonin prevents endothelial cell pyroptosis via regulation of long noncoding RNA MEG3/miR-223/NLRP3 axis. J Pineal Res. 64:e124492018. View Article : Google Scholar | |
Vande Walle L and Lamkanfi M: Pyroptosis. Curr Biol. 26:R568–R572. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Zeng L, Zhu S, Xie Y, Liu J, Wen Q, Cao L, Xie M, Ran Q, Kroemer G, et al: Lipid peroxidation drives gasdermin D-mediated pyroptosis in lethal polymicrobial sepsis. Cell Host Microbe. 24:97–108.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xue Z, Xi Q, Liu H, Guo X, Zhang J, Zhang Z, Li Y, Yang G, Zhou D, Yang H, et al: miR-21 promotes NLRP3 inflammasome activation to mediate pyroptosis and endotoxic shock. Cell Death Dis. 10:4612019. View Article : Google Scholar : PubMed/NCBI | |
Hagar JA, Powell DA, Aachoui Y, Ernst RK and Miao EA: Cytoplasmic LPS activates caspase-11: Implications in TLR4-independent endotoxic shock. Science. 341:1250–1253. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM, Gao X, An S, Mittal M, Vogel SM, et al: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest. 127:4124–4135. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nierhaus A, Winkler MS, Holzmann M, Mudersbach E, Bauer A, Robbe L, Zahrte C, Schwedhelm E, Daum G, Kluge S and Zoellner C: Sphingosine-1-phosphate is a novel biomarker in sepsis severity. Intensive Care Med Exp. 3 (Suppl 1):A7892015. View Article : Google Scholar | |
Song F, Hou J, Chen Z, Cheng B, Lei R, Cui P, Sun Y, Wang H and Fang X: Sphingosine-1-phosphate receptor 2 signalling promotes caspase-11-dependent macrophage pyroptosis and worsens scherichia coli sepsis outcome. Anesthesiology. 129:311–320. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bordon Y: Mucosal immunology: Inflammasomes induce sepsis following community breakdown. Nat Rev Immunol. 12:400–401. 2012. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Callaway JB and Ting JP: Inflammasomes: Mechanism of action, role in disease, and therapeutics. Nat Med. 21:677–687. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pu Q, Gan C, Li R, Li Y, Tan S, Li X, Wei Y, Lan L, Deng X, Liang H, et al: Atg7 deficiency intensifies inflammasome activation and pyroptosis in pseudomonas sepsis. J Immunol. 198:3205–3213. 2017. View Article : Google Scholar : PubMed/NCBI | |
Man SM and Kanneganti TD: Regulation of inflammasome activation. Immunol Rev. 265:6–21. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lamkanfi M and Dixit VM: In retrospect: The inflammasome turns 15. Nature. 548:534–535. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chu LH, Indramohan M, Ratsimandresy RA, Gangopadhyay A, Morris EP, Monack DM, Dorfleutner A and Stehlik C: The oxidized phospholipid oxPAPC protects from septic shock by targeting the non-canonical inflammasome in macrophages. Nat Commun. 9:9962018. View Article : Google Scholar : PubMed/NCBI | |
Lee SK, Kim YS, Bae GH, Lee HY and Bae YS: VU0155069 inhibits inflammasome activation independent of phospholipase D1 activity. Sci Rep. 9:143492019. View Article : Google Scholar : PubMed/NCBI | |
Li Z, Jia Y, Feng Y, Cui R, Miao R, Zhang X, Qu K, Liu C and Zhang J: Methane alleviates sepsis-induced injury by inhibiting pyroptosis and apoptosis: In vivo and in vitro experiments. Aging (Albany NY). 11:1226–1239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li N, Zhou H, Wu H, Wu Q, Duan M, Deng W and Tang Q: STING-IRF3 contributes to lipopolysaccharide-induced cardiac dysfunction, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol. 24:1012152019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhao N, Shi G and Wang H: Geniposide ameliorated sepsis-induced acute kidney injury by activating PPARγ. Aging (Albany NY). 12:22744–22758. 2020.PubMed/NCBI | |
Wong WT, Li LH, Rao YK, Yang SP, Cheng SM, Lin WY, Cheng CC, Chen A and Hua KF: Repositioning of the β-blocker carvedilol as a novel autophagy inducer that inhibits the NLRP3 inflammasome. Front Immunol. 9:19202018. View Article : Google Scholar : PubMed/NCBI | |
Tong R, Jia T, Shi R and Yan F: Inhibition of microRNA-15 protects H9c2 cells against CVB3-induced myocardial injury by targeting NLRX1 to regulate the NLRP3 inflammasome. Cell Mol Biol Lett. 25:62020. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Wang B, Lai J, Braunstein Z, He M, Ruan G, Yin Z, Wang J, Cianflone K, Ning Q, et al: Trimetazidine attenuates cardiac dysfunction in endotoxemia and sepsis by promoting neutrophil migration. Front Immunol. 9:20152018. View Article : Google Scholar : PubMed/NCBI | |
Dev S and Babitt JL: Overview of iron metabolism in health and disease. Hemodial Int. 21 (Suppl 1):S6–S20. 2017. View Article : Google Scholar : PubMed/NCBI | |
Drakesmith H and Prentice AM: Hepcidin and the iron-infection axis. Science. 338:768–772. 2012. View Article : Google Scholar : PubMed/NCBI | |
Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S and Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432:917–921. 2004. View Article : Google Scholar : PubMed/NCBI | |
Sheldon JR, Laakso HA and Heinrichs DE: Iron acquisition strategies of bacterial pathogens. Virulence Mech Bact Pathog. 4:43–85. 2016. View Article : Google Scholar | |
Liu Q, Wu J, Zhang X, Wu X, Zhao Y and Ren J: Iron homeostasis and disorders revisited in the sepsis. Free Radic Biol Med. 165:1–13. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ganz T: Iron in innate immunity: Starve the invaders. Curr Opin Immunol. 21:63–67. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hentze MW, Muckenthaler MU and Andrews NC: Balancing acts: Molecular control of mammalian iron metabolism. Cell. 117:285–297. 2004. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gaschler MM, Andia AA, Liu H, Csuka JM, Hurlocker B, Vaiana CA, Heindel DW, Zuckerman DS, Bos PH, Reznik E, et al: FINO2 initiates ferroptosis through GPX4 inactivation and iron oxidation. Nat Chem Biol. 14:507–515. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lei P, Bai T and Sun Y: Mechanisms of ferroptosis and relations with regulated cell death: A review. Front Physiol. 10:1392019. View Article : Google Scholar : PubMed/NCBI | |
Zhu S, Zhang Q, Sun X, Zeh HJ III, Lotze MT, Kang R and Tang D: HSPA5 regulates ferroptotic cell death in cancer cells. Cancer Res. 77:2064–2077. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Li X, Zhang X, Kang R and Tang D: CISD1 inhibits ferroptosis by protection against mitochondrial lipid peroxidation. Biochem Biophys Res Commun. 478:838–844. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao M, Monian P, Quadri N, Ramasamy R and Jiang X: Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 59:298–308. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang WS, Kim KJ, Gaschler MM, Patel M, Shchepinov MS and Stockwell BR: Peroxidation of polyunsaturated fatty acids by lipoxygenases drives ferroptosis. Proc Natl Acad Sci USA. 113:E4966–E4975. 2016. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Guo P, Xie X, Wang Y and Chen G: Ferroptosis, a new form of cell death, and its relationships with tumourous diseases. J Cell Mol Med. 21:648–657. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cao JY and Dixon SJ: Mechanisms of ferroptosis. Cell Mol Life Sci. 73:2195–2209. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Wang H, Han D, Xie E, Yang X, Wei J, Gu S, Gao F, Zhu N, Yin X, et al: Ferroptosis as a target for protection against cardiomyopathy. Proc Natl Acad Sci USA. 116:2672–2680. 2019. View Article : Google Scholar : PubMed/NCBI | |
Park SJ, Cho SS, Kim KM, Yang JH, Kim JH, Jeong EH, Yang JW, Han CY, Ku SK, Cho IJ and Ki SH: Protective effect of sestrin2 against iron overload and ferroptosis-induced liver injury. Toxicol Appl Pharmacol. 379:1146652019. View Article : Google Scholar : PubMed/NCBI | |
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bogdan AR, Miyazawa M, Hashimoto K and Tsuji Y: Regulators of iron homeostasis: New players in metabolism, cell death, and disease. Trends Biochem Sci. 41:274–286. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhu H, Santo A, Jia Z and Li YR: GPx4 in bacterial infection and polymicrobial sepsis: Involvement of ferroptosis and pyroptosis. React Oxyg Species (Apex). 7:154–160. 2019.PubMed/NCBI | |
Beatty A, Singh T, Tyurina YY, Tyurin VA, Samovich S, Nicolas E, Maslar K, Zhou Y, Cai KQ, Tan Y, et al: Ferroptotic cell death triggered by conjugated linolenic acids is mediated by ACSL1. Nat Commun. 12:22442021. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao G and Chang YZ: Mitochondrial ferritin in the regulation of brain iron homeostasis and neurodegenerative diseases. Front Pharmacol. 5:192014. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Cai Z, Wang H, Han D, Cheng Q, Zhang P, Gao F, Yu Y, Song Z, Wu Q, et al: Loss of cardiac ferritin H facilitates cardiomyopathy via Slc7a11-mediated ferroptosis. Circ Res. 127:486–501. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Zeng L, Yang Y, Chen C, Wang D and Wang H: Acyl-CoA thioesterase 1 prevents cardiomyocytes from doxorubicin-induced ferroptosis via shaping the lipid composition. Cell Death Dis. 11:7562020. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Sun L, Wu W, Wu J, Sun Z and Ren Z: USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-P53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front Physiol. 11:5513182020. View Article : Google Scholar : PubMed/NCBI | |
Lillo-Moya J, Rojas-Solé C, Muñoz-Salamanca D, Panieri E, Saso L and Rodrigo R: Targeting ferroptosis against ischemia/reperfusion cardiac injury. Antioxidants (Basel). 10:6672021. View Article : Google Scholar : PubMed/NCBI | |
Wang N, Ma H, Li J, Meng C, Zou J, Wang H, Liu K, Liu M, Xiao X, Zhang H and Wang K: HSF1 functions as a key defender against palmitic acid-induced ferroptosis in cardiomyocytes. J Mol Cell Cardiol. 150:65–76. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang W, Zhou H, Wu Q, Duan M, Liu C, Wu H, Deng W, Shen D and Tang Q: Ferritinophagy-mediated ferroptosis is involved in sepsis-induced cardiac injury. Free Radic Biol Med. 160:303–318. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Yuan W, Hu A, Lin J, Xia Z, Yang CF, Li Y and Zhang Z: Dexmedetomidine alleviated sepsis-induced myocardial ferroptosis and septic heart injury. Mol Med Rep. 22:175–184. 2020. View Article : Google Scholar : PubMed/NCBI | |
Antonioli M, Di Rienzo M, Piacentini M and Fimia GM: Emerging mechanisms in initiating and terminating autophagy. Trends Biochem Sci. 42:28–41. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Terman A, Hallbeck M, Dehvari N, Cowburn RF, Benedikz E, Kågedal K, Cedazo-Minguez A and Marcusson J: Macroautophagy-generated increase of lysosomal amyloid β-protein mediates oxidant-induced apoptosis of cultured neuroblastoma cells. Autophagy. 7:1528–1545. 2011. View Article : Google Scholar : PubMed/NCBI | |
Levine B, Mizushima N and Virgin HW: Autophagy in immunity and inflammation. Nature. 469:323–335. 2011. View Article : Google Scholar : PubMed/NCBI | |
Anand SK, Sharma A, Singh N and Kakkar P: Entrenching role of cell cycle checkpoints and autophagy for maintenance of genomic integrity. DNA Repair (Amst). 86:1027482020. View Article : Google Scholar : PubMed/NCBI | |
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Gao M, Wang W, Lang Y, Tong Z, Wang K, Zhang H, Chen G, Liu M, Yao Y and Xiao X: Sinomenine hydrochloride protects against polymicrobial sepsis via autophagy. Int J Mol Sci. 16:2559–2573. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chung MT, Lee YM, Shen HH, Cheng PY, Huang YC, Lin YJ, Huang YY and Lam KK: Activation of autophagy is involved in the protective effect of 17β-oestradiol on endotoxaemia-induced multiple organ dysfunction in ovariectomized rats. J Cell Mol Med. 21:3705–3717. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jia J, Gong X, Zhao Y, Yang Z, Ji K, Luan T, Zang B and Li G: Autophagy enhancing contributes to the organ protective effect of alpha-lipoic acid in septic rats. Front Immunol. 10:14912019. View Article : Google Scholar : PubMed/NCBI | |
Lu LH, Chao CH and Yeh TM: Inhibition of autophagy protects against sepsis by concurrently attenuating the cytokine storm and vascular leakage. J Infect. 78:178–186. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cui SN, Chen ZY, Yang XB, Chen L, Yang YY, Pan SW, Wang YX, Xu JQ, Zhou T, Xiao HR, et al: Trichostatin A modulates the macrophage phenotype by enhancing autophagy to reduce inflammation during polymicrobial sepsis. Int Immunopharmacol. 77:1059732019. View Article : Google Scholar : PubMed/NCBI | |
Oami T, Watanabe E, Hatano M, Sunahara S, Fujimura L, Sakamoto A, Ito C, Toshimori K and Oda S: Suppression of t cell autophagy results in decreased viability and function of T cells through accelerated apoptosis in a murine sepsis model. Crit Care Med. 45:e77–e85. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patoli D, Mignotte F, Deckert V, Dusuel A, Dumont A, Rieu A, Jalil A, Van Dongen K, Bourgeois T, Gautier T, et al: Inhibition of mitophagy drives macrophage activation and antibacterial defense during sepsis. J Clin Invest. 130:5858–5874. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong G, Si C, Zhang Q, Yan F, Li C, Zhang H, Ma Q, Dai J, Li Z, Shi H, et al: Autophagy regulates accumulation and functional activity of granulocytic myeloid-derived suppressor cells via STAT3 signaling in endotoxin shock. Biochim Biophys Acta Mol Basis Dis. 1863:2796–2807. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jin L, Batra S and Jeyaseelan S: Deletion of NLRP3 augments survival during polymicrobial sepsis by decreasing autophagy and enhancing phagocytosis. J Immunol. 198:1253–1262. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Huang M, Dong N and Yao YM: Effect of interleukin-36β on activating autophagy of CD4+CD25+ regulatory T cells and its immune regulation in sepsis. J Infect Dis. 222:1517–1530. 2020. View Article : Google Scholar : PubMed/NCBI | |
Park SY, Shrestha S, Youn YJ, Kim JK, Kim SY, Kim HJ, Park SH, Ahn WG, Kim S, Lee MG, et al: Autophagy primes neutrophils for neutrophil extracellular trap formation during sepsis. Am J Respir Crit Care Med. 196:577–589. 2017. View Article : Google Scholar : PubMed/NCBI | |
Napolitano LM: Sepsis 2018: Definitions and guideline changes. Surg Infect (Larchmt). 19:117–125. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jiang P and Mizushima N: Autophagy and human diseases. Cell Res. 24:69–79. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lemasters JJ: Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res. 8:3–5. 2005. View Article : Google Scholar : PubMed/NCBI | |
Carchman EH, Whelan S, Loughran P, Mollen K, Stratamirovic S, Shiva S, Rosengart MR and Zuckerbraun BS: Experimental sepsis-induced mitochondrial biogenesis is dependent on autophagy, TLR4, and TLR9 signaling in liver. FASEB J. 27:4703–4711. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murphy MP: How mitochondria produce reactive oxygen species. Biochem J. 417:1–13. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kubli DA, Quinsay MN, Huang C, Lee Y and Gustafsson AB: Bnip3 functions as a mitochondrial sensor of oxidative stress during myocardial ischemia and reperfusion. Am J Physiol Heart Circ Physiol. 295:H2025–H2031. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pohl C and Dikic I: Cellular quality control by the ubiquitin-proteasome system and autophagy. Science. 366:818–822. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Wang Y, Zheng D, Wei M, Xu H and Peng T: Rac1 signalling mediates doxorubicin-induced cardiotoxicity through both reactive oxygen species-dependent and -independent pathways. Cardiovasc Res. 97:77–87. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Zhou XX, Li JZ, Qiang HF, Wang Y and Li G: Pretreatment of cardiac progenitor cells with bradykinin attenuates H2O2-induced cell apoptosis and improves cardiac function in rats by regulating autophagy. Stem Cell Res Ther. 12:4372021. View Article : Google Scholar : PubMed/NCBI | |
Jiang YJ, Sun SJ, Cao WX, Lan XT, Ni M, Fu H, Li DJ, Wang P and Shen FM: Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR. Biochim Biophys Acta Mol Basis Dis. 1867:1659802021. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Lam GY and Brumell JH: Autophagy signalling through reactive oxygen species. Antioxid Redox Signal. 14:2215–2231. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takahashi W, Watanabe E, Fujimura L, Watanabe-Takano H, Yoshidome H, Swanson PE, Tokuhisa T, Oda S and Hatano M: Kinetics and protective role of autophagy in a mouse cecal ligation and puncture-induced sepsis. Crit Care. 17:R1602013. View Article : Google Scholar : PubMed/NCBI | |
Yen YT, Yang HR, Lo HC, Hsieh YC, Tsai SC, Hong CW and Hsieh CH: Enhancing autophagy with activated protein C and rapamycin protects against sepsis-induced acute lung injury. Surgery. 153:689–698. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Yao X, Zhang QJ, Zhu M, Liu ZP, Ci B, Xie Y, Carlson D, Rothermel BA, Sun Y, et al: Beclin-1-dependent autophagy protects the heart during sepsis. Circulation. 138:2247–2262. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu JJ, Li Y, Yang MS, Chen R and Cen CQ: SP1-induced ZFAS1 aggravates sepsis-induced cardiac dysfunction via miR-590-3p/NLRP3-mediated autophagy and pyroptosis. Arch Biochem Biophys. 695:1086112020. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Yang X, Song Y, Sun X, Li W, Zhang L, Hu X, Wang H, Zhao N, Zhuang R, et al: Astragaloside IV-targeting miRNA-1 attenuates lipopolysaccharide-induced cardiac dysfunction in rats through inhibition of apoptosis and autophagy. Life Sci. 275:1194142021. View Article : Google Scholar : PubMed/NCBI | |
Wu B, Song H, Fan M, You F, Zhang L, Luo J, Li J, Wang L, Li C and Yuan M: Luteolin attenuates sepsis-induced myocardial injury by enhancing autophagy in mice. Int J Mol Med. 45:1477–1487. 2020.PubMed/NCBI | |
Han W, Wang H, Su L, Long Y, Cui N and Liu D: Inhibition of the mTOR pathway exerts cardioprotective effects partly through autophagy in CLP rats. Mediators Inflamm. 2018:47982092018. View Article : Google Scholar : PubMed/NCBI | |
Sang Z, Zhang P, Wei Y and Dong S: miR-214-3p attenuates sepsis-induced myocardial dysfunction in mice by inhibiting autophagy through PTEN/AKT/mTOR pathway. Biomed Res Int. 2020:14090382020. View Article : Google Scholar : PubMed/NCBI | |
Hsieh CH, Pai PY, Hsueh HW, Yuan SS and Hsieh YC: Complete induction of autophagy is essential for cardioprotection in sepsis. Ann Surg. 253:1190–1200. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yu T, Liu D, Gao M, Yang P, Zhang M, Song F, Zhang X and Liu Y: Dexmedetomidine prevents septic myocardial dysfunction in rats via activation of α7nAChR and PI3K/Akt-mediated autophagy. Biomed Pharmacother. 120:1092312019. View Article : Google Scholar : PubMed/NCBI | |
Zhang E, Zhao X, Zhang L, Li N, Yan J, Tu K, Yan R, Hu J, Zhang M, Sun D and Hou L: Minocycline promotes cardiomyocyte mitochondrial autophagy and cardiomyocyte autophagy to prevent sepsis-induced cardiac dysfunction by Akt/mTOR signaling. Apoptosis. 24:369–381. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Chen G, Guo D, Xu L and Gu Y: Polydatin alleviates septic myocardial injury by promoting SIRT6-mediated autophagy. Inflammation. 43:785–795. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Chen X, Shan C, Wang Y, Li P and Shao K: Autophagy in cardiovascular diseases: Role of noncoding RNAs. Mol Ther Nucleic Acids. 23:101–118. 2020. View Article : Google Scholar : PubMed/NCBI | |
Leng Y, Zhang Y, Li X, Wang Z, Zhuang Q and Lu Y: Receptor interacting protein kinases 1/3: The potential therapeutic target for cardiovascular inflammatory diseases. Front Pharmacol. 12:7623342021. View Article : Google Scholar : PubMed/NCBI | |
Hsieh YC, Athar M and Chaudry IH: When apoptosis meets autophagy: Deciding cell fate after trauma and sepsis. Trends Mol Med. 15:129–138. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishida K, Yamaguchi O and Otsu K: Crosstalk between autophagy and apoptosis in heart disease. Circ Res. 103:343–351. 2008. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Bravo-San Pedro JM, Vitale I, Aaronson SA, Abrams JM, Adam D, Alnemri ES, Altucci L, Andrews D, Annicchiarico-Petruzzelli M, et al: Essential versus accessory aspects of cell death: Recommendations of the NCCD 2015. Cell Death Differ. 22:58–73. 2015. View Article : Google Scholar : PubMed/NCBI | |
Speir M and Lawlor KE: RIP-roaring inflammation: RIPK1 and RIPK3 driven NLRP3 inflammasome activation and autoinflammatory disease. Semin Cell Dev Biol. 109:114–124. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kunchithapautham K and Rohrer B: Apoptosis and autophagy in photoreceptors exposed to oxidative stress. Autophagy. 3:433–441. 2007. View Article : Google Scholar : PubMed/NCBI | |
Nagata S, Hanayama R and Kawane K: Autoimmunity and the clearance of dead cells. Cell. 140:619–630. 2010. View Article : Google Scholar : PubMed/NCBI | |
Humphries F, Yang S, Wang B and Moynagh PN: RIP kinases: Key decision makers in cell death and innate immunity. Cell Death Differ. 22:225–236. 2015. View Article : Google Scholar : PubMed/NCBI | |
Feoktistova M, Makarov R, Yazdi AS and Panayotova-Dimitrova D: RIPK1 and TRADD regulate TNF-induced signaling and ripoptosome formation. Int J Mol Sci. 22:124592021. View Article : Google Scholar : PubMed/NCBI | |
Ofengeim D and Yuan J: Regulation of rip1 kinase signalling at the crossroads of inflammation and cell death. Nat Rev Mol Cell Biol. 14:727–736. 2013. View Article : Google Scholar : PubMed/NCBI | |
Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA and Yuan J: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol. 1:112–119. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu ZY, Cheng MH, Yu CY, Lin YS, Yeh TM, Chen CL, Chen CC, Wan SW and Chang CP: Dengue nonstructural protein 1 maintains autophagy through retarding caspase-mediated cleavage of beclin-1. Int J Mol Sci. 21:97022020. View Article : Google Scholar : PubMed/NCBI | |
Korsmeyer SJ, Wei MC, Saito M, Weiler S, Oh KJ and Schlesinger PH: Pro-apoptotic cascade activates BID, which oligomerizes BAK or BAX into pores that result in the release of cytochrome c. Cell Death Differ. 7:1166–1173. 2000. View Article : Google Scholar : PubMed/NCBI | |
Almeida RD, Manadas BJ, Carvalho AP and Duarte CB: Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta. 1704:59–86. 2004.PubMed/NCBI | |
Fefelova N, Wongjaikam S, Siri-Angkul N, Gwathmey J, Chattipakorn N, Chattipakorn S and Xie LH: Abstract 15737: Deficiency of mitochondrial calcium uniporter protects mouse hearts from iron overload by attenuating ferroptosis. Circulation. 142 (Suppl 3):A157372020. View Article : Google Scholar | |
Yin Z, Ding G, Chen X, Qin X, Xu H, Zeng B, Ren J, Zheng Q and Wang S: Beclin1 haploinsufficiency rescues low ambient temperature-induced cardiac remodeling and contractile dysfunction through inhibition of ferroptosis and mitochondrial injury. Metabolism. 113:1543972020. View Article : Google Scholar : PubMed/NCBI | |
Kang R, Zhu S, Zeh HJ, Klionsky DJ and Tang D: BECN1 is a new driver of ferroptosis. Autophagy. 14:2173–2175. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shao W, Yeretssian G, Doiron K, Hussain SN and Saleh M: The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem. 282:36321–36329. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G and Alnemri ES: Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 8:141282017. View Article : Google Scholar : PubMed/NCBI | |
Mandal P, Feng Y, Lyons JD, Berger SB, Otani S, Delaney A, Tharp GK, Maner-Smith K, Burd EM, Schaeffer M, et al: Caspase-8 collaborates with caspase-11 to drive tissue damage and execution of endotoxic shock. Immunity. 49:42–55.e6. 2018. View Article : Google Scholar : PubMed/NCBI | |
Russo AJ and Rathinam VAK: Lipid peroxidation adds fuel to pyr(optosis). Cell Host Microbe. 24:8–9. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bruni A, Bornstein S, Linkermann A and Shapiro AMJ: Regulated cell death seen through the lens of islet transplantation. Cell Transplant. 27:890–901. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Chen C, Chen Z, Liu L, Jiang J, Wu Z, Zhao M and Chen Y: NLRP3: A novel mediator in cardiovascular disease. J Immunol Res. 2018:57021032018. View Article : Google Scholar : PubMed/NCBI |