1
|
Pengo V, Lensing AW, Prins MH, Marchiori
A, Davidson BL, Tiozzo F, Albanese P, Biasiolo A, Pegoraro C,
Iliceto S, et al: Incidence of chronic thromboembolic pulmonary
hypertension after pulmonary embolism. N Engl J Med. 350:2257–2264.
2004. View Article : Google Scholar : PubMed/NCBI
|
2
|
Becattini C, Agnelli G, Pesavento R,
Silingardi M, Poggio R, Taliani MR and Ageno W: Incidence of
chronic thromboembolic pulmonary hypertension after a first episode
of pulmonary embolism. Chest. 130:172–175. 2006. View Article : Google Scholar
|
3
|
Sakao S and Tatsumi K: Crosstalk between
endothelial cell and thrombus in chronic thromboembolic pulmonary
hypertension: Perspective. Histol Histopathol. 28:185–193.
2013.
|
4
|
Lang IM, Pesavento R, Bonderman D and Yuan
JX: Risk factors and basic mechanisms of chronic thromboembolic
pulmonary hypertension: A current understanding. Eur Respir J.
41:462–468. 2013. View Article : Google Scholar : PubMed/NCBI
|
5
|
Jin Y and Choi AM: Cross talk between
autophagy and apoptosis in pulmonary hypertension. Pulm Circ.
2:407–414. 2012. View Article : Google Scholar
|
6
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar
|
7
|
Lee SJ, Smith A, Guo L, Alastalo TP, Li M,
Sawada H, Liu X, Chen ZH, Ifedigbo E, Jin Y, et al: Autophagic
protein LC3B confers resistance against hypoxia-induced pulmonary
hypertension. Am J Respir Crit Care Med. 183:649–658. 2011.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Lahm T, Albrecht M, Fisher AJ, Selej M,
Patel NG, Brown JA, Justice MJ, Brown MB, Van Demark M, Trulock KM,
et al: 17β-Estradiol attenuates hypoxic pulmonary hypertension via
estrogen receptor-mediated effects. Am J Respir Crit Care Med.
185:965–980. 2012. View Article : Google Scholar : PubMed/NCBI
|
9
|
Long L, Yang X, Southwood M, Lu J,
Marciniak SJ, Dunmore BJ and Morrell NW: Chloroquine prevents
progression of experimental pulmonary hypertension via inhibition
of autophagy and lysosomal bone morphogenetic protein type II
receptor degradation. Circ Res. 112:1159–1170. 2013. View Article : Google Scholar : PubMed/NCBI
|
10
|
Pegg AE: Mammalian polyamine metabolism
and function. IUBMB Life. 61:880–894. 2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Madeo F, Eisenberg T, Pietrocola F and
Kroemer G: Spermidine in health and disease. Science.
359:eaan27882018. View Article : Google Scholar : PubMed/NCBI
|
12
|
LaRocca TJ, Gioscia-Ryan RA, Hearon CM Jr
and Seals DR: The autophagy enhancer spermidine reverses arterial
aging. Mech Ageing Dev. 134:314–320. 2013. View Article : Google Scholar : PubMed/NCBI
|
13
|
Eisenberg T, Knauer H, Schauer A, Büttner
S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes
C, Antonacci L, et al: Induction of autophagy by spermidine
promotes longevity. Nat Cell Biol. 11:1305–1314. 2009. View Article : Google Scholar
|
14
|
LaRocca TJ, Henson GD, Thorburn A, Sindler
AL, Pierce GL and Seals DR: Translational evidence that impaired
autophagy contributes to arterial ageing. J Physiol. 590:3305–3316.
2012. View Article : Google Scholar
|
15
|
Wilusz JE, Sunwoo H and Spector DL: Long
noncoding RNAs: Functional surprises from the RNA world. Genes Dev.
23:1494–1504. 2009. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang KC and Chang HY: Molecular mechanisms
of long noncoding RNAs. Mol Cell. 43:904–914. 2011. View Article : Google Scholar
|
17
|
Xue D, Zhou C, Lu H, Xu R, Xu X and He X:
LncRNA GAS5 inhibits proliferation and progression of prostate
cancer by targeting miR-103 through AKT/mTOR signaling pathway.
Tumour Biol. 37:16187–16197. 2016. View Article : Google Scholar
|
18
|
Pickard M, Mourtada-Maarabouni M and
Williams G: Long non-coding RNA GAS5 regulates apoptosis in
prostate cancer cell lines. Biochim Biophys Acta. 1832:1613–1623.
2013. View Article : Google Scholar
|
19
|
Tao H, Zhang JG, Qin RH, Dai C, Shi P,
Yang JJ, Deng ZY and Shi KH: LncRNA GAS5 controls cardiac
fibroblast activation and fibrosis by targeting miR-21 via
PTEN/MMP-2 signaling pathway. Toxicology. 386:11–18. 2017.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Ye K, Wang S, Zhang H, Han H, Ma B and Nan
W: Long noncoding RNA GAS5 suppresses cell growth and
epithelial-mesenchymal transition in osteosarcoma by regulating the
miR-221/ARHI pathway. J Cell Biochem. 118:4772–4781. 2017.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Gu J, Wang Y, Wang X, Zhou D, Wang X, Zhou
M and He Z: Effect of the LncRNA GAS5-MiR-23a-ATG3 axis in
regulating autophagy in patients with breast cancer. Cell Physiol
Biochem. 48:194–207. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Zhang N, Yang GQ, Shao XM and Wei L: GAS5
modulated autophagy is a mechanism modulating cisplatin sensitivity
in NSCLC cells. Eur Rev Med Pharmacol Sci. 20:2271–2277. 2016.
|
23
|
Pulito C, Mori F, Sacconi A, Goeman F,
Ferraiuolo M, Pasanisi P, Campagnoli C, Berrino F, Fanciulli M,
Ford RJ, et al: Metformin-induced ablation of microRNA 21-5p
releases Sestrin-1 and CAB39L antitumoral activities. Cell Discov.
3:170222017. View Article : Google Scholar : PubMed/NCBI
|
24
|
Rasband W: ImageJ software. US National
Institutes of Health; Bethesda, Maryland, USA: 2011
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW,
Carmichael GG and Chen LL: Long noncoding RNAs with snoRNA ends.
Mol Cell. 48:219–230. 2012. View Article : Google Scholar
|
27
|
Volders PJ, Anckaert J, Verheggen K,
Nuytens J, Martens L, Mestdagh P and Vandesompele J: LNCipedia 5:
Towards a reference set of human long non-coding RNAs. Nucleic
Acids Res. 47:D135–D139. 2019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Cao Z, Pan X, Yang Y, Huang Y and Shen HB:
The lncLocator: A subcellular localization predictor for long
non-coding RNAs based on a stacked ensemble classifier.
Bioinformatics. 34:2185–2194. 2018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Li JH, Liu S, Zhou H, Qu LH and Yang JH:
starBase v2.0: Decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA
interaction networks from large-scale CLIP-Seq data. Nucleic Acids
Res. 42:(Database Issue). D92–D97. 2014. View Article : Google Scholar : PubMed/NCBI
|
30
|
Agarwal V, Bell GW, Nam JW and Bartel DP:
Predicting effective microRNA target sites in mammalian mRNAs.
Elife. 4:e050052015. View Article : Google Scholar
|
31
|
Betel D, Koppal A, Agius P, Sander C and
Leslie C: Comprehensive modeling of microRNA targets predicts
functional non-conserved and non-canonical sites. Genome Biol.
11:R902010. View Article : Google Scholar
|
32
|
Deng C, Wu D, Yang M, Chen Y, Ding H,
Zhong Z, Lian N, Zhang Q, Wu S and Liu K: The role of tissue factor
and autophagy in pulmonary vascular remodeling in a rat model for
chronic thromboembolic pulmonary hypertension. Respir Res.
17:652016. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang K, Liu CY, Zhou LY, Wang JX, Wang M,
Zhao B, Zhao WK, Xu SJ, Fan LH, Zhang XJ, et al: APF lncRNA
regulates autophagy and myocardial infarction by targeting
miR-188-3p. Nat Commun. 6:67792015. View Article : Google Scholar : PubMed/NCBI
|
34
|
Cao Y and Klionsky DJ: Physiological
functions of Atg6/beclin 1: A unique autophagy-related protein.
Cell Res. 17:839–849. 2007. View Article : Google Scholar : PubMed/NCBI
|
35
|
Komatsu M, Tanida I, Ueno T, Ohsumi M,
Ohsumi Y and Kominami E: The C-terminal region of an Apg7p/Cvt2p is
required for homodimerization and is essential for its E1 activity
and E1-E2 complex formation. J Biol Chem. 276:9846–9854. 2001.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Ichimura Y, Kirisako T, Takao T, Satomi Y,
Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi
M, et al: A ubiquitin-like system mediates protein lipidation.
Nature. 408:488–492. 2000. View Article : Google Scholar : PubMed/NCBI
|
37
|
Mercier O, Arthur Ataam J, Langer NB,
Dorfmüller P, Lamrani L, Lecerf F, Decante B, Dartevelle P,
Eddahibi S and Fadel E: Abnormal pulmonary endothelial cells may
underlie the enigmatic pathogenesis of chronic thromboembolic
pulmonary hypertension. J Heart Lung Transplant. 36:305–314. 2017.
View Article : Google Scholar
|
38
|
Casero RA Jr and Marton LJ: Targeting
polyamine metabolism and function in cancer and other
hyperproliferative diseases. Nat Rev Drug Discov. 6:373–390. 2007.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Cai Y, Yu X, Hu S and Yu J: A brief review
on the mechanisms of miRNA regulation. Genomics Proteomics
Bioinformatics. 7:147–154. 2009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kucher N, Rossi E and Derosa M: Massive
pulmonary embolism. J Vasc Surg. 44:684–685. 2006. View Article : Google Scholar
|
41
|
Gerges C, Skoro-Sajer N and Lang IM: Right
ventricle in acute and chronic pulmonary embolism (2013 Grover
Conference series). Pulm Circ. 4:378–386. 2014. View Article : Google Scholar
|
42
|
Eisenberg T, Abdellatif M, Schroeder S,
Primessnig U, Stekovic S, Pendl T, Harger A, Schipke J, Zimmermann
A, Schmidt A, et al: Cardioprotection and lifespan extension by the
natural polyamine spermidine. Nat Med. 22:1428–1438. 2016.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Minois N, Carmona-Gutierrez D, Bauer MA,
Rockenfeller P, Eisenberg T, Brandhorst S, Sigrist SJ, Kroemer G
and Madeo F: Spermidine promotes stress resistance in Drosophila
melanogaster through autophagy-dependent and -independent pathways.
Cell Death Dis. 3:e4012012. View Article : Google Scholar : PubMed/NCBI
|
44
|
Mizushima N and Komatsu M: Autophagy:
Renovation of cells and tissues. Cell. 147:728–741. 2011.
View Article : Google Scholar
|
45
|
Morselli E, Mariño G, Bennetzen MV,
Eisenberg T, Megalou E, Schroeder S, Cabrera S, Bénit P, Rustin P,
Criollo A, et al: Spermidine and resveratrol induce autophagy by
distinct pathways converging on the acetylproteome. J Cell Biol.
192:615–629. 2011. View Article : Google Scholar
|
46
|
Ponting CP, Oliver PL and Reik W:
Evolution and functions of long noncoding RNAs. Cell. 136:629–641.
2009. View Article : Google Scholar
|
47
|
Huo JF and Chen XB: Long noncoding RNA
growth arrest-specific 5 facilitates glioma cell sensitivity to
cisplatin by suppressing excessive autophagy in an mTOR-dependent
manner. J Cell Biochem. 120:6127–6136. 2019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Paraskevopoulou MD and Hatzigeorgiou AG:
Analyzing miRNA-lncRNA interactions. Long Non-Coding RNAs. Methods
in Molecular Biology. 1402. Feng Y and Zhang L: Humana Press; New
York, NY: pp. 271–286. 2016, View Article : Google Scholar
|
49
|
Yoon J, Abdelmohsen K and Gorospe M:
Functional interactions among microRNAs and long noncoding RNAs.
Seminars in cell and developmental biology. Elsevier; pp. 9–14.
2014, View Article : Google Scholar
|
50
|
Hessam S, Sand M, Skrygan M, Gambichler T
and Bechara FG: Expression of miRNA-155, miRNA-223, miRNA-31,
miRNA-21, miRNA-125b, and miRNA-146a in the inflammatory pathway of
hidradenitis suppurativa. Inflammation. 40:464–472. 2017.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Kim S, Lee KS, Choi S, Kim J, Lee DK, Park
M, Park W, Kim TH, Hwang JY, Won MH, et al: NF-κB-responsive
miRNA-31-5p elicits endothelial dysfunction associated with
preeclampsia via down-regulation of endothelial nitric-oxide
synthase. J Biol Chem. 293:18989–19000. 2018. View Article : Google Scholar : PubMed/NCBI
|
52
|
Mehta V and Namboodiri M:
N-acetylaspartate as an acetyl source in the nervous system. Brain
Res Mol Brain Res. 31:151–157. 1995. View Article : Google Scholar : PubMed/NCBI
|
53
|
Huang S, Lu W, Ge D, Meng N, Li Y, Su L,
Zhang S, Zhang Y, Zhao B and Miao J: A new microRNA signal pathway
regulated by long noncoding RNA TGFB2-OT1 in autophagy and
inflammation of vascular endothelial cells. Autophagy.
11:2172–2183. 2015. View Article : Google Scholar : PubMed/NCBI
|
54
|
Huber K, Hofer DC, Trefely S, Pelzmann HJ,
Madreiter-Sokolowski C, Duta-Mare M, Schlager S, Trausinger G,
Stryeck S, Graier WF, et al: N-acetylaspartate pathway is nutrient
responsive and coordinates lipid and energy metabolism in brown
adipocytes. Biochim Biophys Acta Mol Cell Res. 1866:337–348. 2019.
View Article : Google Scholar : PubMed/NCBI
|