Functional characteristics and research trends of PDE11A in human diseases (Review)
- Authors:
- Gyeyeong Kong
- Hyunji Lee
- Thuy-Trang T. Vo
- Uijin Juang
- So Hee Kwon
- Jisoo Park
- Jongsun Park
- Seon-Hwan Kim
-
Affiliations: Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea, College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea, Mitos Research Institute, Mitos Therapeutics Inc., Daejeon 34134, Republic of Korea, Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea - Published online on: August 4, 2022 https://doi.org/10.3892/mmr.2022.12814
- Article Number: 298
-
Copyright: © Kong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Hannah-Shmouni F, Faucz FR and Stratakis CA: Alterations of phosphodiesterases in adrenocortical tumors. Front Endocrinol (Lausanne). 7:1112016. View Article : Google Scholar : PubMed/NCBI | |
Rall TW and Sutherland EW: Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem. 232:1065–1076. 1958. View Article : Google Scholar : PubMed/NCBI | |
Butcher RW and Sutherland EW: Adenosine 3′,5′-phosphate in biological materials. I. purification and properties of cyclic 3′,5′-Nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J Biol Chem. 237:1244–1250. 1962. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Chen J, Fontes SK, Bautista EN and Cheng Z: Physiological and pathological roles of protein kinase a in the heart. Cardiovasc Res. 118:386–398. 2022. View Article : Google Scholar : PubMed/NCBI | |
Calamera G, Moltzau LR, Levy FO and Andressen KW: Phosphodiesterases and compartmentation of camp and cgmp signaling in regulation of cardiac contractility in normal and failing hearts. Int J Mol Sci. 23:21452022. View Article : Google Scholar | |
Levy I, Horvath A, Azevedo M, de Alexandre RB and Stratakis CA: Phosphodiesterase function and endocrine cells: Links to human disease and roles in tumor development and treatment. Curr Opin Pharmacol. 11:689–697. 2011. View Article : Google Scholar | |
Makhlouf A, Kshirsagar A and Niederberger C: Phosphodiesterase 11: A brief review of structure, expression and function. Int J Impot Res. 18:501–519. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Hu B, Xu Z, Ye Y, Wang H, Wang S, Liu Z and Wang J: Selectivity mechanism of phosphodiesterase isoform inhibitor through in silico investigations. J Mol Model. 28:92021. View Article : Google Scholar | |
Omori K and Kotera J: Overview of PDEs and their regulation. Circ Res. 100:309–327. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ke H and Wang H: Crystal structures of phosphodiesterases and implications on substrate specificity and inhibitor selectivity. Curr Top Med Chem. 7:391–403. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rotella DP: Phosphodiesterase 5 inhibitors: Current status and potential applications. Nat Rev Drug Discov. 1:674–682. 2002. View Article : Google Scholar : PubMed/NCBI | |
Galie N, Ghofrani HA, Torbicki A, Barst RJ, Rubin LJ, Badesch D, Fleming T, Parpia T, Burgess G, Branzi A, et al: Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 353:2148–2157. 2005. View Article : Google Scholar : PubMed/NCBI | |
Kleiman RJ, Chapin DS, Christoffersen C, Freeman J, Fonseca KR, Geoghegan KF, Grimwood S, Guanowsky V, Hajós M, Harms JF, et al: Phosphodiesterase 9a regulates central cgmp and modulates responses to cholinergic and monoaminergic perturbation in vivo. J Pharmacol Exp Ther. 341:396–409. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmidt CJ: Phosphodiesterase inhibitors as potential cognition enhancing agents. Curr Top Med Chem. 10:222–230. 2010. View Article : Google Scholar : PubMed/NCBI | |
Blokland A, Schreiber R and Prickaerts J: Improving memory: A role for phosphodiesterases. Curr Pharm Des. 12:2511–2523. 2006. View Article : Google Scholar : PubMed/NCBI | |
Menniti FS, Faraci WS and Schmidt CJ: Phosphodiesterases in the Cns: Targets for drug development. Nat Rev Drug Discov. 5:660–670. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hetman JM, Robas N, Baxendale R, Fidock M, Phillips SC, Soderling SH and Beavo JA: Cloning and characterization of two splice variants of human phosphodiesterase 11A. Proc Natl Acad Sci USA. 97:12891–12895. 2000. View Article : Google Scholar : PubMed/NCBI | |
Fawcett L, Baxendale R, Stacey P, McGrouther C, Harrow I, Soderling S, Hetman J, Beavo JA and Phillips SC: Molecular Cloning and characterization of a distinct human phosphodiesterase gene family: PDE11A. Proc Natl Acad Sci USA. 97:3702–3707. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yuasa K, Kotera J, Fujishige K, Michibata H, Sasaki T and Omori K: Isolation and characterization of two novel phosphodiesterase PDE11A variants showing unique structure and tissue-specific expression. J Biol Chem. 275:31469–31479. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yuasa K, Ohgaru T, Asahina M and Omori K: Identification of rat cyclic nucleotide phosphodiesterase 11A (PDE11A): Comparison of rat and human PDE11A Splicing variants. Eur J Biochem. 268:4440–4448. 2001. View Article : Google Scholar : PubMed/NCBI | |
Weeks JL II, Zoraghi R, Francis SH and Corbin JD: N-Terminal domain of phosphodiesterase-11A4 (PDE11A4) decreases affinity of the catalytic site for substrates and tadalafil, and is involved in oligomerization. Biochemistry. 46:10353–10364. 2007. View Article : Google Scholar : PubMed/NCBI | |
D'Andrea MR, Qiu Y, Haynes-Johnson D, Bhattacharjee S, Kraft P and Lundeen S: Expression of PDE11A in normal and malignant human tissues. J Histochem Cytochem. 53:895–903. 2005. View Article : Google Scholar | |
Kelly MP: A role for phosphodiesterase 11A (PDE11A) in the formation of social memories and the stabilization of mood. Adv Neurobiol. 17:201–230. 2017. View Article : Google Scholar | |
Kelly MP: Does phosphodiesterase 11A (PDE11A) hold promise as a future therapeutic target? Curr Pharm Des. 21:389–416. 2015. View Article : Google Scholar : PubMed/NCBI | |
Pilarzyk K, Farmer R, Porcher L and Kelly MP: The role of PDE11A4 in social isolation-induced changes in intracellular signaling and neuroinflammation. Front Pharmacol. 12:7496282021. View Article : Google Scholar | |
Wettschureck N and Offermanns S: Mammalian G proteins and their cell type specific functions. Physiol Rev. 85:1159–1204. 2005. View Article : Google Scholar : PubMed/NCBI | |
Stratakis CA: Mutations of the gene encoding the protein kinase a type I-Alpha regulatory subunit (PRKAR1A) in patients with the ‘complex of spotty skin pigmentation, myxomas, endocrine overactivity, and schwannomas’ (Carney Complex). Ann N Y Acad Sci. 968:3–21. 2002. View Article : Google Scholar | |
Bertherat J, Horvath A, Groussin L, Grabar S, Boikos S, Cazabat L, Libe R, René-Corail F, Stergiopoulos S, Bourdeau I, et al: Mutations in regulatory subunit type 1A of cyclic adenosine 5′-Monophosphate-dependent protein kinase (PRKAR1A): Phenotype analysis in 353 patients and 80 different genotypes. J Clin Endocrinol Metab. 94:2085–2091. 2009. View Article : Google Scholar : PubMed/NCBI | |
Greene EL, Horvath AD, Nesterova M, Giatzakis C, Bossis I and Stratakis CA: In vitro functional studies of naturally occurring pathogenic PRKAR1A mutations that are not subject to nonsense mRNA decay. Hum Mutat. 29:633–639. 2008. View Article : Google Scholar | |
Groussin L, Kirschner LS, Vincent-Dejean C, Perlemoine K, Jullian E, Delemer B, Zacharieva S, Pignatelli D, Carney JA, Luton JP, et al: Molecular analysis of the cyclic AMP-Dependent Protein Kinase A (PKA) regulatory subunit 1A (PRKAR1A) gene in patients with carney complex and primary pigmented nodular adrenocortical disease (PPNAD) reveals novel mutations and clues for pathophysiology: Augmented PKA signaling is associated with adrenal tumorigenesis in PPNAD. Am J Hum Genet. 71:1433–1442. 2002. View Article : Google Scholar | |
Horvath A, Bertherat J, Groussin L, Guillaud-Bataille M, Tsang K, Cazabat L, Libé R, Remmers E, René-Corail F, Faucz FR, et al: Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): An update. Hum Mutat. 31:369–379. 2010. View Article : Google Scholar | |
Sandrini F and Stratakis C: Clinical and molecular genetics of carney complex. Mol Genet Metab. 78:83–92. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kirschner LS, Carney JA, Pack SD, Taymans SE, Giatzakis C, Cho YS, Cho-Chung YS and Stratakis CA: Mutations of the gene encoding the protein kinase a type I-alpha regulatory subunit in patients with the carney complex. Nat Genet. 26:89–92. 2000. View Article : Google Scholar | |
Weinstein LS, Shenker A, Gejman PV, Merino MJ, Friedman E and Spiegel AM: Activating mutations of the stimulatory G protein in the McCune-albright syndrome. N Engl J Med. 325:1688–1695. 1991. View Article : Google Scholar : PubMed/NCBI | |
Stewart V and Yanofsky C: Role of leader peptide synthesis in tryptophanase operon expression in Escherichia Coli K-12. J Bacteriol. 167:383–386. 1986. View Article : Google Scholar | |
Velterop JS, Sellink E, Meulenberg JJ, David S, Bulder I and Postma PW: Synthesis of pyrroloquinoline quinone in vivo and in vitro and detection of an intermediate in the biosynthetic pathway. J Bacteriol. 177:5088–5098. 1995. View Article : Google Scholar | |
Meulenberg JJ, Sellink E, Riegman NH and Postma PW: Nucleotide sequence and structure of the klebsiella pneumoniae Pqq operon. Mol Gen Genet. 232:284–294. 1992. View Article : Google Scholar | |
Roelofs J, Smith JL and Van Haastert PJ: Cgmp signalling: Different ways to create a pathway. Trends Genet. 19:132–134. 2003. View Article : Google Scholar | |
Ochman H: Distinguishing the ORFs from the ELFs: Short bacterial genes and the annotation of genomes. Trends Genet. 18:335–337. 2002. View Article : Google Scholar | |
Yanofsky C: Transcription Attenuation. J Biol Chem. 263:609–612. 1988. View Article : Google Scholar : PubMed/NCBI | |
You JY, Liu XW, Bao YX, Shen ZN, Wang Q, He GY, Lu J, Zhang JG, Chen JW and Liu PQ: A novel phosphodiesterase 9A inhibitor LW33 protects against ischemic stroke through the cGMP/PKG/CREB Pathway. Eur J Pharmacol. 925:1749872022. View Article : Google Scholar | |
Libe R, Fratticci A, Coste J, Tissier F, Horvath A, Ragazzon B, Rene-Corail F, Groussin L, Bertagna X, Raffin-Sanson ML, et al: Phosphodiesterase 11A (PDE11A) and genetic predisposition to adrenocortical tumors. Clin Cancer Res. 14:4016–4024. 2008. View Article : Google Scholar : PubMed/NCBI | |
Horvath A, Boikos S, Giatzakis C, Robinson-White A, Groussin L, Griffin KJ, Stein E, Levine E, Delimpasi G, Hsiao HP, et al: A genome-wide scan identifies mutations in the gene encoding phosphodiesterase 11A4 (PDE11A) in individuals with adrenocortical hyperplasia. Nat Genet. 38:794–800. 2006. View Article : Google Scholar | |
Horvath A, Korde L, Greene MH, Libe R, Osorio P, Faucz FR, Raffin-Sanson ML, Tsang KM, Drori-Herishanu L, Patronas Y, et al: Functional phosphodiesterase 11A mutations may modify the risk of familial and bilateral testicular germ cell tumors. Cancer Res. 69:5301–5306. 2009. View Article : Google Scholar : PubMed/NCBI | |
de Alexandre RB, Horvath AD, Szarek E, Manning AD, Leal LF, Kardauke F, Epstein JA, Carraro DM, Soares FA, Apanasovich TV, et al: Phosphodiesterase Sequence variants may predispose to prostate cancer. Endocr Relat Cancer. 22:519–530. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lefievre L, de Lamirande E and Gagnon C: Presence of Cyclic nucleotide phosphodiesterases PDE1A, existing as a stable complex with calmodulin, and PDE3A in human spermatozoa. Biol Reprod. 67:423–430. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fidock M, Miller M and Lanfear J: Isolation and differential tissue distribution of two human cDNAs encoding PDE1 splice variants. Cell Signal. 14:53–60. 2002. View Article : Google Scholar | |
Michibata H, Yanaka N, Kanoh Y, Okumura K and Omori K: Human Ca2+/Calmodulin-dependent phosphodiesterase PDE1A: Novel splice variants, their specific expression, genomic organization, and chromosomal localization. Biochim Biophys Acta. 1517:278–287. 2001. View Article : Google Scholar | |
Loughney K, Martins TJ, Harris EA, Sadhu K, Hicks JB, Sonnenburg WK, Beavo JA and Ferguson K: Isolation and Characterization of CDNAs corresponding to two human calcium, calmodulin-regulated, 3′,5′-cyclic nucleotide phosphodiesterases. J Biol Chem. 271:796–806. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kanda N and Watanabe S: Regulatory roles of adenylate cyclase and cyclic nucleotide phosphodiesterases 1 and 4 in interleukin-13 production by activated human T cells. Biochem Pharmacol. 62:495–507. 2001. View Article : Google Scholar | |
Yan C, Zhao AZ, Bentley JK, Loughney K, Ferguson K and Beavo JA: Molecular cloning and characterization of a calmodulin-dependent phosphodiesterase enriched in olfactory sensory neurons. Proc Natl Acad Sci USA. 92:9677–9681. 1995. View Article : Google Scholar : PubMed/NCBI | |
Nikolaev VO, Gambaryan S, Engelhardt S, Walter U and Lohse MJ: Real-Time Monitoring of the PDE2 activity of live cells: Hormone-stimulated camp hydrolysis is faster than hormone-stimulated camp synthesis. J Biol Chem. 280:1716–1719. 2005. View Article : Google Scholar : PubMed/NCBI | |
Maurice DH, Palmer D, Tilley DG, Dunkerley HA, Netherton SJ, Raymond DR, Elbatarny HS and Jimmo SL: Cyclic nucleotide phosphodiesterase activity, expression, and targeting in cells of the cardiovascular system. Mol Pharmacol. 64:533–546. 2003. View Article : Google Scholar | |
Degerman E, Belfrage P and Manganiello VC: Structure, localization, and regulation of cgmp-inhibited phosphodiesterase (PDE3). J Biol Chem. 272:6823–6826. 1997. View Article : Google Scholar : PubMed/NCBI | |
Mongillo M, Tocchetti CG, Terrin A, Lissandron V, Cheung YF, Dostmann WR, Pozzan T, Kass DA, Paolocci N, Houslay MD and Zaccolo M: Compartmentalized phosphodiesterase-2 activity blunts beta-adrenergic cardiac inotropy via an No/cGMP-dependent pathway. Circ Res. 98:226–234. 2006. View Article : Google Scholar : PubMed/NCBI | |
Bender AT, Ostenson CL, Giordano D and Beavo JA: Differentiation of human monocytes in vitro with granulocyte-macrophage colony-stimulating factor and macrophage colony-stimulating factor produces distinct changes in cGMP phosphodiesterase expression. Cell Signal. 16:365–374. 2004. View Article : Google Scholar | |
Seybold J, Thomas D, Witzenrath M, Boral S, Hocke AC, Burger A, Hatzelmann A, Tenor H, Schudt C, Krüll M, et al: Tumor necrosis factor-alpha-dependent expression of phosphodiesterase 2: Role in endothelial hyperpermeability. Blood. 105:3569–3576. 2005. View Article : Google Scholar : PubMed/NCBI | |
Domek-Lopacinska K and Strosznajder JB: The effect of selective inhibition of cyclic GMP hydrolyzing phosphodiesterases 2 and 5 on learning and memory processes and nitric oxide synthase activity in brain during aging. Brain Res. 1216:68–77. 2008. View Article : Google Scholar : PubMed/NCBI | |
de Oliveira SK and Smolenski A: Phosphodiesterases link the aryl hydrocarbon receptor complex to cyclic nucleotide signaling. Biochem Pharmacol. 77:723–733. 2009. View Article : Google Scholar | |
Rena G, Begg F, Ross A, MacKenzie C, McPhee I, Campbell L, Huston E, Sullivan M and Houslay MD: Molecular cloning, genomic positioning, promoter identification, and characterization of the novel cyclic amp-specific phosphodiesterase PDE4A10. Mol Pharmacol. 59:996–1011. 2001. View Article : Google Scholar | |
Wang P, Wu P, Ohleth KM, Egan RW and Billah MM: Phosphodiesterase 4B2 is the predominant phosphodiesterase species and undergoes differential regulation of gene expression in human monocytes and neutrophils. Mol Pharmacol. 56:170–174. 1999. View Article : Google Scholar | |
Bolger G, Michaeli T, Martins T, St John T, Steiner B, Rodgers L, Riggs M, Wigler M and Ferguson K: A family of human phosphodiesterases homologous to the dunce learning and memory gene product of drosophila melanogaster are potential targets for antidepressant drugs. Mol Cell Biol. 13:6558–6571. 1993. View Article : Google Scholar | |
Dunkern TR and Hatzelmann A: The effect of sildenafil on human platelet secretory function is controlled by a complex interplay between phosphodiesterases 2, 3 and 5. Cell Signal. 17:331–339. 2005. View Article : Google Scholar | |
Prickaerts J, Sik A, van Staveren WC, Koopmans G, Steinbusch HW, van der Staay FJ, de Vente J and Blokland A: Phosphodiesterase type 5 inhibition improves early memory consolidation of object information. Neurochem Int. 45:915–928. 2004. View Article : Google Scholar | |
Miller CL and Yan C: Targeting cyclic nucleotide phosphodiesterase in the heart: Therapeutic implications. J Cardiovasc Transl Res. 3:507–515. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ridge KD, Abdulaev NG, Sousa M and Palczewski K: Phototransduction: Crystal clear. Trends Biochem Sci. 28:479–487. 2003. View Article : Google Scholar | |
Morin F, Lugnier C, Kameni J and Voisin P: Expression and role of phosphodiesterase 6 in the chicken pineal gland. J Neurochem. 78:88–99. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bloom TJ and Beavo JA: Identification and tissue-specific expression of PDE7 phosphodiesterase splice variants. Proc Natl Acad Sci USA. 93:14188–14192. 1996. View Article : Google Scholar : PubMed/NCBI | |
Han P, Zhu X and Michaeli T: Alternative splicing of the high affinity cAMP-specific phosphodiesterase (PDE7A) mRNA in human skeletal muscle and heart. J Biol Chem. 272:16152–16157. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sasaki T, Kotera J and Omori K: Transcriptional activation of phosphodiesterase 7B1 by dopamine d1 receptor stimulation through the cyclic AMP/Cyclic AMP-dependent protein kinase/cyclic AMP-response element binding protein pathway in primary striatal neurons. J Neurochem. 89:474–483. 2004. View Article : Google Scholar : PubMed/NCBI | |
Glavas NA, Ostenson C, Schaefer JB, Vasta V and Beavo JA: T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci USA. 98:6319–6324. 2001. View Article : Google Scholar : PubMed/NCBI | |
Patrucco E, Albergine MS, Santana LF and Beavo JA: Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes. J Mol Cell Cardiol. 49:330–333. 2010. View Article : Google Scholar | |
Mehats C, Andersen CB, Filopanti M, Jin SL and Conti M: Cyclic nucleotide phosphodiesterases and their role in endocrine cell signaling. Trends Endocrinol Metab. 13:29–35. 2002. View Article : Google Scholar : PubMed/NCBI | |
Hayashi M, Matsushima K, Ohashi H, Tsunoda H, Murase S, Kawarada Y and Tanaka T: Molecular cloning and characterization of human PDE8B, a novel thyroid-specific isozyme of 3′,5′-cyclic nucleotide phosphodiesterase. Biochem Biophys Res Commun. 250:751–756. 1998. View Article : Google Scholar : PubMed/NCBI | |
Hayashi M, Shimada Y, Nishimura Y, Hama T and Tanaka T: Genomic organization, chromosomal localization, and alternative splicing of the human phosphodiesterase 8B gene. Biochem Biophys Res Commun. 297:1253–1258. 2002. View Article : Google Scholar : PubMed/NCBI | |
Horvath A, Giatzakis C, Tsang K, Greene E, Osorio P, Boikos S, Libè R, Patronas Y, Robinson-White A, Remmers E, et al: A cAMP-specific phosphodiesterase (PDE8B) that is mutated in adrenal hyperplasia is expressed widely in human and mouse tissues: A novel PDE8B isoform in human adrenal cortex. Eur J Hum Genet. 16:1245–1253. 2008. View Article : Google Scholar | |
Rentero C, Monfort A and Puigdomenech P: Identification and distribution of different mRNA variants produced by differential splicing in the human phosphodiesterase 9A gene. Biochem Biophys Res Commun. 301:686–692. 2003. View Article : Google Scholar : PubMed/NCBI | |
Furukawa T, Youssef EM, Yatsuoka T, Yokoyama T, Makino N, Inoue H, Fukushige S, Hoshi M, Hayashi Y, Sunamura M and Horii A: Cloning and characterization of the human Udp-N-Acetylglucosamine: Alpha-1,3-D-mannoside beta-1,4-N-acetylglucosaminyltransferase IV-Homologue (hGnT-IV-H) gene. J Hum Genet. 44:397–401. 1999. View Article : Google Scholar | |
Kelly MP, Logue SF, Brennan J, Day JP, Lakkaraju S, Jiang L, Zhong X, Tam M, Sukoff Rizzo SJ, Platt BJ, et al: Phosphodiesterase 11A in brain is enriched in ventral hippocampus and deletion causes psychiatric disease-related phenotypes. Proc Natl Acad Sci USA. 107:8457–8462. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kleppisch T: Phosphodiesterases in the central nervous system. Handb Exp Pharmacol. 71–92. 2009. View Article : Google Scholar | |
Knott EP, Assi M, Rao SN, Ghosh M and Pearse DD: Phosphodiesterase inhibitors as a therapeutic approach to neuroprotection and repair. Int J Mol Sci. 18:6962017. View Article : Google Scholar | |
Libe R, Horvath A, Vezzosi D, Fratticci A, Coste J, Perlemoine K, Ragazzon B, Guillaud-Bataille M, Groussin L, Clauser E, et al: Frequent phosphodiesterase 11A gene (PDE11A) defects in patients with carney complex (CNC) Caused by PRKAR1A Mutations: PDE11A may contribute to adrenal and testicular tumors in CNC as a modifier of the phenotype. J Clin Endocrinol Metab. 96:E208–E214. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jager R, Russwurm C, Schwede F, Genieser HG, Koesling D and Russwurm M: Activation of PDE10 and PDE11 phosphodiesterases. J Biol Chem. 287:1210–1219. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pitsava G and Stratakis CA: Genetic alterations in benign adrenal tumors. Biomedicines. 10:10412022. View Article : Google Scholar : PubMed/NCBI | |
Hsiao HP, Kirschner LS, Bourdeau I, Keil MF, Boikos SA, Verma S, Robinson-White AJ, Nesterova M, Lacroix A and Stratakis CA: Clinical and genetic heterogeneity, overlap with other tumor syndromes, and atypical glucocorticoid hormone secretion in adrenocorticotropin-independent macronodular adrenal hyperplasia compared with other adrenocortical tumors. J Clin Endocrinol Metab. 94:2930–2937. 2009. View Article : Google Scholar : PubMed/NCBI | |
Horvath A, Giatzakis C, Robinson-White A, Boikos S, Levine E, Griffin K, Stein E, Kamvissi V, Soni P, Bossis I, et al: Adrenal hyperplasia and adenomas are associated with inhibition of phosphodiesterase 11A in carriers of PDE11A sequence variants that are frequent in the population. Cancer Res. 66:11571–11575. 2006. View Article : Google Scholar : PubMed/NCBI | |
Pathak A, Stewart DR, Faucz FR, Xekouki P, Bass S, Vogt A, Zhang X, Boland J, Yeager M, Loud JT, et al: Rare inactivating PDE11A variants associated with testicular germ cell tumors. Endocr Relat Cancer. 22:909–917. 2015. View Article : Google Scholar : PubMed/NCBI | |
Dal J, Nielsen EH, Klose M, Feldt-Rasmussen U, Andersen M, Vang S, Korbonits M and Jørgensen JOL: Phenotypic and genotypic features of a large kindred with a germline AIP variant. Clin Endocrinol (Oxf). 93:146–153. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pinto EM, Faucz FR, Paza LZ, Wu G, Fernandes ES, Bertherat J, Stratakis CA, Lalli E, Ribeiro RC, Rodriguez-Galindo C, et al: Germline variants in phosphodiesterase genes and genetic predisposition to pediatric adrenocortical tumors. Cancers (Basel). 12:5062020. View Article : Google Scholar | |
Faucz FR, Horvath A, Rothenbuhler A, Almeida MQ, Libe R, Raffin-Sanson ML, Bertherat J, Carraro DM, Soares FA, Molina Gde C, et al: Phosphodiesterase 11A (PDE11A) genetic variants may increase susceptibility to prostatic cancer. J Clin Endocrinol Metab. 96:E135–E140. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dono A, Nickles J, Rodriguez-Armendariz AG, McFarland BC, Ajami NJ, Ballester LY, Wargo JA and Esquenazi Y: Glioma and the gut-brain axis: Opportunities and future perspectives. Neurooncol Adv. 4:vdac0542022.PubMed/NCBI | |
Schwartz KA, Noel M, Nikolai M, Olson LK, Hord NG, Zakem M, Clark J, Elnabtity M, Figueroa B and Chang HT: Long term survivals in aggressive primary brain malignancies treated with an adjuvant ketogenic diet. Front Nutr. 9:7707962022. View Article : Google Scholar : PubMed/NCBI | |
Burns TC, Awad AJ, Li MD and Grant GA: Radiation-induced brain injury: Low-hanging fruit for neuroregeneration. Neurosurg Focus. 40:E32016. View Article : Google Scholar : PubMed/NCBI | |
Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 352:987–996. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Park S, Kong G, Kwon SH, Park J, Park J and Kim SH: Phosphodiesterase 11A (PDE11A), a potential biomarker for glioblastoma. Toxicol Res. 2022. View Article : Google Scholar | |
Rothenbuhler A, Horvath A, Libe R, Faucz FR, Fratticci A, Raffin Sanson ML, Vezzosi D, Azevedo M, Levy I, Almeida MQ, et al: Identification of novel genetic variants in phosphodiesterase 8B (PDE8B), a cAMP-specific phosphodiesterase highly expressed in the adrenal cortex, in a cohort of patients with adrenal tumours. Clin Endocrinol (Oxf). 77:195–199. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hou Y, Wren A, Mylarapu N, Browning K, Islam BN, Wang R, Vega KJ and Browning DD: Inhibition of colon cancer cell growth by phosphodiesterase inhibitors is independent of cGMP Signaling. J Pharmacol Exp Ther. 381:42–53. 2022. View Article : Google Scholar : PubMed/NCBI | |
Di Iorio P, Ronci M, Giuliani P, Caciagli F, Ciccarelli R, Caruso V, Beggiato S and Zuccarini M: Pros and cons of pharmacological manipulation of cGMP-PDEs in the prevention and treatment of breast cancer. Int J Mol Sci. 23:2622021. View Article : Google Scholar | |
Vezzosi D, Cartier D, Regnier C, Otal P, Bennet A, Parmentier F, Plantavid M, Lacroix A, Lefebvre H and Caron P: Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors. Eur J Endocrinol. 156:21–31. 2007. View Article : Google Scholar | |
Vezzosi D, Libe R, Baudry C, Rizk-Rabin M, Horvath A, Levy I, René-Corail F, Ragazzon B, Stratakis CA, Vandecasteele G and Bertherat J: Phosphodiesterase 11A (PDE11A) gene defects in patients with acth-independent macronodular adrenal hyperplasia (AIMAH): Functional variants may contribute to genetic susceptibility of bilateral adrenal tumors. J Clin Endocrinol Metab. 97:E2063–E2069. 2012. View Article : Google Scholar : PubMed/NCBI | |
Peverelli E, Ermetici F, Filopanti M, Elli FM, Ronchi CL, Mantovani G, Ferrero S, Bosari S, Beck-Peccoz P, Lania A and Spada A: Analysis of genetic variants of phosphodiesterase 11A in acromegalic patients. Eur J Endocrinol. 161:687–694. 2009. View Article : Google Scholar | |
Pathak G, Agostino MJ, Bishara K, Capell WR, Fisher JL, Hegde S, Ibrahim BA, Pilarzyk K, Sabin C, Tuczkewycz T, et al: PDE11A negatively regulates lithium responsivity. Mol Psychiatry. 22:1714–1724. 2017. View Article : Google Scholar : PubMed/NCBI | |
Qin W, Zhou A, Zuo X, Jia L, Li F, Wang Q, Li Y, Wei Y, Jin H, Cruchaga C, et al: Exome Sequencing Revealed PDE11A as a novel candidate gene for early-onset Alzheimer's disease. Hum Mol Genet. 30:811–822. 2021. View Article : Google Scholar | |
Pilarzyk K, Klett J, Pena EA, Porcher L, Smith AJ and Kelly MP: Loss of function of phosphodiesterase 11A4 shows that recent and remote long-term memories can be uncoupled. Curr Biol. 29:2307–2321. e52019. View Article : Google Scholar | |
Hegde S, Capell WR, Ibrahim BA, Klett J, Patel NS, Sougiannis AT and Kelly MP: Phosphodiesterase 11A (PDE11A), enriched in ventral hippocampus neurons, is required for consolidation of social but not nonsocial memories in mice. Neuropsychopharmacology. 41:2920–2931. 2016. View Article : Google Scholar : PubMed/NCBI | |
Loughney K, Taylor J and Florio VA: 3′,5′-cyclic nucleotide phosphodiesterase 11A: Localization in human tissues. Int J Impot Res. 17:320–325. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wayman C, Phillips S, Lunny C, Webb T, Fawcett L, Baxendale R and Burgess G: Phosphodiesterase 11 (PDE11) regulation of spermatozoa physiology. Int J Impot Res. 17:216–223. 2005. View Article : Google Scholar : PubMed/NCBI |