Puerarin attenuates isoproterenol‑induced myocardial hypertrophy via inhibition of the Wnt/β‑catenin signaling pathway
- Authors:
- Xiaoying Wang
- Kai He
- Linlin Ma
- Lan Wu
- Yan Yang
- Yanfei Li
-
Affiliations: Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China, College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai 201318, P.R. China, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201106, P.R. China - Published online on: August 9, 2022 https://doi.org/10.3892/mmr.2022.12822
- Article Number: 306
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, Barengo NC, Beaton AZ, Benjamin EJ, Benziger CP, et al: Global burden of cardiovascular diseases and risk factors, 1990–2019: Update from the GBD 2019 study. J Am Coll Cardiol. 76:2982–3021. 2020. View Article : Google Scholar : PubMed/NCBI | |
Cho YS, Moon SC, Ryu KS and Ryu KH: A study on clinical and healthcare recommending service based on cardiovascula disease pattern analysis. Int J Biosci Biotechnol. 8:287–294. 2016. | |
Nalban N, Sangaraju R, Alavala S, Mir SM, Jerald MK and Sistla R: Arbutin attenuates isoproterenol-induced cardiac hypertrophy by inhibiting TLR-4/NF-κB pathway in mice. Cardiovasc Toxicol. 20:235–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Roth GA, Mensah GA and Fuster V: The global burden of cardiovascular diseases and risks: A compass for global action. J Am Coll Cardiol. 76:2980–2981. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oh T, Kim D, Lee S, Won C, Kim S, Yang JS, Yu J, Kim B and Lee J: Machine learning-based diagnosis and risk factor analysis of cardiocerebrovascular disease based on KNHANES. Sci Rep. 12:22502022. View Article : Google Scholar : PubMed/NCBI | |
Leong DP, Joseph PG, McKee M, Anand SS, Teo KK, Schwalm JD and Yusuf S: Reducing the global burden of cardiovascular disease, part 2: Prevention and treatment of cardiovascular disease. Circ Res. 121:695–710. 2017. View Article : Google Scholar : PubMed/NCBI | |
Van Camp G: Cardiovascular disease prevention. Acta Clin Belg. 69:407–411. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Jia WW, Ren S, Xiao W, Li GW, Jin L and Lin Y: Difluoromethylornithine attenuates isoproterenol-induced cardiac hypertrophy by regulating apoptosis, autophagy and the mitochondria-associated membranes pathway. Exp Ther Med. 22:8702021. View Article : Google Scholar : PubMed/NCBI | |
Gallo S, Vitacolonna A, Bonzano A, Comoglio P and Crepaldi T: ERK: A key player in the pathophysiology of cardiac hypertrophy. Int J Mol Sci. 20:21642019. View Article : Google Scholar : PubMed/NCBI | |
Ellison GM, Waring CD, Vicinanza C and Torella D: Physiological cardiac remodelling in response to endurance exercise training: Cellular and molecular mechanisms. Heart. 98:5–10. 2012. View Article : Google Scholar : PubMed/NCBI | |
Selvetella G, Hirsch E, Notte A, Tarone G and Lembo G: Adaptive and maladaptive hypertrophic pathways: Points of convergence and divergence. Cardiovasc Res. 63:373–380. 2004. View Article : Google Scholar : PubMed/NCBI | |
Shimizu I and Minamino T: Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol. 97:245–262. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kurosawa Y, Kojima K, Kato M, Ohashi R, Minami K and Narita H: Protective action of angiotensin converting enzyme inhibitors on cardiac hypertrophy in the aortic-banded rat. Jpn Heart J. 40:645–654. 1999. View Article : Google Scholar : PubMed/NCBI | |
A Romero C, Mathew S, Wasinski B, Reed B, Brody A, Dawood R, Twiner MJ, McNaughton CD, Fridman R, Flack JM, et al: Angiotensin-converting enzyme inhibitors increase anti-fibrotic biomarkers in African Americans with left ventricular hypertrophy. J Clin Hypertens (Greenwich). 23:1008–1016. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Shen HJ, Wang XQ, Liu HQ, Zheng LY and Luo JD: EndophilinA2 protects against angiotensin II-induced cardiac hypertrophy by inhibiting angiotensin II type 1 receptor trafficking in neonatal rat cardiomyocytes. J Cell Biochem. 119:8290–8303. 2018. View Article : Google Scholar : PubMed/NCBI | |
Walsh-Wilkinson É, Drolet MC, Le Houillier C, Roy ÈM, Arsenault M and Couet J: Sex differences in the response to angiotensin II receptor blockade in a rat model of eccentric cardiac hypertrophy. PeerJ. 7:e74612019. View Article : Google Scholar : PubMed/NCBI | |
Chang CS, Tsai PJ, Sung JM, Chen JY, Ho LC, Pandya K, Maeda N and Tsai YS: Diuretics prevent thiazolidinedione-induced cardiac hypertrophy without compromising insulin-sensitizing effects in mice. Am J Pathol. 184:442–453. 2014. View Article : Google Scholar : PubMed/NCBI | |
Okura T, Miyoshi K, Irita J, Enomoto D, Jotoku M, Nagao T, Watanabe K, Matsuokan H, Ashihara T, Higaki J, et al: Comparison of the effect of combination therapy with an angiotensin II receptor blocker and either a low-dose diuretic or calcium channel blocker on cardiac hypertrophy in patients with hypertension. Clin Exp Hypertens. 35:563–569. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Zhang MC and Wang CT: Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1. Biochem Biophys Res Commun. 506:137–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zang Y, Wan J, Zhang Z, Huang S, Liu X and Zhang W: An updated role of astragaloside IV in heart failure. Biomed Pharmacother. 126:1100122020. View Article : Google Scholar : PubMed/NCBI | |
Ma Y, Kang R and Liu X: Research progress in prevention and cure of fibrosis by traditional Chinese medicine. Mod Appl Sci. 2:127–132. 2008. View Article : Google Scholar | |
Yang QY, Chen KJ, Lu S and Sun HR: Research progress on mechanism of action of Radix Astragalus in the treatment of heart failure. Chin J Integr Med. 18:235–240. 2012. View Article : Google Scholar : PubMed/NCBI | |
Karmazyn M and Gan XT: Treatment of the cardiac hypertrophic response and heart failure with ginseng, ginsenosides, and ginseng-related products. Can J Physiol Pharmacol. 95:1170–1176. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Wang HX, Zhang YJ, Yang YH, Lu ML, Zhang J, Li ST, Zhang SP and Li G: Astragaloside IV attenuates inflammatory cytokines by inhibiting TLR4/NF-кB signaling pathway in isoproterenol-induced myocardial hypertrophy. J Ethnopharmacol. 150:1062–1070. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu ZH, Liu HB and Wang J: Astragaloside IV protects against the pathological cardiac hypertrophy in mice. Biomed Pharmacother. 97:1468–1478. 2018. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS and Karmazyn M: Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail. 4:79–88. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qin N, Gong QH, Wei LW, Wu Q and Huang XN: Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull. 31:1530–1535. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bu L, Dai O, Zhou F, Liu F, Chen JF, Peng C and Xiong L: Traditional Chinese medicine formulas, extracts, and compounds promote angiogenesis. Biomed Pharmacother. 132:1108552020. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Xu H and Chen K: Systematic review of compound danshen dropping pill: A chinese patent medicine for acute myocardial infarction. Evid Based Complement Alternat Med. 2013:8080762013. View Article : Google Scholar : PubMed/NCBI | |
Tu Y: Artemisinin-A gift from traditional Chinese medicine to the world (nobel lecture). Angew Chem Int Ed Engl. 55:10210–10226. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang R, Yuan BC, Ma YS, Zhou S and Liu Y: The anti-inflammatory activity of licorice, a widely used Chinese herb. Pharm Biol. 55:5–18. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mu F, Duan J, Bian H, Zhai X, Shang P, Lin R, Zhao M, Hu D, Yin Y, Wen A and Xi M: Metabonomic strategy for the evaluation of Chinese medicine Salvia miltiorrhiza and Dalbergia odorifera interfering with myocardial ischemia/reperfusion injury in rats. Rejuvenation Res. 20:263–277. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang S, Wang S, Gao P and Dai L: A comprehensive review on Pueraria: Insights on its chemistry and medicinal value. Biomed Pharmacother. 131:1107342020. View Article : Google Scholar : PubMed/NCBI | |
Hou N, Huang Y, Cai SA, Yuan WC, Li LR, Liu XW, Zhao GJ, Qiu XX, Li AQ, Cheng CF, et al: Puerarin ameliorated pressure overload-induced cardiac hypertrophy in ovariectomized rats through activation of the PPARα/PGC-1 pathway. Acta Pharmacol Sin. 42:55–67. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yuan G, Shi S, Jia Q, Shi J, Shi S, Zhang X, Shou X, Zhu X and Hu Y: Use of network pharmacology to explore the mechanism of Gegen (Puerariae lobatae Radix) in the treatment of type 2 diabetes mellitus associated with hyperlipidemia. Evid Based Complement Alternat Med. 2021:66334022021. View Article : Google Scholar : PubMed/NCBI | |
Zhou YX, Zhang H and Peng C: Puerarin: A review of pharmacological effects. Phytother Res. 28:961–975. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Zhang HJ, Ji BP, Cai SB, Wang RJ, Zhou F, Yang JS and Liu HJ: A diet formula of Puerariae radix, Lycium barbarum, Crataegus pinnatifida, and Polygonati rhizoma alleviates insulin resistance and hepatic steatosis in CD-1 mice and HepG2 cells. Food Funct. 5:1038–1049. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Wu Z, Li Y, Ou C, Huang Z, Zhang J, Liu P, Luo C and Chen M: Puerarin prevents cardiac hypertrophy induced by pressure overload through activation of autophagy. Biochem Biophys Res Commun. 464:908–915. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Guo N, Zhao S, Chen Z, Zhang W, Yan F, Liao H and Chi K: Carboxypeptidase A4 promotes cardiomyocyte hypertrophy through activating PI3K-AKT-mTOR signaling. Biosci Rep. 40:BSR202006692020. View Article : Google Scholar : PubMed/NCBI | |
Foulquier S, Daskalopoulos EP, Lluri G, Hermans KCM, Deb A and Blankesteijn WM: WNT signaling in cardiac and vascular disease. Pharmacol Rev. 70:68–141. 2018. View Article : Google Scholar : PubMed/NCBI | |
Weeks KL, Bernardo BC, Ooi JYY, Patterson NL and McMullen JR: The IGF1-PI3K-Akt signaling pathway in mediating exercise-induced cardiac hypertrophy and protection. Adv Exp Med Biol. 1000:187–210. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fan J, Qiu L, Shu H, Ma B, Hagenmueller M, Riffel JH, Meryer S, Zhang M, Hardt SE, Wang L, et al: Recombinant frizzled1 protein attenuated cardiac hypertrophy after myocardial infarction via the canonical Wnt signaling pathway. Oncotarget. 9:3069–3080. 2018. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Lieven O, Knobloch J and Rüther U: The regulation of Dkk1 expression during embryonic development. Dev Biol. 340:256–268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Lu W, King TD, Liu CC, Bijur GN and Bu G: Dkk1 stabilizes Wnt co-receptor LRP6: Implication for Wnt ligand-induced LRP6 down-regulation. PLoS One. 5:e110142010. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Duan YM, Fu Q, Liu T, Yu JC, Sui ZY, Huang L and Wen GQ: IM-12 activates the Wnt-β-catenin signaling pathway and attenuates rtPA-induced hemorrhagic transformation in rats after acute ischemic stroke. Biochem Cell Biol. 97:702–708. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Shen A, Wu X, Shen Z, Chen X, Li J, Liu L, Lin X, Wu M, Chen Y, et al: Qingda granule attenuates angiotensin II-induced cardiac hypertrophy and apoptosis and modulates the PI3K/AKT pathway. Biomed Pharmacother. 133:1110222021. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Yu ZY, Wu J, Gong H, Kesteven S, Iismaa SE, Chan AY, Holman S, Pinto S, Pironet A, et al: The Ca2+-activated cation channel TRPM4 is a positive regulator of pressure overload-induced cardiac hypertrophy. Elife. 10:e665822021. View Article : Google Scholar : PubMed/NCBI | |
Schnelle M, Chong M, Zoccarato A, Elkenani M, Sawyer GJ, Hasenfuss G, Ludwig C and Shah AM: In vivo [U-13C]glucose labeling to assess heart metabolism in murine models of pressure and volume overload. Am J Physiol Heart Circ Physiol. 319:H422–H431. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Song Y, Chen C, Fu Y, Shen Q, Li Z and Zhang Y: Distinct actions of intermittent and sustained β-adrenoceptor stimulation on cardiac remodeling. Sci China Life Sci. 54:493–501. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro DA, Buttros JB, Oshima C, Bergamaschi CT and Campos RR: Ascorbic acid prevents acute myocardial infarction induced by isoproterenol in rats: Role of inducible nitric oxide synthase production. J Mol Histol. 40:99–105. 2009. View Article : Google Scholar : PubMed/NCBI | |
Prabhu S, Narayan S and Devi CS: Mechanism of protective action of mangiferin on suppression of inflammatory response and lysosomal instability in rat model of myocardial infarction. Phytother Res. 23:756–760. 2009. View Article : Google Scholar : PubMed/NCBI | |
Xu H, Wang Z, Chen M, Zhao W, Tao T, Ma L, Ni Y and Li W: YTHDF2 alleviates cardiac hypertrophy via regulating Myh7 mRNA decoy. Cell Biosci. 11:1322021. View Article : Google Scholar : PubMed/NCBI | |
Zhang GX, Kimura S, Murao K, Yu X, Obata K, Matsuyoshi H and Takaki M: Effects of angiotensin type I receptor blockade on the cardiac Raf/MEK/ERK cascade activated via adrenergic receptors. J Pharmacol Sci. 113:224–233. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li L, Cai H, Liu H and Guo T: β-Adrenergic stimulation activates protein kinase Cε and induces extracellular signal-regulated kinase phosphorylation and cardiomyocyte hypertrophy. Mol Med Rep. 11:4373–4380. 2015. View Article : Google Scholar : PubMed/NCBI | |
Werhahn SM, Kreusser JS, Hagenmüller M, Beckendorf J, Diemert N, Hoffmann S, Schultz JH, Backs J and Dewenter M: Adaptive versus maladaptive cardiac remodelling in response to sustained β-adrenergic stimulation in a new ‘ISO on/off model’. PLoS One. 16:e02489332021. View Article : Google Scholar : PubMed/NCBI | |
Garg M and Khanna D: Exploration of pharmacological interventions to prevent isoproterenol-induced myocardial infarction in experimental models. Ther Adv Cardiovasc Dis. 8:155–169. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu BY, Li L, Liu GL, Ding W, Chang WG, Xu T, Ji XY, Zheng XX, Zhang J and Wang JX: Baicalein attenuates cardiac hypertrophy in mice via suppressing oxidative stress and activating autophagy in cardiomyocytes. Acta Pharmacol Sin. 42:701–714. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wen J, Shen J, Zhou Y, Zhao X, Dai Z and Jin Y: Pyrroloquinoline quinone attenuates isoproterenol hydrochloride-induced cardiac hypertrophy in AC16 cells by inhibiting the NF-κB signaling pathway. Int J Mol Med. 45:873–885. 2020.PubMed/NCBI | |
Zhao Y, Jiang Y, Chen Y, Zhang F, Zhang X, Zhu L and Yao X: Dissection of mechanisms of Chinese medicinal formula Si-Miao-Yong-an decoction protects against cardiac hypertrophy and fibrosis in isoprenaline-induced heart failure. J Ethnopharmacol. 248:1120502020. View Article : Google Scholar : PubMed/NCBI | |
Zhang C, Wang Y, Ge Z, Lin J, Liu J, Yuan X and Lin Z: GDF11 attenuated ANG II-induced hypertrophic cardiomyopathy and expression of ANP, BNP and beta-MHC through down-regulating CCL11 in mice. Curr Mol Med. 18:661–671. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cameron VA, Rademaker MT, Ellmers LJ, Espiner EA, Nicholls MG and Richards AM: Atrial (ANP) and brain natriuretic peptide (BNP) expression after myocardial infarction in sheep: ANP is synthesized by fibroblasts infiltrating the infarct. Endocrinology. 141:4690–4697. 2000. View Article : Google Scholar : PubMed/NCBI | |
Edwards JG: Cardiac MHC gene expression: More complexity and a step forward. Am J Physiol Heart Circ Physiol. 294:H14–H15. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zong J, Zhou H, Bian ZY, Deng W, Dai J, Gan HW, Yang Z, Li H and Tang QZ: Puerarin attenuates pressure overload-induced cardiac hypertrophy. J Cardiol. 63:73–81. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yeh YL, Tsai HI, Cheng SM, Pai P, Ho TJ, Chen RJ, Lai CH, Huang PJ, Padma VV and Huang CY: Mechanism of Taiwan Mingjian Oolong tea to inhibit isoproterenol-induced hypertrophy and apoptosis in cardiomyoblasts. Am J Chin Med. 44:77–86. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guan XH, Hong X, Zhao N, Liu XH, Xiao YF, Chen TT, Deng LB, Wang XL, Wang JB, Ji GJ, et al: CD38 promotes angiotensin II-induced cardiac hypertrophy. J Cell Mol Med. 21:1492–1502. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Jiang M, Cao Y, Zhang Z, Jiang B, Tian F, Feng J, Dou Y, Gorospe M, Zheng M, et al: HuR regulates phospholamban expression in isoproterenol-induced cardiac remodelling. Cardiovasc Res. 116:944–955. 2020. View Article : Google Scholar : PubMed/NCBI | |
Huo S, Shi W, Ma H, Yan D, Luo P, Guo J, Li C, Lin J, Zhang C, Li S, et al: Alleviation of inflammation and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via IL-6/STAT3 inhibition by raloxifene. Oxid Med Cell Longev. 2021:66990542021. View Article : Google Scholar : PubMed/NCBI | |
Bi X, Zhang Y, Yu Y, Yuan J, Xu S, Liu F, Ye J and Liu P: MiRNA-339-5p promotes isoproterenol-induced cardiomyocyte hypertrophy by targeting VCP to activate the mTOR signaling. Cell Biol Int. 46:288–299. 2022. View Article : Google Scholar : PubMed/NCBI | |
Han B, Xu J, Shi X, Zheng Z, Shi F, Jiang F and Han J: DL-3-n-butylphthalide attenuates myocardial hypertrophy by targeting gasdermin D and inhibiting gasdermin D mediated inflammation. Front Pharmacol. 12:6881402021. View Article : Google Scholar : PubMed/NCBI | |
Shah AK, Bhullar SK, Elimban V and Dhalla NS: Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel). 10:9312021. View Article : Google Scholar : PubMed/NCBI | |
Gai Z, Wang Y, Tian L, Gong G and Zhao J: Whole genome level analysis of the Wnt and DIX gene families in mice and their coordination relationship in regulating cardiac hypertrophy. Front Genet. 12:6089362021. View Article : Google Scholar : PubMed/NCBI | |
Qin H, Zhang Y, Wang R, Du X, Li L and Du H: Puerarin suppresses Na+-K+-ATPase-mediated systemic inflammation and CD36 expression, and alleviates cardiac lipotoxicity in vitro and in vivo. J Cardiovasc Pharmacol. 68:465–472. 2016. View Article : Google Scholar : PubMed/NCBI | |
Moon RT, Kohn AD, De Ferrari GV and Kaykas A: WNT and beta-catenin signalling: Diseases and therapies. Nat Rev Genet. 5:691–701. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agostino M and Pohl SÖ: The structural biology of canonical Wnt signalling. Biochem Soc Trans. 48:1765–1780. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hua Y, Yang Y, Li Q, He X, Zhu W, Wang J and Gan X: Oligomerization of Frizzled and LRP5/6 protein initiates intracellular signaling for the canonical WNT/β-catenin pathway. J Biol Chem. 293:19710–19724. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao C and Chen YG: Dishevelled: The hub of Wnt signaling. Cell Signal. 22:717–727. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zeng KW, Wang JK, Wang LC, Guo Q, Liu TT, Wang FJ, Feng N, Zhang XW, Liao LX, Zhao MM, et al: Small molecule induces mitochondrial fusion for neuroprotection via targeting CK2 without affecting its conventional kinase activity. Signal Transduct Target Ther. 6:712021. View Article : Google Scholar : PubMed/NCBI | |
Ríos JA, Godoy JA and Inestrosa NC: Wnt3a ligand facilitates autophagy in hippocampal neurons by modulating a novel GSK-3β-AMPK axis. Cell Commun Signal. 16:152018. View Article : Google Scholar : PubMed/NCBI | |
Barker N, Morin PJ and Clevers H: The Yin-Yang of TCF/beta-catenin signaling. Adv Cancer Res. 77:1–24. 2000. View Article : Google Scholar : PubMed/NCBI | |
Piazza F, Manni S, Tubi LQ, Montini B, Pavan L, Colpo A, Gnoato M, Cabrelle A, Adami F, Zambello R, et al: Glycogen synthase kinase-3 regulates multiple myeloma cell growth and bortezomib-induced cell death. BMC Cancer. 10:5262010. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Gupte M, Umbarkar P, Singh AP, Sui JY, Force T and Lal H: Entanglement of GSK-3β, β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J Mol Cell Cardiol. 110:109–120. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan X, He Y, Wei Z, Shi C, Li Y, Zhao R, Pan L, Han Y, Hou T and Yang J: Crosstalk between Wnt/β-catenin signaling and NF-κB signaling contributes to apical periodontitis. Int Immunopharmacol. 98:1078432021. View Article : Google Scholar : PubMed/NCBI | |
Jia D, Yang W, Li L, Liu H, Tan Y, Ooi S, Chi L, Filion LG, Figeys D and Wang L: β-Catenin and NF-κB co-activation triggered by TLR3 stimulation facilitates stem cell-like phenotypes in breast cancer. Cell Death Differ. 22:298–310. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shang S, Hua F and Hu ZW: The regulation of β-catenin activity and function in cancer: Therapeutic opportunities. Oncotarget. 8:33972–33989. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gitau SC, Li X, Zhao D, Guo Z, Liang H, Qian M, Lv L, Li T, Xu B, Wang Z, et al: Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling. Front Med. 9:444–456. 2015. View Article : Google Scholar : PubMed/NCBI | |
Olsen NT, Dimaano VL, Fritz-Hansen T, Sogaard P, Chakir K, Eskesen K, Steenbergen C, Kass DA and Abraham TP: Hypertrophy signaling pathways in experimental chronic aortic regurgitation. J Cardiovasc Transl Res. 6:852–860. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu JJ, Shentu LM, Ma N, Wang LY, Zhang GM, Sun Y, Wang Y, Li J and Mu YL: Inhibition of NF-κB and Wnt/β-catenin/GSK3β signaling pathways ameliorates cardiomyocyte hypertrophy and fibrosis in streptozotocin (STZ)-induced type 1 diabetic rats. Curr Med Sci. 40:35–47. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ou L, Fang L, Tang H, Qiao H, Zhang X and Wang Z: Dickkopf Wnt signaling pathway inhibitor 1 regulates the differentiation of mouse embryonic stem cells in vitro and in vivo. Mol Med Rep. 13:720–730. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kim S, Song G, Lee T, Kim M, Kim J, Kwon H, Kim J, Jeong W, Lee U, Na C, et al: PARsylated transcription factor EB (TFEB) regulates the expression of a subset of Wnt target genes by forming a complex with β-catenin-TCF/LEF1. Cell Death Differ. 28:2555–2570. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Guo Z, Wang Y, Geng J and Han S: The protective effect of kaempferol on heart via the regulation of Nrf2, NF-κβ, and PI3K/Akt/GSK-3β signaling pathways in isoproterenol-induced heart failure in diabetic rats. Drug Dev Res. 80:294–309. 2019. View Article : Google Scholar : PubMed/NCBI |