1
|
Mergenthaler P, Lindauer U, Dienel GA and
Meisel A: Sugar for the brain: The role of glucose in physiological
and pathological brain function. Trends Neurosci. 36:587–597. 2013.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Zhao FQ and Keating AF: Functional
properties and genomics of glucose transporters. Curr Genomics.
8:113–128. 2007. View Article : Google Scholar : PubMed/NCBI
|
3
|
Kayano T, Fukumoto H, Eddy RL, Fan YS,
Byers MG, Shows TB and Bell GI: Evidence for a family of human
glucose transporter-like proteins. Sequence and gene localization
of a protein expressed in fetal skeletal muscle and other tissues.
J Biol Chem. 263:15245–15248. 1988. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mueckler M: Facilitative glucose
transporters. Eur J Biochem. 219:713–725. 1994. View Article : Google Scholar : PubMed/NCBI
|
5
|
Veys K, Fan Z, Ghobrial M, Bouche A,
Garcia-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F
and Gorski T: Role of the GLUT1 glucose transporter in postnatal
CNS angiogenesis and blood-brain barrier integrity. Circ Res.
127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI
|
6
|
Nagamatsu S, Kornhauser JM, Burant CF,
Seino S, Mayo KE and Bell GI: Glucose transporter expression in
brain. cDNA sequence of mouse GLUT3, the brain facilitative glucose
transporter isoform, and identification of sites of expression by
in situ hybridization. J Biol Chem. 267:467–472. 1992. View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang H, Pang W, Xu X, You B, Zhang C and
Li D: Cryptotanshinone attenuates ischemia/reperfusion-induced
apoptosis in myocardium by upregulating MAPK3. J Cardiovasc
Pharmacol. 77:370–377. 2021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Xu J, Zhang P, Chen Y, Xu Y, Luan P, Zhu Y
and Zhang J: Sodium tanshinone IIA sulfonate ameliorates cerebral
ischemic injury through regulation of angiogenesis. Exp Ther Med.
22:11222021. View Article : Google Scholar : PubMed/NCBI
|
9
|
Subedi L and Gaire BP: Tanshinone IIA: A
phytochemical as a promising drug candidate for neurodegenerative
diseases. Pharmacol Res. 169:1056612021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Zhang Y, Li C, Meng H, Guo D, Zhang Q, Lu
W, Wang Q, Wang Y and Tu P: BYD ameliorates oxidative
stress-induced myocardial apoptosis in heart failure post-acute
myocardial infarction via the P38 MAPK-CRYAB signaling pathway.
Front Physiol. 9:5052018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Tang Q, Han R, Xiao H, Shen J, Luo Q and
Li J: Neuroprotective effects of tanshinone IIA and/or
tetramethylpyrazine in cerebral ischemic injury in vivo and in
vitro. Brain Res. 1488:81–91. 2012. View Article : Google Scholar : PubMed/NCBI
|
12
|
Zhu J, Xu Y, Ren G, Hu X, Wang C, Yang Z,
Li Z, Mao W and Lu D: Tanshinone IIA Sodium sulfonate regulates
antioxidant system, inflammation, and endothelial dysfunction in
atherosclerosis by downregulation of CLIC1. Eur J Pharmacol.
815:427–436. 2017. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lou G, Hu W, Wu Z, Xu H, Yao H, Wang Y,
Huang Q, Wang B, Wen L, Gong D, et al: Tanshinone II A attenuates
vascular remodeling through klf4 mediated smooth muscle cell
phenotypic switching. Sci Rep. 10:138582020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Chen W, Li X, Guo S, Song N, Wang J, Jia L
and Zhu A: Tanshinone IIA harmonizes the crosstalk of autophagy and
polarization in macrophages via miR-375/KLF4 pathway to attenuate
atherosclerosis. Int Immunopharmacol. 70:486–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie Z, Truong TL, Zhang P, Xu F, Xu X and
Li P: Dan-Qi prescription ameliorates insulin resistance through
overall corrective regulation of glucose and fat metabolism. J
Ethnopharmacol. 172:70–79. 2015. View Article : Google Scholar : PubMed/NCBI
|
16
|
Guan R, Wang J, Li Z, Ding M, Li D, Xu G,
Wang T, Chen Y, Yang Q, Long Z, et al: Sodium tanshinone IIA
sulfonate decreases cigarette smoke-induced inflammation and
oxidative stress via blocking the activation of MAPK/HIF-1alpha
signaling pathway. Front Pharmacol. 9:2632018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhou L, Sui H, Wang T, Jia R, Zhang Z, Fu
J, Feng Y, Liu N, Ji Q, Wang Y, et al: Tanshinone IIA reduces
secretion of proangiogenic factors and inhibits angiogenesis in
human colorectal cancer. Oncol Rep. 43:1159–1168. 2020.PubMed/NCBI
|
18
|
Zhou ZY, Zhao WR, Xiao Y, Zhang J, Tang JY
and Lee SM: Mechanism study of the protective effects of sodium
tanshinone IIA sulfonate against atorvastatin-induced cerebral
hemorrhage in zebrafish: Transcriptome analysis. Front Pharmacol.
11:5517452020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Fu P, Du F, Chen W, Yao M, Lv K and Liu Y:
Tanshinone IIA blocks epithelial-mesenchymal transition through
HIF-1alpha downregulation, reversing hypoxia-induced chemotherapy
resistance in breast cancer cell lines. Oncol Rep. 31:2561–2568.
2014. View Article : Google Scholar : PubMed/NCBI
|
20
|
Xu M, Cao F, Liu L, Zhang B, Wang Y, Dong
H, Cui Y, Dong M, Xu D, Liu Y, et al: Tanshinone IIA-induced
attenuation of lung injury in endotoxemic mice is associated with
reduction of hypoxia-inducible factor 1α expression. Am J Respir
Cell Mol Biol. 45:1028–1035. 2011. View Article : Google Scholar : PubMed/NCBI
|
21
|
Lu Y, Wang SJ and Song XT: Effects of
electroacupuncture on glucose transporter-1 expression of
hippocampal microvascular endothelial cells in rats with focal
cerebral ischemia. Zhen Ci Yan Jiu. 35:118–123. 2010.(In Chinese).
PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang Y, Zhang Y, Zhu Y and Zhang P:
Lipolytic inhibitor G0/G1 switch gene 2 inhibits reactive oxygen
species production and apoptosis in endothelial cells. Am J Physiol
Cell Physiol. 308:C496–C504. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Baudin B, Bruneel A, Bosselut N and
Vaubourdolle M: A protocol for isolation and culture of human
umbilical vein endothelial cells. Nat Protoc. 2:481–485. 2007.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Masson N and Ratcliffe PJ: HIF prolyl and
asparaginyl hydroxylases in the biological response to
intracellular O(2) levels. J Cell Sci. 116:3041–3049. 2003.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Wang Y, Singh AR, Zhao Y, Du T, Huang Y,
Wan X, Mukhopadhyay D, Wang Y, Wang N and Zhang P: TRIM28 regulates
sprouting angiogenesis through VEGFR-DLL4-notch signaling circuit.
FASEB J. 34:14710–14724. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Diaz-Trelles R, Scimia MC, Bushway P, Tran
D, Monosov A, Monosov E, Peterson K, Rentschler S, Cabrales P,
Ruiz-Lozano P and Mercola M: Notch-independent RBPJ controls
angiogenesis in the adult heart. Nat Commun. 7:120882016.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Benarroch EE: Brain glucose transporters:
Implications for neurologic disease. Neurology. 82:1374–1379. 2014.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Szablewski L: Brain glucose transporters:
Role in pathogenesis and potential targets for the treatment of
Alzheimer's disease. Int J Mol Sci. 22:81422021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Allen A and Messier C: Plastic changes in
the astrocyte GLUT1 glucose transporter and beta-tubulin
microtubule protein following voluntary exercise in mice. Behav
Brain Res. 240:95–102. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Choeiri C, Staines W, Miki T, Seino S and
Messier C: Glucose transporter plasticity during memory processing.
Neuroscience. 130:591–600. 2005. View Article : Google Scholar : PubMed/NCBI
|
32
|
Simpson IA, Carruthers A and Vannucci SJ:
Supply and demand in cerebral energy metabolism: The role of
nutrient transporters. J Cereb Blood Flow Metab. 27:1766–1791.
2007. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ullner PM, Di Nardo A, Goldman JE, Schobel
S, Yang H, Engelstad K, Wang D, Sahin M and Vivo DCD: Murine Glut-1
transporter haploinsufficiency: Postnatal deceleration of brain
weight and reactive astrocytosis. Neurobiol Dis. 36:60–69. 2009.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Zlokovic BV: Neurovascular pathways to
neurodegeneration in Alzheimer's disease and other disorders. Nat
Rev Neurosci. 12:723–738. 2011. View Article : Google Scholar : PubMed/NCBI
|
35
|
Winkler EA, Nishida Y, Sagare AP, Rege SV,
Bell RD, Perlmutter D, Sengillo JD, Hillman S, Kong P, Nelson AR,
et al: GLUT1 reductions exacerbate Alzheimer's disease
vasculo-neuronal dysfunction and degeneration. Nat Neurosci.
18:521–530. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Park JL, Heilig CW and Brosius FC III:
GLUT1-deficient mice exhibit impaired endothelium-dependent
vascular relaxation. Eur J Pharmacol. 496:213–214. 2004. View Article : Google Scholar : PubMed/NCBI
|
37
|
Gao S, Liu Z, Li H, Little PJ, Liu PA and
Xu S: Cardiovascular actions and therapeutic potential of
tanshinone IIA. Atherosclerosis. 220:3–10. 2012. View Article : Google Scholar : PubMed/NCBI
|
38
|
Xu S and Liu P: Tanshinone II-A: New
perspectives for old remedies. Expert Opin Ther Pat. 23:149–153.
2013. View Article : Google Scholar : PubMed/NCBI
|
39
|
Sun D, Shen M, Li J, Li W, Zhang Y, Zhao
L, Zhang Z, Yuan Y, Wang H and Cao F: Cardioprotective effects of
tanshinone IIA pretreatment via kinin B2 receptor-Akt-GSK-3β
dependent pathway in experimental diabetic cardiomyopathy.
Cardiovasc Diabetol. 10:42011. View Article : Google Scholar : PubMed/NCBI
|
40
|
Pan C, Lou L, Huo Y, Singh G, Chen M,
Zhang D, Wu A, Zhao M, Wang S and Li J: Salvianolic acid B and
tanshinone IIA attenuate myocardial ischemia injury in mice by NO
production through multiple pathways. Ther Adv Cardiovasc Dis.
5:99–111. 2011. View Article : Google Scholar : PubMed/NCBI
|
41
|
Yang R, Liu A, Ma X, Li L, Su D and Liu J:
Sodium tanshinone IIA sulfonate protects cardiomyocytes against
oxidative stress-mediated apoptosis through inhibiting JNK
activation. J Cardiovasc Pharmacol. 51:396–401. 2008. View Article : Google Scholar : PubMed/NCBI
|
42
|
Wang J, Tong H, Wang X, Wang X and Wang Y:
Tanshinone IIA alleviates the damage of neurocytes by targeting
GLUT1 in ischaemia reperfusion model (in vivo and in vitro
experiments). Folia Neuropathol. 58:176–193. 2020. View Article : Google Scholar : PubMed/NCBI
|
43
|
Nanayakkara G, Alasmari A, Mouli S,
Eldoumani H, Quindry J, McGinnis G, Fu X, Berlin A, Peters B, Zhong
J and Amin R: Cardioprotective HIF-1alpha-frataxin signaling
against ischemia-reperfusion injury. Am J Physiol Heart Circ
Physiol. 309:H867–H879. 2015. View Article : Google Scholar : PubMed/NCBI
|
44
|
Ahn GO, Seita J, Hong BJ, Kim YE, Bok S,
Lee CJ, Kim KS, Lee JC, Leeper NJ, Cooke JP, et al: Transcriptional
activation of hypoxia-inducible factor-1 (HIF-1) in myeloid cells
promotes angiogenesis through VEGF and S100A8. Proc Natl Acad Sci
USA. 111:2698–2703. 2014. View Article : Google Scholar : PubMed/NCBI
|
45
|
Chiche J, Ilc K, Laferriere J, Trottier E,
Dayan F, Mazure NM, Brahimi-Horn MC and Pouysségur J:
Hypoxia-inducible carbonic anhydrase IX and XII promote tumor cell
growth by counteracting acidosis through the regulation of the
intracellular pH. Cancer Res. 69:358–368. 2009. View Article : Google Scholar : PubMed/NCBI
|
46
|
Dungwa JV, Hunt LP and Ramani P:
Overexpression of carbonic anhydrase and HIF-1α in wilms tumours.
BMC Cancer. 11:3902011. View Article : Google Scholar : PubMed/NCBI
|
47
|
Yang R, Lu Y and Liu J: Identification of
tanshinone IIA as a natural monoacylglycerol lipase inhibitor by
combined in silico and in vitro approach. MedChemComm. 5:1528–1532.
2014. View Article : Google Scholar
|
48
|
Zeng L, Wu Q, Wang T, Li LP, Zhao X, Chen
K, Qian J, Yuan L, Xu H and Mei WJ: Selective stabilization of
multiple promoter G-quadruplex DNA by using
2-phenyl-1H-imidazole-based tanshinone IIA derivatives and their
potential suppressing function in the metastatic breast cancer.
Bioorg Chem. 106:1044332021. View Article : Google Scholar : PubMed/NCBI
|
49
|
Zhang L, Zhu C, Guo Y, Wei F, Lu J, Qin J,
Banerjee S, Wang J, Shang H, Verma SC, et al: Inhibition of KAP1
enhances hypoxia-induced Kaposi's sarcoma-associated herpesvirus
reactivation through RBP-Jκ. J Virol. 88:6873–6884. 2014.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Hu YY, Fu LA, Li SZ, Chen Y, Li JC, Han J,
Liang L, Li L, Ji CC, Zheng MH and Hdan H: Hif-1alpha and
Hif-2alpha differentially regulate Notch signaling through
competitive interaction with the intracellular domain of Notch
receptors in glioma stem cells. Cancer Lett. 349:67–76. 2014.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Lakhan R and Rathinam CV: Deficiency of
Rbpj leads to defective stress-induced hematopoietic stem cell
functions and hif mediated activation of non-canonical notch
signaling pathways. Front Cell Dev Biol. 8:6221902020. View Article : Google Scholar : PubMed/NCBI
|