Potential intervention target of atherosclerosis: Ferroptosis (Review)
- Authors:
- Jia Li
- Ling Xu
- Yi Xuan Zuo
- Xue Qin Chang
- Hai Tao Chi
-
Affiliations: Department of Neurology, Xinhua Hospital Affiliated to Dalian University, Dalian, Liaoning 116021, P.R. China - Published online on: September 21, 2022 https://doi.org/10.3892/mmr.2022.12859
- Article Number: 343
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Liu C, Zhao Y and Gao G: Mitochondria regulation in ferroptosis. Eur J Cell Biol. 99:1510582020. View Article : Google Scholar : PubMed/NCBI | |
Qiu Y, Cao Y, Cao W, Jia Y and Lu N: The application of ferroptosis in diseases. Pharmacol Res. 159:1049192020. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Zhang MX, Zhang L, Zhang D, Li C and Li YL: Autophagy, pyroptosis, and ferroptosis: New regulatory mechanisms for atherosclerosis. Front Cell Dev Biol. 9:8099552022. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li X, Xu X, Li L, Liang N, Zhang L, Lv J, Wu YC and Yin H: Ferroptosis and cardiovascular disease: Role of free radical-induced lipid peroxidation. Free Radic Res. 55:405–415. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ross R: Atherosclerosis-an inflammatory disease. N Engl J Med. 340:115–126. 1999. View Article : Google Scholar : PubMed/NCBI | |
Barquera S, Pedroza-Tobias A, Medina C, Hernández-Barrera L, Bibbins-Domingo K, Lozano R and Moran AE: Global overview of the epidemiology of atherosclerotic cardiovascular disease. Arch Med Res. 46:328–338. 2015. View Article : Google Scholar : PubMed/NCBI | |
Herrington W, Lacey B, Sherliker P, Armitage J and Lewington S: Epidemiology of atherosclerosis and the potential to reduce the global Burden of atherothrombotic disease. Circ Res. 118:535–546. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao X, Liu L, Soo YO, Pu Y, Pan Y, Wang Y, Zou X, Leung TW, Cai Y, et al: Prevalence and outcomes of symptomatic intracranial large artery stenoses and occlusions in China: The Chinese Intracranial Atherosclerosis (CICAS) study. Stroke. 45:663–669. 2014. View Article : Google Scholar : PubMed/NCBI | |
Falk E: Pathogenesis of atherosclerosis. J Am Coll Cardiol. 47 (Suppl 8):C7–C12. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhao Y, Ye T, Yang L, Shen Y and Li H: Ferroptosis signaling and regulators in atherosclerosis. Front Cell Dev Biol. 9:8094572021. View Article : Google Scholar : PubMed/NCBI | |
Jiang C, Zhang J, Zhu J, Wang X, Wen Z, Zhao X and Yuan C; CARE-II Investigators, : Association between coexisting intracranial artery and extracranial carotid artery atherosclerotic diseases and ipsilateral cerebral infarction: A Chinese atherosclerosis risk evaluation (CARE-II) study. Stroke Vasc Neurol. 6:595–602. 2021. View Article : Google Scholar : PubMed/NCBI | |
GBD 2019 Stroke Collaborators, . Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of disease study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI | |
Saini V, Guada L and Yavagal DR: Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97 (Suppl 2):S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ornello R, Degan D, Tiseo C, Di Carmine C, Perciballi L, Pistoia F, Carolei A and Sacco S: Distribution and temporal trends from 1993 to 2015 of ischemic stroke subtypes: A systematic review and meta-analysis. Stroke. 49:814–819. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gong L, Tian X, Zhou J, Dong Q, Tan Y, Lu Y, Wu J, Zhao Y and Liu X: Iron dyshomeostasis induces binding of APP to BACE1 for amyloid pathology, and impairs APP/Fpn1 complex in microglia: Implication in pathogenesis of cerebral microbleeds. Cell Transplant. 28:1009–1017. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang C: Essential functions of iron-requiring proteins in DNA replication, repair and cell cycle control. Protein Cell. 5:750–760. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pisano G, Lombardi R and Fracanzani AL: Vascular damage in patients with nonalcoholic fatty liver disease: Possible role of iron and ferritin. Int J Mol Sci. 17:6752016. View Article : Google Scholar : PubMed/NCBI | |
Valenti L, Dongiovanni P, Motta BM, Swinkels DW, Bonara P, Rametta R, Burdick L, Frugoni C, Fracanzani AL and Fargion S: Serum hepcidin and macrophage iron correlate with MCP-1 release and vascular damage in patients with metabolic syndrome alterations. Arterioscler Thromb Vasc Biol. 31:683–690. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kuang F, Kroemer G, Klionsky DJ, Kang R and Tang D: Autophagy-dependent ferroptosis: Machinery and regulation. Cell Chem Biol. 27:420–435. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Qian C, Bao Y, Liu MY, Ma HM, Shen MQ, Li W, Wang JJ, Bao YX, Liu Y, et al: Apolipoprotein E deficiency induces a progressive increase in tissue iron contents with age in mice. Redox Biol. 40:1018652021. View Article : Google Scholar : PubMed/NCBI | |
Yuan H, Pratte J and Giardina C: Ferroptosis and its potential as a therapeutic target. Biochem Pharmacol. 186:1144862021. View Article : Google Scholar : PubMed/NCBI | |
Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brune B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI | |
Shan X, Lv ZY, Yin MJ, Chen J, Wang J and Wu QN: The protective effect of cyanidin-3-glucoside on myocardial ischemia-reperfusion injury through ferroptosis. Oxid Med Cell Longev. 2021:88801412021. View Article : Google Scholar : PubMed/NCBI | |
Weinberg ED: The hazards of iron loading. Metallomics. 2:732–740. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yang F, Bao Q, Wang Z, Ma M, Shen J, Ye F and Xie X: Sex-specific genetically predicted iron status in relation to 12 vascular diseases: A mendelian randomization study in the UK Biobank. Biomed Res Int. 2020:62460412020. View Article : Google Scholar : PubMed/NCBI | |
Ouyang S, You J, Zhi C, Li P, Lin X, Tan X, Ma W, Li L and Xie W: Ferroptosis: The potential value target in atherosclerosis. Cell Death Dis. 12:7822021. View Article : Google Scholar : PubMed/NCBI | |
Xiao Z, Kong B, Fang J, Qin T, Dai C, Shuai W and Huang H: Ferrostatin-1 alleviates lipopolysaccharide-induced cardiac dysfunction. Bioengineered. 12:9367–9376. 2021. View Article : Google Scholar : PubMed/NCBI | |
Naito Y, Masuyama T and Ishihara M: Iron and cardiovascular diseases. J Cardiol. 77:160–165. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI | |
Ellulu MS, Patimah I, Khaza'ai H, Rahmat A, Abed Y and Ali F: Atherosclerotic cardiovascular disease: A review of initiators and protective factors. Inflammopharmacology. 24:1–10. 2016. View Article : Google Scholar : PubMed/NCBI | |
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI | |
Gan B: Mitochondrial regulation of ferroptosis. J Cell Biol. 220:e2021050432021. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. Jun 6–2021.(Epub ahead of print). View Article : Google Scholar | |
Mishra SR, Mahapatra KK, Behera BP, Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R and Bhutia SK: Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int J Biochem Cell Biol. 136:1060132021. View Article : Google Scholar : PubMed/NCBI | |
Jelinek A, Heyder L, Daude M, Plessner M, Krippner S, Grosse R, Diederich WE and Culmsee C: Mitochondrial rescue prevents glutathione peroxidase-dependent ferroptosis. Free Radic Biol Med. 117:45–57. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao Z, Wu J, Xu H, Zhou C, Han B, Zhu H, Hu Z, Ma Z, Ming Z, Yao Y, et al: XJB-5-131 inhibited ferroptosis in tubular epithelial cells after ischemia-reperfusion injury. Cell Death Dis. 11:6292020. View Article : Google Scholar : PubMed/NCBI | |
Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, et al: Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 16:1180–1191. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li N, Jiang W, Wang W, Xiong R, Wu X and Geng Q: Ferroptosis and its emerging roles in cardiovascular diseases. Pharmacol Res. 166:1054662021. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Liu Y, Xiang Z, Yan HF, Zou T, Shu Y, Ding XL, Zou JJ, Xu S, Tang F, et al: Thrombin induces ACSL4-dependent ferroptosis during cerebral ischemia/reperfusion. Signal Transduct Target Ther. 7:592022. View Article : Google Scholar : PubMed/NCBI | |
Oh BM, Lee SJ, Park GL, Hwang YS, Lim J, Park ES, Lee KH, Kim BY, Kwon YT, Cho HJ and Lee HG: Erastin inhibits septic shock and inflammatory gene expression via suppression of the NF-kappaB pathway. J Clin Med. 8:22102019. View Article : Google Scholar : PubMed/NCBI | |
Chu B, Kon N, Chen D, Li T, Liu T, Jiang L, Song S, Tavana O and Gu W: ALOX12 is required for p53-mediated tumour suppression through a distinct ferroptosis pathway. Nat Cell Biol. 21:579–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao FJ, Zhang D, Wu Y, Jia QH, Zhang L, Li YX, Yang YF, Wang H, Wu CT and Wang LS: miRNA-17-92 protects endothelial cells from erastin-induced ferroptosis through targeting the A20-ACSL4 axis. Biochem Biophys Res Commun. 515:448–454. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Cai L, Wang S, Wang J and Chen B: Baicalin prevents myocardial ischemia/reperfusion injury through inhibiting ACSL4 mediated ferroptosis. Front Pharmacol. 12:6289882021. View Article : Google Scholar : PubMed/NCBI | |
Noguchi N: Ebselen, a useful tool for understanding cellular redox biology and a promising drug candidate for use in human diseases. Arch Biochem Biophys. 595:109–112. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chu D and Zhang Z: Trichosanthis pericarpium aqueous extract protects H9c2 cardiomyocytes from Hypoxia/Reoxygenation injury by regulating PI3K/Akt/NO pathway. Molecules. 23:24092018. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Yu C, Kang R, Kroemer G and Tang D: Cellular degradation systems in ferroptosis. Cell Death Differ. 28:1135–1148. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y and Wang P: The neuroprotective effects of carvacrol on ischemia/reperfusioninduced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Lu X, Tai B, Li W and Li T: Ferroptosis and its multifaceted roles in cerebral stroke. Front Cell Neurosci. 15:6153722021. View Article : Google Scholar : PubMed/NCBI | |
Wei X, Yi X, Zhu XH and Jiang DS: Posttranslational modifications in ferroptosis. Oxid Med Cell Longev. 2020:88320432020. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Ding W, Ji X, Ao X, Liu Y, Yu W and Wang J: Molecular mechanisms of ferroptosis and its role in cancer therapy. J Cell Mol Med. 23:4900–4912. 2019. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279. e252019. View Article : Google Scholar : PubMed/NCBI | |
Ratan RR: The chemical biology of ferroptosis in the central nervous system. Cell Chem Biol. 27:479–498. 2020. View Article : Google Scholar : PubMed/NCBI | |
Song X and Long D: Nrf2 and Ferroptosis: A new research direction for neurodegenerative diseases. Front Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI | |
Anandhan A, Dodson M, Schmidlin CJ, Liu P and Zhang DD: Breakdown of an ironclad defense system: the critical role of NRF2 in mediating ferroptosis. Cell Chem Biol. 27:436–447. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fan Z, Wirth AK, Chen D, Wruck CJ, Rauh M, Buchfelder M and Savaskan N: Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis. 6:e3712017. View Article : Google Scholar : PubMed/NCBI | |
Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Dong H, Qiang Z, Chai D, Peng J, Xia Y, Hu R and Jiang H: Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY). 12:12943–12959. 2020. View Article : Google Scholar : PubMed/NCBI | |
Colak G and Johnson GV: Complete transglutaminase 2 ablation results in reduced stroke volumes and astrocytes that exhibit increased survival in response to ischemia. Neurobiol Dis. 45:1042–1050. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Wang Y, Guo L, Gao W, Tang TL and Yan M: Interaction between macrophages and ferroptosis. Cell Death Dis. 13:3552022. View Article : Google Scholar : PubMed/NCBI | |
Marques VB, Leal MAS, Mageski JGA, Fidelis HG, Nogueira BV, Vasquez EC, Meyrelles SDS, Simões MR and Dos Santos L: Chronic iron overload intensifies atherosclerosis in apolipoprotein E deficient mice: Role of oxidative stress and endothelial dysfunction. Life Sci. 233:1167022019. View Article : Google Scholar : PubMed/NCBI | |
Bosseboeuf E and Raimondi C: Signalling, metabolic pathways and iron homeostasis in endothelial cells in health, atherosclerosis and Alzheimer's disease. Cells. 9:20552020. View Article : Google Scholar : PubMed/NCBI | |
Wen Q, Liu J, Kang R, Zhou B and Tang D: The release and activity of HMGB1 in ferroptosis. Biochem Biophys Res Commun. 510:278–283. 2019. View Article : Google Scholar : PubMed/NCBI | |
Xiao L, Luo G, Guo X, Jiang C, Zeng H, Zhou F, Li Y, Yu J and Yao P: Macrophage iron retention aggravates atherosclerosis: Evidence for the role of autocrine formation of hepcidin in plaque macrophages. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1585312020. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Duan H, Qian Y, Feng L, Wu Z, Wang F, Feng J, Yang D, Qin Z and Yan X: Macrophagic CD146 promotes foam cell formation and retention during atherosclerosis. Cell Res. 27:352–372. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Xian X, Wang Z, Bi Y, Chen Q, Han X, Tang D and Chen R: Research progress on the relationship between atherosclerosis and inflammation. Biomolecules. 8:802018. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Xu X, Li Y, Sun K, Yang M, Zhang Q, Wang S, Lin Y, Lou L, Wu A, et al: Mechanistic Insight into PPARү and Tregs in Atherosclerotic Immune Inflammation. Front Pharmacol. 12:7500782021. View Article : Google Scholar : PubMed/NCBI | |
Gistera A and Hansson GK: The immunology of atherosclerosis. Nat Rev Nephrol. 13:368–380. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee GR: The balance of Th17 versus treg cells in autoimmunity. Int J Mol Sci. 19:7302018. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Yang J, Dong M, Zhang K, Tu E, Gao Q, Chen W, Zhang C and Zhang Y: Regulatory T cells in cardiovascular diseases. Nat Rev Cardiol. 13:167–179. 2016. View Article : Google Scholar : PubMed/NCBI | |
Libby P: The changing landscape of atherosclerosis. Nature. 592:524–533. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bentzon JF, Otsuka F, Virmani R and Falk E: Mechanisms of plaque formation and rupture. Circ Res. 114:1852–1866. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kobayashi M, Suhara T, Baba Y, Kawasaki NK, Higa JK and Matsui T: Pathological roles of iron in cardiovascular disease. Curr Drug Targets. 19:1068–1076. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martinet W, Coornaert I, Puylaert P and De Meyer GRY: Macrophage death as a pharmacological target in atherosclerosis. Front Pharmacol. 10:3062019. View Article : Google Scholar : PubMed/NCBI | |
Chen S, Dong Z, Cheng M, Zhao Y, Wang M, Sai N, Wang X, Liu H, Huang G and Zhang X: Homocysteine exaggerates microglia activation and neuroinflammation through microglia localized STAT3 overactivation following ischemic stroke. J Neuroinflammation. 14:1872017. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Jiang Y, Zhang S, Tie T, Cheng Y, Su X, Man Z, Hou J, Sun L, Tian M, et al: The association between homocysteine and ischemic stroke subtypes in Chinese: A meta-analysis. Medicine (Baltimore). 99:e194672020. View Article : Google Scholar : PubMed/NCBI | |
Kumar A, Palfrey HA, Pathak R, Kadowitz PJ, Gettys TW and Murthy SN: The metabolism and significance of homocysteine in nutrition and health. Nutr Metab (Lond). 14:782017. View Article : Google Scholar : PubMed/NCBI | |
Zhou W, Cheng Y, Zhu P, Nasser MI, Zhang X and Zhao M: Implication of gut microbiota in cardiovascular diseases. Oxid Med Cell Longev. 2020:53940962020. View Article : Google Scholar : PubMed/NCBI | |
Jonsson AL and Backhed F: Role of gut microbiota in atherosclerosis. Nat Rev Cardiol. 14:79–87. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chapkin RS, Navarro SL, Hullar MAJ and Lampe JW: Diet and gut microbes act coordinately to enhance programmed cell death and reduce colorectal cancer risk. Dig Dis Sci. 65:840–851. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hayase E and Jenq RR: Too much TMAO and GVHD. Blood. 136:383–385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Janeiro MH, Ramirez MJ, Milagro FI, Martinez JA and Solas M: Implication of trimethylamine N-Oxide (TMAO) in disease: Potential biomarker or new therapeutic target. Nutrients. 10:13982018. View Article : Google Scholar : PubMed/NCBI | |
Lassiger-Herfurth A, Pontarollo G, Grill A and Reinhardt C: The gut microbiota in cardiovascular disease and arterial thrombosis. Microorganisms. 7:6912019. View Article : Google Scholar : PubMed/NCBI | |
Tuttolomondo A, Puleo MG, Velardo MC, Corpora F, Daidone M and Pinto A: Molecular biology of atherosclerotic ischemic strokes. Int J Mol Sci. 21:93722020. View Article : Google Scholar : PubMed/NCBI | |
Cornelissen A, Guo L, Sakamoto A, Virmani R and Finn AV: New insights into the role of iron in inflammation and atherosclerosis. EBioMedicine. 47:598–606. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tabas I and Bornfeldt KE: Macrophage phenotype and function in different stages of atherosclerosis. Circ Res. 118:653–667. 2016. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Ferroptosis in infection, inflammation, and immunity. J Exp Med. 218:e202105182021. View Article : Google Scholar : PubMed/NCBI | |
Wolf D and Ley K: Immunity and inflammation in atherosclerosis. Circ Res. 124:315–327. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jeney V, Balla G and Balla J: Red blood cell, hemoglobin and heme in the progression of atherosclerosis. Front Physiol. 5:3792014. View Article : Google Scholar : PubMed/NCBI | |
Raman SV, Winner MW III, Tran T, Velayutham M, Simonetti OP, Baker PB, Olesik J, McCarthy B, Ferketich AK and Zweier JL: In vivo atherosclerotic plaque characterization using magnetic susceptibility distinguishes symptom-producing plaques. JACC Cardiovasc Imaging. 1:49–57. 2008. View Article : Google Scholar : PubMed/NCBI | |
Hu H, Chen Y, Jing L, Zhai C and Shen L: The link between ferroptosis and cardiovascular diseases: A novel target for treatment. Front Cardiovasc Med. 8:7109632021. View Article : Google Scholar : PubMed/NCBI | |
Vinchi F, Porto G, Simmelbauer A, Altamura S, Passos ST, Garbowski M, Silva AMN, Spaich S, Seide SE, Sparla R, et al: Atherosclerosis is aggravated by iron overload and ameliorated by dietary and pharmacological iron restriction. Eur Heart J. 41:2681–2695. 2020. View Article : Google Scholar : PubMed/NCBI | |
Neven E, De Schutter TM, Behets GJ, Gupta A and D'Haese PC: Iron and vascular calcification. Is there a link? Nephrol Dial Transplant. 26:1137–1145. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kempf T and Wollert KC: Iron and atherosclerosis: Too much of a good thing can be bad. Eur Heart J. 41:2696–2698. 2020. View Article : Google Scholar : PubMed/NCBI | |
Le Y, Zhang Z, Wang C and Lu D: Ferroptotic cell death: New regulatory mechanisms for metabolic diseases. Endocr Metab Immune Disord Drug Targets. 21:785–800. 2021. View Article : Google Scholar : PubMed/NCBI | |
He L, Liu YY, Wang K, Li C, Zhang W, Li ZZ, Huang XZ and Xiong Y: Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem Biophys Res Commun. 575:1–7. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stadler N, Lindner RA and Davies MJ: Direct detection and quantification of transition metal ions in human atherosclerotic plaques: Evidence for the presence of elevated levels of iron and copper. Arterioscler Thromb Vasc Biol. 24:949–954. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bai T, Li M, Liu Y, Qiao Z and Wang Z: Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic Biol Med. 160:92–102. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen Z, Yan Y, Qi C, Liu J, Li L and Wang J: The role of ferroptosis in cardiovascular disease and its therapeutic significance. Front Cardiovasc Med. 8:7332292021. View Article : Google Scholar : PubMed/NCBI | |
Huang F, Yang R, Xiao Z, Xie Y, Lin X, Zhu P, Zhou P, Lu J and Zheng S: Targeting ferroptosis to treat cardiovascular diseases: A new continent to be explored. Front Cell Dev Biol. 9:7379712021. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu Y, Liang S and Piao X: Activation of SSAT1/ALOX15 axis aggravates cerebral ischemia/reperfusion injury via triggering neuronal ferroptosis. Neuroscience. 485:78–90. 2022. View Article : Google Scholar : PubMed/NCBI | |
Selim M: Treatment with the iron chelator, deferoxamine mesylate, alters serum markers of oxidative stress in stroke patients. Transl Stroke Res. 1:35–39. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xie BS, Wang YQ, Lin Y, Mao Q, Feng JF, Gao GY and Jiang JY: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
Millan M, DeGregorio-Rocasolano N, Perez de la Ossa N, Reverté S, Costa J, Giner P, Silva Y, Sobrino T, Rodríguez-Yáñez M, Nombela F, et al: Targeting pro-oxidant iron with deferoxamine as a treatment for ischemic stroke: Safety and optimal dose selection in a randomized clinical trial. Antioxidants (Basel). 10:12702021. View Article : Google Scholar : PubMed/NCBI | |
Li W, Xiang Z, Xing Y, Li S and Shi S: Mitochondria bridge HIF signaling and ferroptosis blockage in acute kidney injury. Cell Death Dis. 13:3082022. View Article : Google Scholar : PubMed/NCBI | |
Bai YT, Xiao FJ, Wang H, Ge RL and Wang LS: Hypoxia protects H9c2 cells against Ferroptosis through SENP1-mediated protein DeSUMOylation. Int J Med Sci. 18:1618–1627. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Wu X, Luo J, Wang X, Guo H, Feng D, Zhao L, Bai H, Song M, Liu X, et al: Pterostilbene attenuates astrocytic inflammation and neuronal oxidative injury after ischemia-reperfusion by inhibiting NF-kB phosphorylation. Front Immunol. 10:24082019. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Wang H, Yang X, Wu Q, An P, Jin X, Liu W, Huang X, Li Y, Yan S, et al: Auranofin mitigates systemic iron overload and induces ferroptosis via distinct mechanisms. Signal Transduct Target Ther. 5:1382020. View Article : Google Scholar : PubMed/NCBI | |
Erta M, Quintana A and Hidalgo J: Interleukin-6, a major cytokine in the central nervous system. Int J Biol Sci. 8:1254–1266. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nunes C, Teixeira N, Serra D, Freitas V, Almeida L and Laranjinha J: Red wine polyphenol extract efficiently protects intestinal epithelial cells from inflammation via opposite modulation of JAK/STAT and Nrf2 pathways. Toxicol Res (Camb). 5:53–65. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zuo S, Li Q, Liu X, Feng H and Chen Y: The potential therapeutic effects of artesunate on stroke and other central nervous system diseases. Biomed Res Int. 2016:14890502016. View Article : Google Scholar : PubMed/NCBI | |
Khoshnam SE, Winlow W, Farzaneh M, Farbood Y and Moghaddam HF: Pathogenic mechanisms following ischemic stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iadecola C, Buckwalter MS and Anrather J: Immune responses to stroke: Mechanisms, modulation, and therapeutic potential. J Clin Invest. 130:2777–2788. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Xin L, Xiang M, Shang C, Wang Y, Wang Y, Cui X and Lu Y: The molecular mechanisms of ferroptosis and its role in cardiovascular disease. Biomed Pharmacother. 145:1124232022. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
Yan HF, Tuo QZ, Yin QZ and Lei P: The pathological role of ferroptosis in ischemia/reperfusion-related injury. Zool Res. 41:220–230. 2020. View Article : Google Scholar : PubMed/NCBI | |
Derry PJ, Hegde ML, Jackson GR, Kayed R, Tour JM, Tsai AL and Kent TA: Revisiting the intersection of amyloid, pathologically modified tau and iron in Alzheimer's disease from a ferroptosis perspective. Prog Neurobiol. 184:1017162020. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Xu F and Lu H: LncRNA PVT1 regulates ferroptosis through miR-214-mediated TFR1 and p53. Life Sci. 260:1183052020. View Article : Google Scholar : PubMed/NCBI | |
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI | |
Lu H, Wang B, Cui N and Zhang Y: Artesunate suppresses oxidative and inflammatory processes by activating Nrf2 and ROSdependent p38 MAPK and protects against cerebral ischemia-reperfusion injury. Mol Med Rep. 17:6639–6646. 2018.PubMed/NCBI | |
Liu Z, Lv X, Song E and Song Y: Fostered Nrf2 expression antagonizes iron overload and glutathione depletion to promote resistance of neuron-like cells to ferroptosis. Toxicol Appl Pharmacol. 407:1152412020. View Article : Google Scholar : PubMed/NCBI |