Role of glucose metabolism in ocular angiogenesis (Review)
- Authors:
- Qing Li
- Xiao Gui
- Haorui Zhang
- Weiye Zhu
- Rui Zhang
- Wei Shen
- Hongyuan Song
-
Affiliations: Department of Ophthalmology, Shanghai Changhai Hospital, Naval Medical University, Shanghai 200433, P.R. China - Published online on: October 21, 2022 https://doi.org/10.3892/mmr.2022.12880
- Article Number: 363
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Adamis AP, Aiello LP and D'Amato RA: Angiogenesis and ophthalmic disease. Angiogenesis. 3:9–14. 1999. View Article : Google Scholar : PubMed/NCBI | |
Sun Y and Smith LEH: Retinal vasculature in development and diseases. Annu Rev Vis Sci. 4:101–122. 2018. View Article : Google Scholar : PubMed/NCBI | |
Selvam S, Kumar T and Fruttiger M: Retinal vasculature development in health and disease. Prog Retin Eye Res. 63:1–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Theodorou K and Boon RA: Endothelial cell metabolism in atherosclerosis. Front Cell Dev Biol. 6:822018. View Article : Google Scholar : PubMed/NCBI | |
Geudens I and Gerhardt H: Coordinating cell behaviour during blood vessel formation. Development. 138:4569–4583. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ebos JM and Kerbel RS: Antiangiogenic therapy: Impact on invasion, disease progression, and metastasis. Nat Rev Clin Oncol. 8:210–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Li X and Carmeliet P: Targeting angiogenic metabolism in disease. Science. 359:1335–1336. 2018. View Article : Google Scholar : PubMed/NCBI | |
Du W, Ren L, Hamblin MH and Fan Y: Endothelial cell glucose metabolism and angiogenesis. Biomedicines. 9:1472021. View Article : Google Scholar : PubMed/NCBI | |
Doddaballapur A, Michalik KM, Manavski Y, Lucas T, Houtkooper RH, You X, Chen W, Zeiher AM, Potente M, Dimmeler S and Boon RA: Laminar shear stress inhibits endothelial cell metabolism via KLF2-mediated repression of PFKFB3. Arterioscler Thromb Vasc Biol. 35:137–145. 2015. View Article : Google Scholar : PubMed/NCBI | |
Eelen G, de Zeeuw P, Simons M and Carmeliet P: Endothelial cell metabolism in normal and diseased vasculature. Circ Res. 116:1231–1244. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Xu J, Ma Q, Zhang X, Yang Q, Wang L, Cao Y, Xu Z, Tawfik A, Sun Y, et al: Glycolysis links reciprocal activation of myeloid cells and endothelial cells in the retinal angiogenic niche. Sci Transl Med. 12:eaay13712020. View Article : Google Scholar : PubMed/NCBI | |
De Bock K, Georgiadou M, Schoors S, Kuchnio A, Wong BW, Cantelmo AR, Quaegebeur A, Ghesquière B, Cauwenberghs S, Eelen G, et al: Role of PFKFB3-driven glycolysis in vessel sprouting. Cell. 154:651–663. 2013. View Article : Google Scholar : PubMed/NCBI | |
Krützfeldt A: Metabolism of exogenous substrates by coronary endothelial cells in culture. Journal of Molecular and Cellular Cardiology. 22:1393–1404. 1990. View Article : Google Scholar : PubMed/NCBI | |
Wilhelm K, Happel K, Eelen G, Schoors S, Oellerich MF, Lim R, Zimmermann B, Aspalter IM, Franco CA, Boettger T, et al: FOXO1 couples metabolic activity and growth state in the vascular endothelium. Nature. 529:216–220. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vizan P, Sanchez-Tena S, Alcarraz-Vizan G, Soler M, Messeguer R, Pujol MD, Lee WN and Cascante M: Characterization of the metabolic changes underlying growth factor angiogenic activation: Identification of new potential therapeutic targets. Carcinogenesis. 30:946–952. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu P, Wilhelm K, Dubrac A, Tung JK, Alves TC, Fang JS, Xie Y, Zhu J, Chen Z, De Smet F, et al: FGF-dependent metabolic control of vascular development. Nature. 545:224–228. 2017. View Article : Google Scholar : PubMed/NCBI | |
Eelen G, de Zeeuw P, Treps L, Harjes U, Wong BW and Carmeliet P: Endothelial Cell Metabolism. Physiol Rev. 98:3–58. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Guo Y, Ge W, Zhou X and Pan M: High glucose induces apoptosis of HUVECs in a mitochondria-dependent manner by suppressing hexokinase 2 expression. Exp Ther Med. 18:621–629. 2019.PubMed/NCBI | |
Bouche C, Serdy S, Kahn CR and Goldfine AB: The cellular fate of glucose and its relevance in type 2 diabetes. Endocr Rev. 25:807–830. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gatenby RA and Gillies RJ: Why do cancers have high aerobic glycolysis? Nat Rev Cancer. 4:891–899. 2004. View Article : Google Scholar : PubMed/NCBI | |
Agathocleous M, Love NK, Randlett O, Harris JJ, Liu J, Murray AJ and Harris WA: Metabolic differentiation in the embryonic retina. Nat Cell Biol. 14:859–864. 2012. View Article : Google Scholar : PubMed/NCBI | |
Romano AH and Conway T: Evolution of carbohydrate metabolic pathways. Res Microbiol. 147:448–455. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fan T, Sun G, Sun X, Zhao L, Zhong R and Peng Y: Tumor energy metabolism and potential of 3-Bromopyruvate as an inhibitor of aerobic glycolysis: Implications in tumor treatment. Cancers (Basel). 11:3172019. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar : PubMed/NCBI | |
DeBerardinis RJ and Cheng T: Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene. 29:313–324. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li X, Kumar A and Carmeliet P: Metabolic pathways fueling the endothelial cell drive. Annu Rev Physiol. 81:483–503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Groschner LN, Waldeck-Weiermair M, Malli R and Graier WF: Endothelial mitochondria-less respiration, more integration. Pflugers Arch. 464:63–76. 2012. View Article : Google Scholar : PubMed/NCBI | |
De Bock K, Georgiadou M and Carmeliet P: Role of endothelial cell metabolism in vessel sprouting. Cell Metab. 18:634–647. 2013. View Article : Google Scholar : PubMed/NCBI | |
Wong BW, Marsch E, Treps L, Baes M and Carmeliet P: Endothelial cell metabolism in health and disease: impact of hypoxia. EMBO J. 36:2187–2203. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guan C, Cen HF, Cui X, Tian DY, Tadesse D and Zhang YW: Proline improves switchgrass growth and development by reduced lignin biosynthesis. Sci Rep. 9:201172019. View Article : Google Scholar : PubMed/NCBI | |
Patra KC and Hay N: The pentose phosphate pathway and cancer. Trends Biochem Sci. 39:347–354. 2014. View Article : Google Scholar : PubMed/NCBI | |
Thakur C and Chen F: Connections between metabolism and epigenetics in cancers. Semin Cancer Biol. 57:52–58. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hassell KN: Histone deacetylases and their inhibitors in cancer epigenetics. Diseases. 7:572019. View Article : Google Scholar : PubMed/NCBI | |
Sharma U and Rando OJ: Metabolic inputs into the epigenome. Cell Metab. 25:544–558. 2017. View Article : Google Scholar : PubMed/NCBI | |
Racey LA and Byvoet P: Histone acetyltransferase in chromatin. Evidence for in vitro enzymatic transfer of acetate from acetyl-coenzyme A to histones. Exp Cell Res. 64:366–370. 1971. View Article : Google Scholar : PubMed/NCBI | |
McBrian MA, Behbahan IS, Ferrari R, Su T, Huang TW, Li K, Hong CS, Christofk HR, Vogelauer M, Seligson DB and Kurdistani SK: Histone acetylation regulates intracellular pH. Mol Cell. 49:310–321. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goel A, Mathupala SP and Pedersen PL: Glucose metabolism in cancer. Evidence that demethylation events play a role in activating type II hexokinase gene expression. J Biol Chem. 278:15333–15340. 2003. View Article : Google Scholar : PubMed/NCBI | |
Provis J: Development of the primate retinal vasculature. Prog Retin Eye Res. 20:799–821. 2001. View Article : Google Scholar : PubMed/NCBI | |
Gariano R: Cellular mechanisms in retinal vascular development. Prog Retin Eye Res. 22:295–306. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kolb H, Fernandez E and Nelson R: Webvision: The Organization of the Retina and Visual System [Internet]. University of Utah Health Sciences Center Copyright; Salt Lake City, UT: 1995 | |
Chase J: The evolution of retinal vascularization in mammals. Ophthalmology. 89:1518–1525. 1982. View Article : Google Scholar : PubMed/NCBI | |
Baba T, McLeod DS, Edwards MM, Merges C, Sen T, Sinha D and Lutty GA: VEGF 165 b in the developing vasculatures of the fetal human eye. Dev Dyn. 241:595–607. 2012. View Article : Google Scholar : PubMed/NCBI | |
Saint-Geniez M and D'Amore PA: Development and pathology of the hyaloid, choroidal and retinal vasculature. Int J Dev Biol. 48:1045–1058. 2004. View Article : Google Scholar : PubMed/NCBI | |
Zhu M, Madigan MC, van Driel D, Maslim J, Billson FA, Provis JM and Penfold PL: The human hyaloid system: Cell death and vascular regression. Exp Eye Res. 70:767–776. 2000. View Article : Google Scholar : PubMed/NCBI | |
Gariano RF and Gardner TW: Retinal angiogenesis in development and disease. Nature. 438:960–966. 2005. View Article : Google Scholar : PubMed/NCBI | |
West H, Richardson WD and Fruttiger M: Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes. Development. 132:1855–1862. 2005. View Article : Google Scholar : PubMed/NCBI | |
Chen W, Xia P, Wang H, Tu J, Liang X, Zhang X and Li L: The endothelial tip-stalk cell selection and shuffling during angiogenesis. J Cell Commun Signal. 13:291–301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, Mitchell C, Alitalo K, Shima D and Betsholtz C: VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 161:1163–1177. 2003. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P and Jain RK: Angiogenesis in cancer and other diseases. Nature. 407:249–257. 2000. View Article : Google Scholar : PubMed/NCBI | |
Benedito R, Roca C, Sorensen I, Adams S, Gossler A, Fruttiger M and Adams RH: The notch ligands Dll4 and Jagged1 have opposing effects on angiogenesis. Cell. 137:1124–1135. 2009. View Article : Google Scholar : PubMed/NCBI | |
Suchting S, Freitas C, le Noble F, Benedito R, Bréant C, Duarte A and Eichmann A: The Notch ligand Delta-like 4 negatively regulates endothelial tip cell formation and vessel branching. Proc Natl Acad Sci USA. 104:3225–3230. 2007. View Article : Google Scholar : PubMed/NCBI | |
Potente M, Gerhardt H and Carmeliet P: Basic and therapeutic aspects of angiogenesis. Cell. 146:873–887. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fraisl P, Mazzone M, Schmidt T and Carmeliet P: Regulation of angiogenesis by oxygen and metabolism. Dev Cell. 16:167–179. 2009. View Article : Google Scholar : PubMed/NCBI | |
Trost A, Lange S, Schroedl F, Bruckner D, Motloch KA, Bogner B, Kaser-Eichberger A, Strohmaier C, Runge C, Aigner L, et al: Brain and retinal pericytes: Origin, function and role. Front Cell Neurosci. 10:202016. View Article : Google Scholar : PubMed/NCBI | |
Gerhardt H and Betsholtz C: Endothelial-pericyte interactions in angiogenesis. Cell Tissue Res. 314:15–23. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lindahl P, Johansson BR, Leveen P and Betsholtz C: Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 277:242–245. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hellstrom M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H and Betsholtz C: Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 153:543–553. 2001. View Article : Google Scholar : PubMed/NCBI | |
Cantelmo AR, Conradi LC, Brajic A, Goveia J, Kalucka J, Pircher A, Chaturvedi P, Hol J, Thienpont B, Teuwen LA, et al: Inhibition of the Glycolytic activator PFKFB3 in endothelium induces tumor vessel normalization, impairs metastasis, and improves chemotherapy. Cancer Cell. 30:968–985. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rangasamy S, Monickaraj F, Legendre C, Cabrera AP, Llaci L, Bilagody C, McGuire P and Das A: Transcriptomics analysis of pericytes from retinas of diabetic animals reveals novel genes and molecular pathways relevant to blood-retinal barrier alterations in diabetic retinopathy. Exp Eye Res. 195:1080432020. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Ha Y, Liou GI, Gonsalvez GB, Smith SB and Bollinger KE: Sigma receptor ligand, (+)-pentazocine, suppresses inflammatory responses of retinal microglia. Invest Ophthalmol Vis Sci. 55:3375–3384. 2014. View Article : Google Scholar : PubMed/NCBI | |
Langston PK, Shibata M and Horng T: Metabolism supports macrophage activation. Front Immunol. 8:612017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yoshida S, Nakao S, Yoshimura T, Kobayashi Y, Nakama T, Kubo Y, Miyawaki K, Yamaguchi M, Ishikawa K, et al: M2 macrophages enhance pathological neovascularization in the mouse model of oxygen-induced retinopathy. Invest Ophthalmol Vis Sci. 56:4767–4777. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lutty GA, Hasegawa T, Baba T, Grebe R, Bhutto I and McLeod DS: Development of the human choriocapillaris. Eye (Lond). 24:408–415. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hasegawa T, McLeod DS, Bhutto IA, Prow T, Merges CA, Grebe R and Lutty GA: The embryonic human choriocapillaris develops by hemo-vasculogenesis. Dev Dyn. 236:2089–2100. 2007. View Article : Google Scholar : PubMed/NCBI | |
Baba T, Grebe R, Hasegawa T, Bhutto I, Merges C, McLeod DS and Lutty GA: Maturation of the fetal human choriocapillaris. Invest Ophthalmol Vis Sci. 50:3503–3511. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vitale G, Cozzolino A, Malandrino P, Minotta R, Puliani G, Saronni D, Faggiano A and Colao A: Role of FGF system in neuroendocrine neoplasms: Potential therapeutic applications. Front Endocrinol (Lausanne). 12:6656312021. View Article : Google Scholar : PubMed/NCBI | |
Stine ZE, Walton ZE, Altman BJ, Hsieh AL and Dang CV: MYC, metabolism, and cancer. Cancer Discov. 5:1024–1039. 2015. View Article : Google Scholar : PubMed/NCBI | |
Van Schaftingen E, Lederer B, Bartrons R and Hers HG: A kinetic study of pyrophosphate: Fructose-6-phosphate phosphotransferase from potato tubers. Application to a microassay of fructose 2,6-bisphosphate. Eur J Biochem. 129:191–195. 1982. View Article : Google Scholar : PubMed/NCBI | |
Schoors S, De Bock K, Cantelmo AR, Georgiadou M, Ghesquière B, Cauwenberghs S, Kuchnio A, Wong BW, Quaegebeur A, Goveia J, et al: Partial and transient reduction of glycolysis by PFKFB3 blockade reduces pathological angiogenesis. Cell Metab. 19:37–48. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Birukov KG, Romanoski CE, Springstead JR, Lusis AJ and Berliner JA: Role of phospholipid oxidation products in atherosclerosis. Circ Res. 111:778–799. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jyrkkanen HK, Kansanen E, Inkala M, Kivelä AM, Hurttila H, Heinonen SE, Goldsteins G, Jauhiainen S, Tiainen S, Makkonen H, et al: Nrf2 regulates antioxidant gene expression evoked by oxidized phospholipids in endothelial cells and murine arteries in vivo. Circ Res. 103:e1–e9. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kuosmanen SM, Kansanen E, Kaikkonen MU, Sihvola V, Pulkkinen K, Jyrkkänen HK, Tuoresmäki P, Hartikainen J, Hippeläinen M, Kokki H, et al: NRF2 regulates endothelial glycolysis and proliferation with miR-93 and mediates the effects of oxidized phospholipids on endothelial activation. Nucleic Acids Res. 46:1124–1138. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cecchi E, Giglioli C, Valente S, Lazzeri C, Gensini GF, Abbate R and Mannini L: Role of hemodynamic shear stress in cardiovascular disease. Atherosclerosis. 214:249–256. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo FX, Hu YW, Zheng L and Wang Q: Shear stress in autophagy and its possible mechanisms in the process of atherosclerosis. DNA Cell Biol. 36:335–346. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gomez-Escudero J, Clemente C, Garcia-Weber D, Acín-Pérez R, Millán J, Enríquez JA, Bentley K, Carmeliet P and Arroyo AG: PKM2 regulates endothelial cell junction dynamics and angiogenesis via ATP production. Sci Rep. 9:150222019. View Article : Google Scholar : PubMed/NCBI | |
Kim B, Jang C, Dharaneeswaran H, Li J, Bhide M, Yang S, Li K and Arany Z: Endothelial pyruvate kinase M2 maintains vascular integrity. J Clin Invest. 128:4543–4556. 2018. View Article : Google Scholar : PubMed/NCBI | |
Azoitei N, Becher A, Steinestel K, Rouhi A, Diepold K, Genze F, Simmet T and Seufferlein T: PKM2 promotes tumor angiogenesis by regulating HIF-1α through NF-κB activation. Mol Cancer. 15:32016. View Article : Google Scholar : PubMed/NCBI | |
Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al: Role of the GLUT1 glucose transporter in postnatal cns angiogenesis and blood-brain barrier integrity. Circ Res. 127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yeh WL, Lin CJ and Fu WM: Enhancement of glucose transporter expression of brain endothelial cells by vascular endothelial growth factor derived from glioma exposed to hypoxia. Mol Pharmacol. 73:170–177. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vander Heiden MG, Cantley LC and Thompson CB: Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hellström A, Smith LEH and Dammann O: Retinopathy of prematurity. Lancet. 382:1445–1457. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hartnett ME and Penn JS: Mechanisms and management of retinopathy of prematurity. N Engl J Med. 367:2515–2526. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pierce EA, Foley ED and Smith LE: Regulation of vascular endothelial growth factor by oxygen in a model of retinopathy of prematurity. Arch Ophthalmol. 114:1219–1228. 1996. View Article : Google Scholar : PubMed/NCBI | |
Hoppe G, Yoon S, Gopalan B, Savage AR, Brown R, Case K, Vasanji A, Chan ER, Silver RB and Sears JE: Comparative systems pharmacology of HIF stabilization in the prevention of retinopathy of prematurity. Proc Natl Acad Sci USA. 113:E2516–E2525. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE and Makaroff LE: IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 128:40–50. 2017. View Article : Google Scholar : PubMed/NCBI | |
Antonetti DA, Klein R and Gardner TW: Diabetic retinopathy. N Engl J Med. 366:1227–1239. 2012. View Article : Google Scholar : PubMed/NCBI | |
Smith LE, Wesolowski E, McLellan A, Kostyk SK, D'Amato R, Sullivan R and D'Amore PA: Oxygen-induced retinopathy in the mouse. Invest Ophthalmol Vis Sci. 35:101–111. 1994.PubMed/NCBI | |
Bai Y, Bai X, Wang Z, Zhang X, Ruan C and Miao J: MicroRNA-126 inhibits ischemia-induced retinal neovascularization via regulating angiogenic growth factors. Exp Mol Pathol. 91:471–477. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xia F, Sun JJ, Jiang YQ and Li CF: MicroRNA-384-3p inhibits retinal neovascularization through targeting hexokinase 2 in mice with diabetic retinopathy. J Cell Physiol. 234:721–730. 2018. View Article : Google Scholar : PubMed/NCBI | |
Schoors S, Cantelmo AR, Georgiadou M, Stapor P, Wang X, Quaegebeur A, Cauwenberghs S, Wong BW, Bifari F, Decimo I, et al: Incomplete and transitory decrease of glycolysis: a new paradigm for anti-angiogenic therapy? Cell Cycle. 13:16–22. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao B, Ye X, Yu J, Li L, Li W, Li S, Yu J, Lin JD, Wang CY, Chinnaiyan AM, et al: TEAD mediates YAP-dependent gene induction and growth control. Genes Dev. 22:1962–1971. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pan D: The hippo signaling pathway in development and cancer. Dev Cell. 19:491–505. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y, et al: YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest. 127:3441–3461. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Zou R, Zhang X, Shen M, Chen X, Wang J, Niu W, Yuan Y and Yuan F: YAP promotes ocular neovascularization by modifying PFKFB3-driven endothelial glycolysis. Angiogenesis. 24:489–504. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen JF, Eltzschig HK and Fredholm BB: Adenosine receptors as drug targets-what are the challenges? Nat Rev Drug Discov. 12:265–286. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lutty GA, Merges C and McLeod DS: 5′nucleotidase and adenosine during retinal vasculogenesis and oxygen-induced retinopathy. Investigative Ophthalmol Visual Sci. 41:218–229. 2000.PubMed/NCBI | |
Liu Z, Yan S, Wang J, Xu Y, Wang Y, Zhang S, Xu X, Yang Q, Zeng X, Zhou Y, Gu X, et al: Endothelial adenosine A2a receptor-mediated glycolysis is essential for pathological retinal angiogenesis. Nat Commun. 8:5842017. View Article : Google Scholar : PubMed/NCBI | |
Drake CJ and Fleming PA: Vasculogenesis in the day 6.5 to 9.5 mouse embryo. Blood. 95:1671–1679. 2000. View Article : Google Scholar : PubMed/NCBI | |
van Lookeren Campagne M, LeCouter J, Yaspan BL and Ye W: Mechanisms of age-related macular degeneration and therapeutic opportunities. J Pathol. 232:151–164. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lambert V, Lecomte J, Hansen S, Blacher S, Gonzalez ML, Struman I, Sounni NE, Rozet E, de Tullio P, Foidart JM, et al: Laser-induced choroidal neovascularization model to study age-related macular degeneration in mice. Nat Protoc. 8:2197–2211. 2013. View Article : Google Scholar : PubMed/NCBI | |
Draoui N and Feron O: Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. Dis Model Mech. 4:727–732. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song J, Lee K, Park SW, Chung H, Jung D, Na YR, Quan H, Cho CS, Che JH, Kim JH, et al: Lactic acid upregulates VEGF expression in macrophages and facilitates choroidal neovascularization. Invest Ophthalmol Vis Sci. 59:3747–3754. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lambert V, Hansen S, Schoumacher M, Lecomte J, Leenders J, Hubert P, Herfs M, Blacher S, Carnet O, Yip C, et al: Pyruvate dehydrogenase kinase/lactate axis: A therapeutic target for neovascular age-related macular degeneration identified by metabolomics. J Mol Med (Berl). 98:1737–1751. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci. 62:368–379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A and Matsubara M: Glycolysis in patients with age-related macular degeneration. Open Ophthalmol J. 8:39–47. 2014. View Article : Google Scholar : PubMed/NCBI | |
Han G, Wei P, He M and Teng H: Glucose metabolic characterization of human aqueous humor in relation to wet age-related macular degeneration. Invest Ophthalmol Vis Sci. 61:492020. View Article : Google Scholar : PubMed/NCBI | |
Joyal JS, Gantner ML and Smith LEH: Retinal energy demands control vascular supply of the retina in development and disease: The role of neuronal lipid and glucose metabolism. Prog Retin Eye Res. 64:131–156. 2018. View Article : Google Scholar : PubMed/NCBI | |
Vidal E, Lalarme E, Maire MA, Febvret V, Grégoire S, Gambert S, Acar N and Bretillon L: Early impairments in the retina of rats fed with high fructose/high fat diet are associated with glucose metabolism deregulation but not dyslipidaemia. Sci Rep. 9:59972019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Xie L, Zhu M, Guo Y, Tu Y, Zhon Y, Zeng J, Zhu L, Du S, Wang Z, et al: Shikonin alleviates choroidal neovascularization by inhibiting proangiogenic factor production from infiltrating macrophages. Exp Eye Res. 213:1088232021. View Article : Google Scholar : PubMed/NCBI | |
Nicholas MP and Mysore N: Corneal neovascularization. Exp Eye Res. 202:1083632021. View Article : Google Scholar : PubMed/NCBI | |
Clements JL and Dana R: Inflammatory corneal neovascularization: Etiopathogenesis. Semin Ophthalmol. 26:235–245. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yang W, Yang Y, Wan S, Xu Y, Li J, Zhang L, Guo W, Zheng Y, Xiang Y and Xing Y: Exploring the mechanism of the miRNA-145/paxillin axis in cell metabolism during VEGF-A-induced corneal angiogenesis. Invest Ophthalmol Vis Sci. 62:252021. View Article : Google Scholar | |
Liu G, Chen L, Cai Q, Wu H, Chen Z, Zhang X and Lu P: Streptozotocin induced diabetic mice exhibit reduced experimental choroidal neovascularization but not corneal neovascularization. Mol Med Rep. 18:4388–4398. 2018.PubMed/NCBI |