Dedifferentiation and in vivo reprogramming of committed cells in wound repair (Review)
- Authors:
- Yanjie Guo
- Weini Wu
- Xueyi Yang
- Xiaobing Fu
-
Affiliations: Life Science College, Luoyang Normal University, Luoyang, Henan 471934, P.R. China, Research Center for Tissue Repair and Regeneration Affiliated to The Medical Innovation Research Department, PLA General Hospital, Beijing 100048, P.R. China - Published online on: October 31, 2022 https://doi.org/10.3892/mmr.2022.12886
- Article Number: 369
-
Copyright: © Guo et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Del Rio-Tsonis K and Tsonis PA: Eye regeneration at the molecular age. Dev Dyn. 226:211–224. 2003. View Article : Google Scholar : PubMed/NCBI | |
Gurdon JB: The developmental capacity of nuclei taken from intestinal epithelium cells of feeding tadpoles. J Embryol Exp Morphol. 10:622–640. 1962.PubMed/NCBI | |
Worley MI, Setiawan L and Hariharan IK: Regeneration and transdetermination in Drosophila imaginal discs. Annu Rev Genet. 46:289–310. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gurdon JB: Adult frogs derived from the nuclei of single somatic cells. Dev Biol. 4:256–273. 1962. View Article : Google Scholar : PubMed/NCBI | |
Davis RL, Weintraub H and Lassar AB: Expression of a single transfected cDNA converts fibroblasts to myoblasts. Cell. 51:987–1000. 1987. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka S and Blau HM: Nuclear reprogramming to a pluripotent state by three approaches. Nature. 465:704–712. 2010. View Article : Google Scholar : PubMed/NCBI | |
Sisakhtnezhad S and Matin MM: Transdifferentiation: A cell and molecular reprogramming process. Cell Tissue Res. 348:379–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jopling C, Boue S and Izpisua Belmonte JC: Dedifferentiation, transdifferentiation and reprogramming: Three routes to regeneration. Nat Rev Mol Cell Biol. 12:79–89. 2011. View Article : Google Scholar : PubMed/NCBI | |
Yao and Wang C: Dedifferentiation: Inspiration for devising engineering strategies for regenerative medicine. NPJ Regen Med. 5:142020. View Article : Google Scholar : PubMed/NCBI | |
Brawley C and Matunis E: Regeneration of male germline stem cells by spermatogonial dedifferentiation in vivo. Science. 304:1331–1334. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kai T and Spradling A: Differentiating germ cells can revert into functional stem cells in Drosophila melanogaster ovaries. Nature. 428:564–569. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kragl M, Knapp D, Nacu E, Khattak S, Maden M, Epperlein HH and Tanaka EM: Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature. 460:60–65. 2009. View Article : Google Scholar : PubMed/NCBI | |
Blanpain C and Fuchs E: Stem cell plasticity. Plasticity of epithelial stem cells in tissue regeneration. Science. 344:12422812014. View Article : Google Scholar : PubMed/NCBI | |
van Es JH, Sato T, van de Wetering M, Lyubimova A, Yee Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, et al: Dll1+ secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol. 14:1099–1104. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tata PR, Mou H, Pardo-Saganta A, Zhao R, Prabhu M, Law BM, Vinarsky V, Cho JL, Breton S, Sahay A, et al: Dedifferentiation of committed epithelial cells into stem cells in vivo. Nature. 503:218–223. 2013. View Article : Google Scholar : PubMed/NCBI | |
Brockes JP and Kumar A: Plasticity and reprogramming of differentiated cells in amphibian regeneration. Nat Rev Mol Cell Biol. 3:566–574. 2002. View Article : Google Scholar : PubMed/NCBI | |
Donati G, Rognoni E, Hiratsuka T, Liakath-Ali K, Hoste E, Kar G, Kayikci M, Russell R, Kretzschmar K, Mulder KW, et al: Wounding induces dedifferentiation of epidermal Gata6+ cells and acquisition of stem cell properties. Nat Cell Biol. 19:603–613. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, et al: Differentiated Troy+ chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell. 155:357–368. 2013. View Article : Google Scholar : PubMed/NCBI | |
Painter MW, Brosius Lutz A, Cheng YC, Latremoliere A, Duong K, Miller CM, Posada S, Cobos EJ, Zhang AX, Wagers AJ, et al: Diminished Schwann cell repair responses underlie age-associated impaired axonal regeneration. Neuron. 83:331–343. 2014. View Article : Google Scholar : PubMed/NCBI | |
Buczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R and Winton DJ: Intestinal label-retaining cells are secretory precursors expressing Lgr5. Nature. 495:65–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
Tian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD and de Sauvage FJ: A reserve stem cell population in small intestine renders Lgr5-positive cells dispensable. Nature. 478:255–259. 2011. View Article : Google Scholar : PubMed/NCBI | |
Leushacke M, Tan SH, Wong A, Swathi Y, Hajamohideen A, Tan LT, Goh J, Wong E, Denil SLIJ, Murakami K and Barker N: Lgr5-expressing chief cells drive epithelial regeneration and cancer in the oxyntic stomach. Nat Cell Biol. 19:774–786. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tulina N and Matunis E: Control of stem cell self-renewal in Drosophila spermatogenesis by JAK-STAT signaling. Science. 294:2546–2549. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kiger AA, Jones DL, Schulz C, Rogers MB and Fuller MT: Stem cell self-renewal specified by JAK-STAT activation in response to a support cell cue. Science. 294:2542–2545. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sheng XR, Brawley CM and Matunis EL: Dedifferentiating spermatogonia outcompete somatic stem cells for niche occupancy in the Drosophila testis. Cell Stem Cell. 5:191–203. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hameed LS, Berg DA, Belnoue L, Jensen LD, Cao Y and Simon A: Environmental changes in oxygen tension reveal ROS-dependent neurogenesis and regeneration in the adult newt brain. Elife. 4:e084222015. View Article : Google Scholar : PubMed/NCBI | |
D'Ignazio L, Batie M and Rocha S: Hypoxia and Inflammation in Cancer, Focus on HIF and NF-κB. Biomedicines. 5:212017. View Article : Google Scholar : PubMed/NCBI | |
Mohyeldin A, Garzon-Muvdi T and Quinones-Hinojosa A: Oxygen in stem cell biology: A critical component of the stem cell niche. Cell Stem Cell. 7:150–161. 2010. View Article : Google Scholar : PubMed/NCBI | |
Arthur SA, Blaydes JP and Houghton FD: Glycolysis regulates human embryonic stem cell self-renewal under hypoxia through HIF-2α and the glycolytic sensors CTBPs. Stem Cell Reports. 12:728–742. 2019. View Article : Google Scholar : PubMed/NCBI | |
Forristal CE, Wright KL, Hanley NA, Oreffo RO and Houghton FD: Hypoxia inducible factors regulate pluripotency and proliferation in human embryonic stem cells cultured at reduced oxygen tensions. Reproduction. 139:85–97. 2010. View Article : Google Scholar : PubMed/NCBI | |
Yoshida Y, Takahashi K, Okita K, Ichisaka T and Yamanaka S: Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 5:237–241. 2009. View Article : Google Scholar : PubMed/NCBI | |
Jopling C, Sune G, Faucherre A, Fabregat C and Izpisua Belmonte JC: Hypoxia induces myocardial regeneration in zebrafish. Circulation. 126:3017–3027. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Xiang G, Rathbone CR, Pan H, Bellayr IH, Walters TJ and Li Y: Slow-adhering stem cells derived from injured skeletal muscle have improved regenerative capacity. Am J Pathol. 179:931–941. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vojnits K, Pan H, Mu X and Li Y: Characterization of an injury induced population of muscle-derived stem cell-like cells. Sci Rep. 5:173552015. View Article : Google Scholar : PubMed/NCBI | |
Vojnits K, Pan H, Dai X, Sun H, Tong Q, Darabi R, Huard J and Li Y: Functional neuronal differentiation of injury-induced muscle-derived stem cell-like cells with therapeutic implications. Sci Rep. 7:11772017. View Article : Google Scholar : PubMed/NCBI | |
Tatebayashi K, Tanaka Y, Nakano-Doi A, Sakuma R, Kamachi S, Shirakawa M, Uchida K, Kageyama H, Takagi T, Yoshimura S, et al: Identification of multipotent stem cells in human brain tissue following stroke. Stem Cells Dev. 26:787–797. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liao YJ, Gao JH, Jiang P and Lu F: Effect of hypoxia on dedifferentiation of mature adipocytes: An experimental study. Nan Fang Yi Ke Da Xue Xue Bao. 28:339–342. 2008.(In Chinese). PubMed/NCBI | |
Schmidt-Ott KM, Xu AD, Tuschick S, Liefeldt L, Kresse W, Verkhratsky A, Kettenmann H and Paul M: Hypoxia reverses dibutyryl-cAMP-induced stellation of cultured astrocytes via activation of the endothelin system. FASEB J. 15:1227–1229. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sahai A, Mei C, Schrier RW and Tannen RL: Mechanisms of chronic hypoxia-induced renal cell growth. Kidney Int. 56:1277–1281. 1999. View Article : Google Scholar : PubMed/NCBI | |
Kierans SJ and Taylor CT: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kondoh H, Lleonart ME, Nakashima Y, Yokode M, Tanaka M, Bernard D, Gil J and Beach D: A high glycolytic flux supports the proliferative potential of murine embryonic stem cells. Antioxid Redox Signal. 9:293–299. 2007. View Article : Google Scholar : PubMed/NCBI | |
Folmes CD, Nelson TJ, Martinez-Fernandez A, Arrell DK, Lindor JZ, Dzeja PP, Ikeda Y, Perez-Terzic C and Terzic A: Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14:264–271. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nombela-Arrieta C, Pivarnik G, Winkel B, Canty KJ, Harley B, Mahoney JE, Park SY, Lu J, Protopopov A and Silberstein LE: Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment. Nat Cell Biol. 15:533–543. 2013. View Article : Google Scholar : PubMed/NCBI | |
Takubo K, Nagamatsu G, Kobayashi CI, Nakamura-Ishizu A, Kobayashi H, Ikeda E, Goda N, Rahimi Y, Johnson RS, Soga T, et al: Regulation of glycolysis by Pdk functions as a metabolic checkpoint for cell cycle quiescence in hematopoietic stem cells. Cell Stem Cell. 12:49–61. 2013. View Article : Google Scholar : PubMed/NCBI | |
Warr MR and Passegue E: Metabolic makeover for HSCs. Cell Stem Cell. 12:1–3. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lima A, Burgstaller J, Sanchez-Nieto JM and Rodriguez TA: The mitochondria and the regulation of cell fitness during early mammalian development. Curr Top Dev Biol. 128:339–363. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen CT, Shih YR, Kuo TK, Lee OK and Wei YH: Coordinated changes of mitochondrial biogenesis and antioxidant enzymes during osteogenic differentiation of human mesenchymal stem cells. Stem Cells. 26:960–968. 2008. View Article : Google Scholar : PubMed/NCBI | |
Pattappa G, Thorpe SD, Jegard NC, Heywood HK, de Bruijn JD and Lee DA: Continuous and uninterrupted oxygen tension influences the colony formation and oxidative metabolism of human mesenchymal stem cells. Tissue Eng Part C Methods. 19:68–79. 2013. View Article : Google Scholar : PubMed/NCBI | |
Scott CA, Carney TJ and Amaya E: Aerobic glycolysis is important for zebrafish larval wound closure and tail regeneration. Wound Repair Regen. Sep 23–2022.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Sinclair JW, Hoying DR, Bresciani E, Nogare DD, Needle CD, Wu W, Bishop K, Elkahloun AG, Chitnis AB, Liu PP, et al: A metabolic shift to glycolysis promotes zebrafish tail regeneration through TGF-β dependent dedifferentiation of notochord cells to form the blastema. bioRxiv. Mar 20–2020.(Epub ahead of print). PubMed/NCBI | |
Fukuda R, Marin-Juez R, El-Sammak H, Beisaw A, Ramadass R, Kuenne C, Guenther S, Konzer A, Bhagwat AM, Graumann J and Stainier DY: Stimulation of glycolysis promotes cardiomyocyte proliferation after injury in adult zebrafish. EMBO Rep. 21:e497522020. View Article : Google Scholar : PubMed/NCBI | |
Naviaux RK, Le TP, Bedelbaeva K, Leferovich J, Gourevitch D, Sachadyn P, Zhang XM, Clark L and Heber-Katz E: Retained features of embryonic metabolism in the adult MRL mouse. Mol Genet Metab. 96:133–144. 2009. View Article : Google Scholar : PubMed/NCBI | |
Sinha KM, Tseng C, Guo P, Lu A, Pan H, Gao X, Andrews R, Eltzschig H and Huard J: Hypoxia-inducible factor 1α (HIF-1α) is a major determinant in the enhanced function of muscle-derived progenitors from MRL/MpJ mice. FASEB J. 33:8321–8334. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Strehin I, Bedelbaeva K, Gourevitch D, Clark L, Leferovich J, Messersmith PB and Heber-Katz E: Drug-induced regeneration in adult mice. Sci Transl Med. 7:290ra2922015. View Article : Google Scholar | |
Pennock R, Bray E, Pryor P, James S, McKeegan P, Sturmey R and Genever P: Human cell dedifferentiation in mesenchymal condensates through controlled autophagy. Sci Rep. 5:131132015. View Article : Google Scholar : PubMed/NCBI | |
Varum S, Rodrigues AS, Moura MB, Momcilovic O, Easley CA IV, Ramalho-Santos J, Van Houten B and Schatten G: Energy metabolism in human pluripotent stem cells and their differentiated counterparts. PLoS One. 6:e209142011. View Article : Google Scholar : PubMed/NCBI | |
Schreml S, Szeimies RM, Prantl L, Karrer S, Landthaler M and Babilas P: Oxygen in acute and chronic wound healing. Br J Dermatol. 163:257–268. 2010. View Article : Google Scholar : PubMed/NCBI | |
Hong WX, Hu MS, Esquivel M, Liang GY, Rennert RC, McArdle A, Paik KJ, Duscher D, Gurtner GC, Lorenz HP and Longaker MT: The role of hypoxia-inducible factor in wound healing. Adv Wound Care (New Rochelle). 3:390–399. 2014. View Article : Google Scholar : PubMed/NCBI | |
Baatar D, Jones MK, Tsugawa K, Pai R, Moon WS, Koh GY, Kim I, Kitano S and Tarnawski AS: Esophageal ulceration triggers expression of hypoxia-inducible factor-1 alpha and activates vascular endothelial growth factor gene: Implications for angiogenesis and ulcer healing. Am J Pathol. 161:1449–1457. 2002. View Article : Google Scholar : PubMed/NCBI | |
Elson DA, Ryan HE, Snow JW, Johnson R and Arbeit JM: Coordinate up-regulation of hypoxia inducible factor (HIF)-1alpha and HIF-1 target genes during multi-stage epidermal carcinogenesis and wound healing. Cancer Res. 60:6189–6195. 2000.PubMed/NCBI | |
Coussens LM and Werb Z: Inflammation and cancer. Nature. 420:860–867. 2002. View Article : Google Scholar : PubMed/NCBI | |
Muz B, de la Puente P, Azab F and Azab AK: The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. Hypoxia (Auckl). 3:83–92. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang B: Aerobic glycolysis and high level of lactate in cancer metabolism and microenvironment. Genes Dis. 4:25–27. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wyld L, Bellantuono I, Tchkonia T, Morgan J, Turner O, Foss F, George J, Danson S and Kirkland JL: Senescence and cancer: A review of clinical implications of senescence and senotherapies. Cancers (Basel). 12:21342020. View Article : Google Scholar : PubMed/NCBI | |
Lasry A and Ben-Neriah Y: Senescence-associated inflammatory responses: Aging and cancer perspectives. Trends Immunol. 36:217–228. 2015. View Article : Google Scholar : PubMed/NCBI | |
Munoz-Espin D and Serrano M: Cellular senescence: From physiology to pathology. Nat Rev Mol Cell Biol. 15:482–496. 2014. View Article : Google Scholar : PubMed/NCBI | |
Tchkonia T, Zhu Y, van Deursen J, Campisi J and Kirkland JL: Cellular senescence and the senescent secretory phenotype: Therapeutic opportunities. J Clin Invest. 123:966–972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Watanabe S, Kawamoto S, Ohtani N and Hara E: Impact of senescence-associated secretory phenotype and its potential as a therapeutic target for senescence-associated diseases. Cancer Sci. 108:563–569. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schmitt CA, Fridman JS, Yang M, Lee S, Baranov E, Hoffman RM and Lowe SW: A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell. 109:335–346. 2002. View Article : Google Scholar : PubMed/NCBI | |
Coppe JP, Patil CK, Rodier F, Sun Y, Muñoz DP, Goldstein J, Nelson PS, Desprez PY and Campisi J: Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:2853–2868. 2008. View Article : Google Scholar : PubMed/NCBI | |
Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 75:685–705. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chiche A, Le Roux I, von Joest M, Sakai H, Aguín SB, Cazin C, Salam R, Fiette L, Alegria O, Flamant P, et al: Injury-Induced senescence enables in vivo reprogramming in skeletal muscle. Cell Stem Cell. 20:407–414. e42017. View Article : Google Scholar : PubMed/NCBI | |
Mosteiro L, Pantoja C, Alcazar N, Marión RM, Chondronasiou D, Rovira M, Fernandez-Marcos PJ, Muñoz-Martin M, Blanco-Aparicio C, Pastor J, et al: Tissue damage and senescence provide critical signals for cellular reprogramming in vivo. Science. 354:aaf44452016. View Article : Google Scholar : PubMed/NCBI | |
Taguchi J and Yamada Y: Unveiling the role of senescence-induced cellular plasticity. Cell Stem Cell. 20:293–294. 2017. View Article : Google Scholar : PubMed/NCBI | |
Feng T, Meng J, Kou S, Jiang Z, Huang X, Lu Z, Zhao H, Lau LF, Zhou B and Zhang H: CCN1-Induced cellular senescence promotes heart regeneration. Circulation. 139:2495–2498. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sarig R, Rimmer R, Bassat E, Zhang L, Umansky KB, Lendengolts D, Perlmoter G, Yaniv K and Tzahor E: Transient p53-mediated regenerative senescence in the injured heart. Circulation. 139:2491–2494. 2019. View Article : Google Scholar : PubMed/NCBI | |
Heinrich C, Spagnoli FM and Berninger B: In vivo reprogramming for tissue repair. Nat Cell Biol. 17:204–211. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ritschka B, Storer M, Mas A, Heinzmann F, Ortells MC, Morton JP, Sansom OJ, Zender L and Keyes WM: The senescence-associated secretory phenotype induces cellular plasticity and tissue regeneration. Genes Dev. 31:172–183. 2017. View Article : Google Scholar : PubMed/NCBI | |
Munoz-Espin D, Canamero M, Maraver A, Gómez-López G, Contreras J, Murillo-Cuesta S, Rodríguez-Baeza A, Varela-Nieto I, Ruberte J, Collado M and Serrano M: Programmed cell senescence during mammalian embryonic development. Cell. 155:1104–1118. 2013. View Article : Google Scholar : PubMed/NCBI | |
Storer M, Mas A, Robert-Moreno A, Pecoraro M, Ortells MC, Di Giacomo V, Yosef R, Pilpel N, Krizhanovsky V, Sharpe J and Keyes WM: Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell. 155:1119–1130. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hanna J, Guerra-Moreno A, Ang J and Micoogullari Y: Protein degradation and the pathologic basis of disease. Am J Pathol. 189:94–103. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cooke JP, Sayed N, Lee J and Wong WT: Innate immunity and epigenetic plasticity in cellular reprogramming. Curr Opin Genet Dev. 28:89–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lee J, Sayed N, Hunter A, Au KF, Wong WH, Mocarski ES, Pera RR, Yakubov E and Cooke JP: Activation of innate immunity is required for efficient nuclear reprogramming. Cell. 151:547–558. 2012. View Article : Google Scholar : PubMed/NCBI | |
King MW, Neff AW and Mescher AL: The developing Xenopus limb as a model for studies on the balance between inflammation and regeneration. Anat Rec (Hoboken). 295:1552–1561. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cavaillon JM: Pro-versus anti-inflammatory cytokines: Myth or reality. Cell Mol Biol (Noisy-le-grand). 47:695–702. 2001.PubMed/NCBI | |
Lennartsson J and Ronnstrand L: Stem cell factor receptor/c-Kit: From basic science to clinical implications. Physiol Rev. 92:1619–1649. 2012. View Article : Google Scholar : PubMed/NCBI | |
Schmitt M, Schewe M, Sacchetti A, Feijtel D, van de Geer WS, Teeuwssen M, Sleddens HF, Joosten R, van Royen ME, van de Werken HJG, et al: Paneth cells respond to inflammation and contribute to tissue regeneration by acquiring stem-like features through SCF/c-Kit Signaling. Cell Rep. 24:2312–2328. e72018. View Article : Google Scholar : PubMed/NCBI | |
Soria-Valles C, Osorio FG, Gutierrez-Fernandez A, De Los Angeles A, Bueno C, Menéndez P, Martín-Subero JI, Daley GQ, Freije JM and López-Otín C: NF-κB activation impairs somatic cell reprogramming in ageing. Nat Cell Biol. 17:1004–1013. 2015. View Article : Google Scholar : PubMed/NCBI | |
Soria-Valles C, Osorio FG and Lopez-Otin C: Reprogramming aging through DOT1L inhibition. Cell Cycle. 14:3345–3346. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gabel S, Koncina E, Dorban G, Heurtaux T, Birck C, Glaab E, Michelucci A, Heuschling P and Grandbarbe L: Inflammation promotes a conversion of astrocytes into neural progenitor cells via NF-κB activation. Mol Neurobiol. 53:5041–5055. 2016. View Article : Google Scholar : PubMed/NCBI | |
Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Göktuna SI, Ziegler PK, Canli O, Heijmans J, Huels DJ, Moreaux G, et al: Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell. 152:25–38. 2013. View Article : Google Scholar : PubMed/NCBI | |
Murtaugh LC and Keefe MD: Regeneration and repair of the exocrine pancreas. Annu Rev Physiol. 77:229–249. 2015. View Article : Google Scholar : PubMed/NCBI | |
O'Neill LA: ‘Transflammation’: When innate immunity meets induced pluripotency. Cell. 151:471–473. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jiang B and Liao R: The paradoxical role of inflammation in cardiac repair and regeneration. J Cardiovasc Transl Res. 3:410–416. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cooke JP: Inflammation and its role in regeneration and repair. Circ Res. 124:1166–1168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mescher AL, Neff AW and King MW: Changes in the inflammatory response to injury and its resolution during the loss of regenerative capacity in developing Xenopus limbs. PLoS One. 8:e804772013. View Article : Google Scholar : PubMed/NCBI | |
Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, et al: Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol. 18:607–618. 2016. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov SI, Greten FR and Karin M: Immunity, inflammation, and cancer. Cell. 140:883–899. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ben-Neriah Y and Karin M: Inflammation meets cancer, with NF-κB as the matchmaker. Nat Immunol. 12:715–723. 2011. View Article : Google Scholar : PubMed/NCBI | |
Balkwill FR and Mantovani A: Cancer-related inflammation: Common themes and therapeutic opportunities. Semin Cancer Biol. 22:33–40. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fedorova E and Zink D: Nuclear architecture and gene regulation. Biochim Biophys Acta. 1783:2174–2184. 2008. View Article : Google Scholar : PubMed/NCBI | |
Boland MJ, Nazor KL and Loring JF: Epigenetic regulation of pluripotency and differentiation. Circ Res. 115:311–324. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wu H and Sun YE: Epigenetic regulation of stem cell differentiation. Pediatr Res. 59:21R–25R. 2006. View Article : Google Scholar : PubMed/NCBI | |
Nakamura K, Maki N, Trinh A, Trask HW, Gui J, Tomlinson CR and Tsonis PA: miRNAs in newt lens regeneration: Specific control of proliferation and evidence for miRNA networking. PLoS One. 5:e120582010. View Article : Google Scholar : PubMed/NCBI | |
Powell C, Grant AR, Cornblath E and Goldman D: Analysis of DNA methylation reveals a partial reprogramming of the Muller glia genome during retina regeneration. Proc Natl Acad Sci USA. 110:19814–19819. 2013. View Article : Google Scholar : PubMed/NCBI | |
Oliveri RS: Epigenetic dedifferentiation of somatic cells into pluripotency: Cellular alchemy in the age of regenerative medicine? Regen Med. 2:795–816. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ramachandran R, Fausett BV and Goldman D: Ascl1a regulates Muller glia dedifferentiation and retinal regeneration through a Lin-28-dependent, let-7 microRNA signalling pathway. Nat Cell Biol. 12:1101–1107. 2010. View Article : Google Scholar : PubMed/NCBI | |
Reyes-Aguirre LI and Lamas M: Oct4 Methylation-Mediated silencing as an epigenetic barrier preventing muller glia dedifferentiation in a murine model of retinal injury. Front Neurosci. 10:5232016. View Article : Google Scholar : PubMed/NCBI | |
Jadhav U, Saxena M, O'Neill NK, Saadatpour A, Yuan GC, Herbert Z, Murata K and Shivdasani RA: Dynamic reorganization of chromatin accessibility signatures during dedifferentiation of secretory precursors into Lgr5+ Intestinal stem cells. Cell Stem Cell. 21:65–77. e52017. View Article : Google Scholar : PubMed/NCBI | |
Li W, Yang L, He Q, Hu C, Zhu L, Ma X, Ma X, Bao S, Li L, Chen Y, et al: A homeostatic arid1a-dependent permissive chromatin state licenses hepatocyte responsiveness to liver-injury-associated YAP signaling. Cell Stem Cell. 25:54–68. e552019. View Article : Google Scholar : PubMed/NCBI | |
Adilakshmi T, Sudol I and Tapinos N: Combinatorial action of miRNAs regulates transcriptional and post-transcriptional gene silencing following in vivo PNS injury. PLoS One. 7:e396742012. View Article : Google Scholar : PubMed/NCBI | |
Yun MH, Gates PB and Brockes JP: Regulation of p53 is critical for vertebrate limb regeneration. Proc Natl Acad Sci USA. 110:17392–17397. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yi L, Lu C, Hu W, Sun Y and Levine AJ: Multiple roles of p53-related pathways in somatic cell reprogramming and stem cell differentiation. Cancer Res. 72:5635–5645. 2012. View Article : Google Scholar : PubMed/NCBI | |
He J, Zhou Y, Qian C, Wang D, Yang Z, Huang Z, Sun J, Ni R, Yang Q, Chen J and Luo L: DNA methylation maintenance at the p53 locus initiates biliary-mediated liver regeneration. NPJ Regen Med. 7:212022. View Article : Google Scholar : PubMed/NCBI | |
Nemenoff RA, Simpson PA, Furgeson SB, Kaplan-Albuquerque N, Crossno J, Garl PJ, Cooper J and Weiser-Evans MC: Targeted deletion of PTEN in smooth muscle cells results in vascular remodeling and recruitment of progenitor cells through induction of stromal cell-derived factor-1alpha. Circ Res. 102:1036–1045. 2008. View Article : Google Scholar : PubMed/NCBI | |
Strand KA, Lu S, Mutryn MF, Li L, Zhou Q, Enyart BT, Jolly AJ, Dubner AM, Moulton KS, Nemenoff RA, et al: High throughput screen identifies the DNMT1 (DNA Methyltransferase-1) Inhibitor, 5-Azacytidine, as a potent inducer of PTEN (Phosphatase and Tensin Homolog): Central role for PTEN in 5-Azacytidine protection against pathological vascular remodeling. Arterioscler Thromb Vasc Biol. 40:1854–1869. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Zhang C, Hasson D, Desai A, SenBanerjee S, Magnani E, Ukomadu C, Lujambio A, Bernstein E and Sadler KC: Epigenetic compensation promotes liver regeneration. Dev Cell. 50:43–56. e62019. View Article : Google Scholar : PubMed/NCBI | |
Chuong EB, Elde NC and Feschotte C: Regulatory activities of transposable elements: From conflicts to benefits. Nat Rev Genet. 18:71–86. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tosh D and Slack JM: How cells change their phenotype. Nat Rev Mol Cell Biol. 3:187–194. 2002. View Article : Google Scholar : PubMed/NCBI | |
Corbett JL and Tosh D: Conversion of one cell type into another: Implications for understanding organ development, pathogenesis of cancer and generating cells for therapy. Biochem Soc Trans. 42:609–616. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abollo-Jimenez F, Jimenez R and Cobaleda C: Physiological cellular reprogramming and cancer. Semin Cancer Biol. 20:98–106. 2010. View Article : Google Scholar : PubMed/NCBI | |
Villanueva A, Alsinet C, Yanger K, Hoshida Y, Zong Y, Toffanin S, Rodriguez-Carunchio L, Solé M, Thung S, Stanger BZ and Llovet JM: Notch signaling is activated in human hepatocellular carcinoma and induces tumor formation in mice. Gastroenterology. 143:1660–1669. e72012. View Article : Google Scholar : PubMed/NCBI | |
Fan B, Malato Y, Calvisi DF, Naqvi S, Razumilava N, Ribback S, Gores GJ, Dombrowski F, Evert M, Chen X and Willenbring H: Cholangiocarcinomas can originate from hepatocytes in mice. J Clin Invest. 122:2911–2915. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cobaleda C, Jochum W and Busslinger M: Conversion of mature B cells into T cells by dedifferentiation to uncommitted progenitors. Nature. 449:473–477. 2007. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Foreman O, Bronson RT, Nishiyama A, Luo L and Zong H: Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 146:209–221. 2011. View Article : Google Scholar : PubMed/NCBI | |
Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Ellisman MH and Verma IM: Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 338:1080–1084. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, Xie M, Zhang Q, McMichael JF, Wyczalkowski MA, et al: Mutational landscape and significance across 12 major cancer types. Nature. 502:333–339. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Haga H and Yamada Y: Concise review: Dedifferentiation meets cancer development: Proof of concept for epigenetic cancer. Stem Cells Transl Med. 3:1182–1187. 2014. View Article : Google Scholar : PubMed/NCBI | |
Rausch T, Jones DT, Zapatka M, Stütz AM, Zichner T, Weischenfeldt J, Jäger N, Remke M, Shih D, Northcott PA, et al: Genome sequencing of pediatric medulloblastoma links catastrophic DNA rearrangements with TP53 mutations. Cell. 148:59–71. 2012. View Article : Google Scholar : PubMed/NCBI | |
Molenaar JJ, Koster J, Zwijnenburg DA, van Sluis P, Valentijn LJ, van der Ploeg I, Hamdi M, van Nes J, Westerman BA, van Arkel J, et al: Sequencing of neuroblastoma identifies chromothripsis and defects in neuritogenesis genes. Nature. 483:589–593. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lee RS, Stewart C, Carter SL, Ambrogio L, Cibulskis K, Sougnez C, Lawrence MS, Auclair D, Mora J, Golub TR, et al: A remarkably simple genome underlies highly malignant pediatric rhabdoid cancers. J Clin Invest. 122:2983–2988. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y and Yamada Y: The causal relationship between epigenetic abnormality and cancer development: In vivo reprogramming and its future application. Proc Jpn Acad Ser B Phys Biol Sci. 94:235–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Rao CV, Cooma I, Rodriguez JG, Simi B, El-Bayoumy K and Reddy BS: Chemoprevention of familial adenomatous polyposis development in the APC(min) mouse model by 1,4-phenylene bis(methylene)selenocyanate. Carcinogenesis. 21:617–621. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Hata K, Hirose Y, Hara A, Sugie S, Kuno T, Yoshimi N, Tanaka T and Mori H: Microadenomatous lesions involving loss of Apc heterozygosity in the colon of adult Apc(Min/+) mice. Cancer Res. 62:6367–6370. 2002.PubMed/NCBI | |
Yamada Y and Mori H: Pre-cancerous lesions for colorectal cancers in rodents: A new concept. Carcinogenesis. 24:1015–1019. 2003. View Article : Google Scholar : PubMed/NCBI | |
Moser AR, Pitot HC and Dove WF: A dominant mutation that predisposes to multiple intestinal neoplasia in the mouse. Science. 247:322–324. 1990. View Article : Google Scholar : PubMed/NCBI | |
Yamada Y, Jackson-Grusby L, Linhart H, Meissner A, Eden A, Lin H and Jaenisch R: Opposing effects of DNA hypomethylation on intestinal and liver carcinogenesis. Proc Natl Acad Sci USA. 102:13580–13585. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Yamada Y, Nguyen S, Linhart H, Jackson-Grusby L, Meissner A, Meletis K, Lo G and Jaenisch R: Suppression of intestinal neoplasia by deletion of Dnmt3b. Mol Cell Biol. 26:2976–2983. 2006. View Article : Google Scholar : PubMed/NCBI | |
Linhart HG, Lin H, Yamada Y, Moran E, Steine EJ, Gokhale S, Lo G, Cantu E, Ehrich M, He T, et al: Dnmt3b promotes tumorigenesis in vivo by gene-specific de novo methylation and transcriptional silencing. Genes Dev. 21:3110–3122. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hatano Y, Semi K, Hashimoto K, Lee MS, Hirata A, Tomita H, Kuno T, Takamatsu M, Aoki K, Taketo MM, et al: Reducing DNA methylation suppresses colon carcinogenesis by inducing tumor cell differentiation. Carcinogenesis. 36:719–729. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khoshchehreh R, Totonchi M, Carlos Ramirez J, Torres R, Baharvand H, Aicher A, Ebrahimi M and Heeschen C: Epigenetic reprogramming of primary pancreatic cancer cells counteracts their in vivo tumourigenicity. Oncogene. 38:6226–6239. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP and Meade TW: Effect of daily aspirin on long-term risk of death due to cancer: Analysis of individual patient data from randomised trials. Lancet. 377:31–41. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fraser DM, Sullivan FM, Thompson AM and McCowan C: Aspirin use and survival after the diagnosis of breast cancer: A population-based cohort study. Br J Cancer. 111:623–627. 2014. View Article : Google Scholar : PubMed/NCBI | |
Streicher SA, Yu H, Lu L, Kidd MS and Risch HA: Case-control study of aspirin use and risk of pancreatic cancer. Cancer Epidemiol Biomarkers Prev. 23:1254–1263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Close JL, Liu J, Gumuscu B and Reh TA: Epidermal growth factor receptor expression regulates proliferation in the postnatal rat retina. Glia. 54:94–104. 2006. View Article : Google Scholar : PubMed/NCBI | |
Karl MO, Hayes S, Nelson BR, Tan K, Buckingham B and Reh TA: Stimulation of neural regeneration in the mouse retina. Proc Natl Acad Sci USA. 105:19508–19513. 2008. View Article : Google Scholar : PubMed/NCBI | |
Takeda M, Takamiya A, Jiao JW, Cho KS, Trevino SG, Matsuda T and Chen DF: alpha-Aminoadipate induces progenitor cell properties of Muller glia in adult mice. Invest Ophthalmol Vis Sci. 49:1142–1150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Osakada F, Ooto S, Akagi T, Mandai M, Akaike A and Takahashi M: Wnt signaling promotes regeneration in the retina of adult mammals. J Neurosci. 27:4210–4219. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou Q, Brown J, Kanarek A, Rajagopal J and Melton DA: In vivo reprogramming of adult pancreatic exocrine cells to beta-cells. Nature. 455:627–632. 2008. View Article : Google Scholar : PubMed/NCBI | |
Qian L, Huang Y, Spencer CI, Foley A, Vedantham V, Liu L, Conway SJ, Fu JD and Srivastava D: In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature. 485:593–598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kurita M, Araoka T, Hishida T, O'Keefe DD, Takahashi Y, Sakamoto A, Sakurai M, Suzuki K, Wu J, Yamamoto M, et al: In vivo reprogramming of wound-resident cells generates skin epithelial tissue. Nature. 561:243–247. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang G, Badylak SF, Heber-Katz E, Braunhut SJ and Gudas LJ: The effects of DNA methyltransferase inhibitors and histone deacetylase inhibitors on digit regeneration in mice. Regen Med. 5:201–220. 2010. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Kong L and Zhu S: Reprogramming cell fates by small molecules. Protein Cell. 8:328–348. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tang Y and Cheng L: Cocktail of chemical compounds robustly promoting cell reprogramming protects liver against acute injury. Protein Cell. 8:273–283. 2017. View Article : Google Scholar : PubMed/NCBI | |
Niu W, Zang T, Zou Y, Fang S, Smith DK, Bachoo R and Zhang CL: In vivo reprogramming of astrocytes to neuroblasts in the adult brain. Nat Cell Biol. 15:1164–1175. 2013. View Article : Google Scholar : PubMed/NCBI | |
Guan J, Wang G, Wang J, Zhang J, Fu Y, Cheng L, Meng G, Lyu Y, Zhu J, Li Y, et al: Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature. 605:325–331. 2022. View Article : Google Scholar : PubMed/NCBI |