1
|
Shi Y and Hu FB: The global implications
of diabetes and cancer. Lancet. 383:1947–1948. 2014. View Article : Google Scholar : PubMed/NCBI
|
2
|
Murphy D, McCulloch CE, Lin F, Banerjee T,
Bragg-Gresham JL, Eberhardt MS, Morgenstern H, Pavkov ME, Saran R,
Powe NR, et al: Trends in prevalence of chronic kidney disease in
the United States. Ann Intern Med. 165:473–481. 2016. View Article : Google Scholar : PubMed/NCBI
|
3
|
Rossing P: Diabetic nephropathy: Worldwide
epidemic and effects of current treatment on natural history. Curr
Diab Rep. 6:479–483. 2006. View Article : Google Scholar : PubMed/NCBI
|
4
|
Johansen KL, Chertow GM, Foley RN,
Gilbertson DT, Herzog CA, Ishani A, Israni AK, Ku E, Tamura MK, Li
S, et al: US renal data system 2020 annual data report:
Epidemiology of kidney disease in the United States. Am J kidney
Dis. 77:A7–A8. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Yang C, Wang H, Zhao X, Matsushita K,
Coresh J, Zhang L and Zhao MH: CKD in China: Evolving spectrum and
public health implications. Am J Kidney Dis. 76:258–264. 2020.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Nauta FL, Boertien WE, Bakker SJ, van Goor
H, van Oeveren W, de Jong PE, Bilo H and Gansevoort RT: Glomerular
and tubular damage markers are elevated in patients with diabetes.
Diabetes Care. 34:975–981. 2011. View Article : Google Scholar : PubMed/NCBI
|
7
|
Du L, Qian X, Li Y, Li XZ, He LL, Xu L,
Liu YQ, Li CC, Ma P, Shu FL, et al: Sirt1 inhibits renal tubular
cell epithelial-mesenchymal transition through YY1 deacetylation in
diabetic nephropathy. Acta Pharmacol Sin. 42:242–251. 2020.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang T, Shu F, Yang H, Heng C, Zhou Y,
Chen Y, Qian X, Du L, Zhu X, Lu Q and Yin X: YY1: A novel
therapeutic target for diabetic nephropathy orchestrated renal
fibrosis. Metabolism. 96:33–45. 2019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yang T, Heng C, Zhou Y, Hu Y, Chen S, Wang
H, Yang H, Jiang Z, Qian S, Wang Y, et al: Targeting mammalian
serine/threonine-protein kinase 4 through Yes-associated
protein/TEA domain transcription factor-mediated
epithelial-mesenchymal transition ameliorates diabetic nephropathy
orchestrated renal fibrosis. Metabolism. 108:1542582020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Huang F, Zhao Y, Wang Q, Hillebrands JL,
van den Born J, Ji L, An T and Qin G: Dapagliflozin attenuates
renal tubulointerstitial fibrosis associated with type 1 diabetes
by regulating STAT1/TGFβ1 signaling. Front Endocrinol (Lausanne).
10:4412019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Y, Zhou H, Li Y, Han L, Song M, Chen F,
Shang G, Wang D, Wang Z, Zhang W and Zhong M: PTPN2 improved renal
injury and fibrosis by suppressing STAT-induced inflammation in
early diabetic nephropathy. J Cell Mol Med. 23:4179–4195. 2019.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen
C, Liu D, Zhang Y, Wang Y, Yuen PST, et al: MiR-150-based RNA
interference attenuates tubulointerstitial fibrosis through the
SOCS1/JAK/STAT pathway in vivo and in vitro. Mol Ther Nucleic
Acids. 22:871–884. 2020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Zhao SQ, Shen ZC, Gao BF and Han P:
microRNA-206 overexpression inhibits epithelial-mesenchymal
transition and glomerulosclerosis in rats with chronic kidney
disease by inhibiting JAK/STAT signaling pathway. J Cell Biochem.
120:14604–14617. 2019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhang X, Lu H, Xie S, Wu C, Guo Y, Xiao Y,
Zheng S, Zhu H, Zhang Y and Bai Y: Resveratrol suppresses the
myofibroblastic phenotype and fibrosis formation in kidneys via
proliferation-related signalling pathways. Br J Pharmacol.
176:4745–4759. 2019. View Article : Google Scholar : PubMed/NCBI
|
15
|
Li X, Zhang F, Qu L, Xie Y, Ruan Y, Guo Z,
Mao Y, Zou Q, Shi M, Xiao Y, et al: Identification of YAP1 as a
novel downstream effector of the FGF2/STAT3 pathway in the
pathogenesis of renal tubulointerstitial fibrosis. J Cell Physiol.
236:7655–7671. 2021. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu J, Zhong Y, Liu G, Zhang X, Xiao B,
Huang S, Liu H and He L: Role of Stat3 signaling in control of EMT
of tubular epithelial cells during renal fibrosis. Cell Physiol
Biochem. 42:2552–2558. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Zhang Y, Zou J, Tolbert E, Zhao TC,
Bayliss G and Zhuang S: Identification of histone deacetylase 8 as
a novel therapeutic target for renal fibrosis. FASEB J.
34:7295–7310. 2020. View Article : Google Scholar : PubMed/NCBI
|
18
|
Shi Y, Tao M, Ma X, Hu Y, Huang G, Qiu A,
Zhuang S and Liu N: Delayed treatment with an autophagy inhibitor
3-MA alleviates the progression of hyperuricemic nephropathy. Cell
Death Dis. 11:4672020. View Article : Google Scholar : PubMed/NCBI
|
19
|
Kemmner S, Bachmann Q, Steiger S, Lorenz
G, Honarpisheh M, Foresto-Neto O, Wang S, Carbajo-Lozoya J, Alt V,
Schulte C, et al: STAT1 regulates macrophage number and phenotype
and prevents renal fibrosis after ischemia-reperfusion injury. Am J
Renal Physiol. 316:F277–F291. 2019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Ge H, Yin N, Han TL, Huang D, Chen X, Xu
P, He C, Tong C and Qi H: Interleukin-27 inhibits trophoblast cell
invasion and migration by affecting the epithelial-mesenchymal
transition in preeclampsia. Reprod Sci. 26:928–938. 2019.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Du J, Dong W, Li H, Li B, Liu X, Kong Q,
Sun W, Sun T, Ma P, Cui Y and Kang P: Protective effects of IFN-γ
on the kidney of type-2 diabetic KKAy mice. Pharmacol Rep.
70:607–613. 2018. View Article : Google Scholar : PubMed/NCBI
|
22
|
Du J, Wang L, Liu L, Fan Q, Yao L, Cui Y,
Kang P, Zhao H, Feng X and Gao H: IFN-γ suppresses the high
glucose-induced increase in TGF-β1 and CTGF synthesis in mesangial
cells. Pharmacol Rep. 63:1137–1144. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Maarifi G, Maroui MA, Dutrieux J, Dianoux
L, Nisole S and Chelbi-Alix MK: Small ubiquitin-like modifier
alters IFN response. J Immunol. 195:2312–2324. 2015. View Article : Google Scholar : PubMed/NCBI
|
24
|
Sampaio EP, Ding L, Rose SR, Cruz P, Hsu
AP, Kashyap A, Rosen LB, Smelkinson M, Tavella TA, Ferre EMN, et
al: Novel signal transducer and activator of transcription 1
mutation disrupts small ubiquitin-related modifier conjugation
causing gain of function. J Allergy Clin Immunol. 141:1844–1853.
e18422018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Johnson ES: Protein modification by SUMO.
Annu Rev Biochem. 73:355–382. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Chang HM and Yeh ETH: SUMO: From bench to
bedside. Physiol Rev. 100:1599–1619. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Begitt A, Droescher M, Knobeloch KP and
Vinkemeier U: SUMO conjugation of STAT1 protects cells from
hyperresponsiveness to IFNγ. Blood. 118:1002–1007. 2011. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ma Y, Yan R, Wan Q, Lv B, Yang Y, Lv T and
Xin W: Inhibitor of growth 2 regulates the high glucose-induced
cell cycle arrest and epithelial-to-mesenchymal transition in renal
proximal tubular cells. J Physiol Biochem. 76:373–382. 2020.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun YB, Qu X, Caruana G and Li J: The
origin of renal fibroblasts/myofibroblasts and the signals that
trigger fibrosis. Differentiation. 92:102–107. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wang B, Ding W, Zhang M, Li H and Gu Y:
Rapamycin attenuates aldosterone induced tubulointerstitial
inflammation and fibrosis. Cell Physiol Biochem. 35:116–125. 2015.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Hu J, Zhu Q, Li PL, Wang W, Yi F and Li N:
Stem cell conditioned culture media attenuated albumin-induced
epithelial-mesenchymal transition in renal tubular cells. Cell
Physion Biochem. 35:1719–1728. 2015. View Article : Google Scholar : PubMed/NCBI
|
32
|
Quaggin SE and Kapus A: Scar wars: Mapping
the fate of epithelial-mesenchymal-myofibroblast transition. Kidney
Int. 80:41–50. 2011. View Article : Google Scholar : PubMed/NCBI
|
33
|
Chatterjee-Kishore M, Wright KL, Ting JP
and Stark GR: How Stat1 mediates constitutive gene expression: A
complex of unphosphorylated Stat1 and IRF1 supports transcription
of the LMP2 gene. EMBO J. 19:4111–4122. 2000. View Article : Google Scholar : PubMed/NCBI
|
34
|
Rodriguez MS, Dargemont C and Hay RT:
SUMO-1 conjugation in vivo requires both a consensus modification
motif and nuclear targeting. J Biol Chem. 276:12654–12659. 2001.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Jiang Y, Yu M, Hu X, Han L, Yang K, Ba H,
Zhang Z, Yin B, Yang XP, Li Z and Wang J: STAT1 mediates
transmembrane TNF-alpha-induced formation of death-inducing
signaling complex and apoptotic signaling via TNFR1. Cell Death
Differ. 24:660–671. 2017. View Article : Google Scholar : PubMed/NCBI
|