1
|
Mallok A, Vaillant JD, Soto MT,
Viebahn-Hänsler R, Viart Mde L, Pérez AF, Cedeño RI and Fernández
OS: Ozone protective effects against PTZ-induced generalized
seizures are mediated by reestablishment of cellular redox balance
and A1 adenosine receptors. Neurol Res. 37:204–210. 2015.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Ding D, Zhou D, Sander JW, Wang W, Li S
and Hong Z: Epilepsy in China: Major progress in the past two
decades. Lancet Neurol. 20:316–326. 2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Shangguan Y, Xu X, Ganbat B, Li Y, Wang W,
Yang Y, Lu X, Du C, Tian X and Wang X: CNTNAP4 impacts epilepsy
through GABAA receptors regulation: Evidence from temporal lobe
epilepsy patients and mouse models. Cereb Cortex. 28:3491–3504.
2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Xu X, Shangguan Y, Lu S, Wang W, Du C,
Xiao F, Hu Y, Luo J, Wang L, He C, et al: Tubulin β-III modulates
seizure activity in epilepsy. J Pathol. 242:297–308. 2017.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhao Y, Li X, Zhang K, Tong T and Cui R:
The progress of epilepsy after stroke. Curr Neuropharmacol.
16:71–78. 2018.PubMed/NCBI
|
6
|
Rana A and Musto AE: The role of
inflammation in the development of epilepsy. J Neuroinflammation.
15:1442018. View Article : Google Scholar : PubMed/NCBI
|
7
|
Yang QW, Wang JZ, Li JC, Zhou Y, Zhong Q,
Lu FL and Xiang J: High-mobility group protein box-1 and its
relevance to cerebral ischemia. J Cereb Blood Flow Metab.
30:243–254. 2010. View Article : Google Scholar : PubMed/NCBI
|
8
|
Yang H, Wang H and Andersson U: Targeting
inflammation driven by HMGB1. Front Immunol. 11:4842020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Li YJ, Wang L, Zhang B, Gao F and Yang CM:
Glycyrrhizin, an HMGB1 inhibitor, exhibits neuroprotective effects
in rats after lithium-pilocarpine-induced status epilepticus. J
Pharm Pharmacol. 71:390–399. 2019. View Article : Google Scholar : PubMed/NCBI
|
10
|
He Y, She H, Zhang T, Xu H, Cheng L, Yepes
M, Zhao Y and Mao Z: p38 MAPK inhibits autophagy and promotes
microglial inflammatory responses by phosphorylating ULK1. J Cell
Biol. 217:315–328. 2018. View Article : Google Scholar : PubMed/NCBI
|
11
|
Moreno-Cugnon L, Arrizabalaga O, Llarena I
and Matheu A: Elevated p38MAPK activity promotes neural stem cell
aging. Aging (Albany NY). 12:6030–6036. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yeung YT, Aziz F, Guerrero-Castilla A and
Arguelles S: Signaling pathways in inflammation and
anti-inflammatory therapies. Curr Pharm Des. 24:1449–1484. 2018.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Martínez-Limón A, Joaquin M, Caballero M,
Posas F and de Nadal E: The p38 pathway: From biology to cancer
therapy. Int J Mol Sci. 21:19132020. View Article : Google Scholar : PubMed/NCBI
|
14
|
Gaestel M: MAPK-activated protein kinases
(MKs): Novel insights and challenges. Front Cell Dev Biol.
3:882016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhang HW, Ding JD, Zhang ZS, Zhao SS, Duan
KY, Zhu BQ, Zhao WF, Chai ZT and Liu XW: Critical role of p38 in
spinal cord injury by regulating inflammation and apoptosis in a
rat model. Spine (Phila Pa 1976). 45:E355–E363. 2020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Zhang DY, Zhang AX, Zhou YH, Wang LH and
Yao HC: Protection of intravenous HMGB1 on myocardial ischemia
reperfusion injury. Int J Cardiol. 184:280–282. 2015. View Article : Google Scholar : PubMed/NCBI
|
17
|
Liang Y, Hou C, Kong J, Wen H, Zheng X, Wu
L, Huang H and Chen Y: HMGB1 binding to receptor for advanced
glycation end products enhances inflammatory responses of human
bronchial epithelial cells by activating p38 MAPK and ERK1/2. Mol
Cell Biochem. 405:63–71. 2015. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu S, Chen HZ, Xu ZD, Wang F, Fang H,
Bellanfante O and Chen XL: Sodium butyrate inhibits the production
of HMGB1 and attenuates severe burn plus delayed
resuscitation-induced intestine injury via the p38 signaling
pathway. Burns. 45:649–658. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Delgado-Escueta AV, Wasterlain C, Treiman
DM and Porter RJ: Status epilepticus: Summary. Adv Neurol.
34:537–541. 1983.PubMed/NCBI
|
20
|
Musumeci D, Roviello GN and Montesarchio
D: An overview on HMGB1 inhibitors as potential therapeutic agents
in HMGB1-related pathologies. Pharmacol Ther. 141:347–357. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Mollica L, De Marchis F, Spitaleri A,
Dallacosta C, Pennacchini D, Zamai M, Agresti A, Trisciuoglio L,
Musco G and Bianchi ME: Glycyrrhizin binds to high-mobility group
box 1 protein and inhibits its cytokine activities. Chem Biol.
14:431–441. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Racine RJ: Modification of seizure
activity by electrical stimulation. II. Motor seizure.
Electroencephalogr Clin Neurophysiol. 32:281–294. 1972. View Article : Google Scholar : PubMed/NCBI
|
23
|
Luo Z, Wang J, Tang S, Zheng Y, Zhou X,
Tian F and Xu Z: Dynamic-related protein 1 inhibitor eases
epileptic seizures and can regulate equilibrative nucleoside
transporter 1 expression. BMC Neurol. 20:3532020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Godale CM and Danzer SC: Signaling
pathways and cellular mechanisms regulating mossy fiber sprouting
in the development of epilepsy. Front Neurol. 9:2982018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rossini L, De Santis D, Mauceri RR,
Tesoriero C, Bentivoglio M, Maderna E, Maiorana A, Deleo F, de
Curtis M, Tringali G, et al: Dendritic pathology, spine loss and
synaptic reorganization in human cortex from epilepsy patients.
Brain. 144:251–265. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Vezzani A, Balosso S and Ravizza T:
Neuroinflammatory pathways as treatment targets and biomarkers in
epilepsy. Nat Rev Neurol. 15:459–472. 2019. View Article : Google Scholar : PubMed/NCBI
|
27
|
Zhao XF, Liao Y, Alam MM, Mathur R,
Feustel P, Mazurkiewicz JE, Adamo MA, Zhu XC and Huang Y:
Microglial mTOR is neuronal protective and antiepileptogenic in the
pilocarpine model of temporal lobe epilepsy. J Neurosci.
40:7593–7608. 2020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Ogaki A, Ikegaya Y and Koyama R: Vascular
abnormalities and the role of vascular endothelial growth factor in
the epileptic brain. Front Pharmacol. 11:202020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Sarkis RA, Goksen Y, Mu Y, Rosner B and
Lee JW: Cognitive and fatigue side effects of anti-epileptic drugs:
An analysis of phase III add-on trials. J Neurol. 265:2137–2142.
2018. View Article : Google Scholar : PubMed/NCBI
|
30
|
Maroso M, Balosso S, Ravizza T, Liu J,
Bianchi ME and Vezzani A: Interleukin-1 type 1 receptor/Toll-like
receptor signalling in epilepsy: The importance of IL-1beta and
high-mobility group box 1. J Intern Med. 270:319–326. 2011.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Paudel YN, Semple BD, Jones NC, Othman I
and Shaikh MF: High mobility group box 1 (HMGB1) as a novel
frontier in epileptogenesis: From pathogenesis to therapeutic
approaches. J Neurochem. 151:542–557. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Iori V, Maroso M, Rizzi M, Iyer AM,
Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica
E, et al: Receptor for advanced glycation endproducts is
upregulated in temporal lobe epilepsy and contributes to
experimental seizures. Neurobiol Dis. 58:102–114. 2013. View Article : Google Scholar : PubMed/NCBI
|
33
|
Nishibori M, Wang D, Ousaka D and Wake H:
High mobility group box-1 and blood-brain barrier disruption.
Cells. 9:26502020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Fu L, Liu K, Wake H, Teshigawara K,
Yoshino T, Takahashi H, Mori S and Nishibori M: Therapeutic effects
of anti-HMGB1 monoclonal antibody on pilocarpine-induced status
epilepticus in mice. Sci Rep. 7:11792017. View Article : Google Scholar : PubMed/NCBI
|
35
|
Devinsky O, Vezzani A, Najjar S, De
Lanerolle NC and Rogawski MA: Glia and epilepsy: Excitability and
inflammation. Trends Neurosci. 36:174–184. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Gorter JA, van Vliet EA and Aronica E:
Status epilepticus, blood-brain barrier disruption, inflammation,
and epileptogenesis. Epilepsy Behav. 49:13–16. 2015. View Article : Google Scholar : PubMed/NCBI
|
37
|
Walker LE, Frigerio F, Ravizza T, Ricci E,
Tse K, Jenkins RE, Sills GJ, Jorgensen A, Porcu L, Thippeswamy T,
et al: Molecular isoforms of high-mobility group box 1 are
mechanistic biomarkers for epilepsy. J Clin Invest. 129:21662019.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Kaminska B, Gozdz A, Zawadzka M,
Ellert-Miklaszewska A and Lipko M: MAPK signal transduction
underlying brain inflammation and gliosis as therapeutic target.
Anat Rec (Hoboken). 292:1902–1913. 2009. View Article : Google Scholar : PubMed/NCBI
|
39
|
de Los Reyes Corrales T, Losada-Pérez M
and Casas-Tintó S: JNK pathway in CNS pathologies. Int J Mol Sci.
22:38832021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Wei TH and Hsieh CL: Effect of acupuncture
on the p38 signaling pathway in several nervous system diseases: A
systematic review. Int J Mol Sci. 21:46932020. View Article : Google Scholar : PubMed/NCBI
|
41
|
Pastorino G, Cornara L, Soares S,
Rodrigues F and Oliveira MBPP: Liquorice (Glycyrrhiza glabra): A
phytochemical and pharmacological review. Phytother Res.
32:2323–2339. 2018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Asl MN and Hosseinzadeh H: Review of
pharmacological effects of Glycyrrhiza sp. and its bioactive
compounds. Phytother Res. 22:709–724. 2008. View Article : Google Scholar : PubMed/NCBI
|
43
|
Ahmed-Farid OA, Haredy SA, Niazy RM,
Linhardt RJ and Warda M: Dose-dependent neuroprotective effect of
oriental phyto-derived glycyrrhizin on experimental neuroterminal
norepinephrine depletion in a rat brain model. Chem Biol Interact.
308:279–287. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Kim SW, Jin Y, Shin JH, Kim ID, Lee HK,
Park S, Han PL and Lee JK: Glycyrrhizic acid affords robust
neuroprotection in the postischemic brain via anti-inflammatory
effect by inhibiting HMGB1 phosphorylation and secretion. Neurobiol
Dis. 46:147–156. 2012. View Article : Google Scholar : PubMed/NCBI
|
45
|
Luo L, Jin Y, Kim ID and Lee JK:
Glycyrrhizin attenuates kainic acid-induced neuronal cell death in
the mouse hippocampus. Exp Neurobiol. 22:107–115. 2013. View Article : Google Scholar : PubMed/NCBI
|
46
|
Cherng JM, Lin HJ, Hung MS, Lin YR, Chan
MH and Lin JC: Inhibition of nuclear factor kappaB is associated
with neuroprotective effects of glycyrrhizic acid on
glutamate-induced excitotoxicity in primary neurons. Eur J
Pharmacol. 547:10–21. 2006. View Article : Google Scholar : PubMed/NCBI
|
47
|
Sakamoto R, Okano M, Takena H and Ohtsuki
TK: Inhibitory effect of glycyrrhizin on the phosphorylation and
DNA-binding abilities of high mobility group proteins 1 and 2 in
vitro. Biol Pharm Bull. 24:906–911. 2001. View Article : Google Scholar : PubMed/NCBI
|
48
|
Giovannini MG, Scali C, Prosperi C,
Bellucci A, Vannucchi MG, Rosi S, Pepeu G and Casamenti F:
Beta-amyloid-induced inflammation and cholinergic hypofunction in
the rat brain in vivo: Involvement of the p38MAPK pathway.
Neurobiol Dis. 11:257–274. 2002. View Article : Google Scholar : PubMed/NCBI
|