Radioprotective countermeasures for radiation injury (Review)
- Authors:
- Lianchang Liu
- Zhenzhen Liang
- Shumei Ma
- Lan Li
- Xiaodong Liu
-
Affiliations: National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China, School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China, School of Public Health and Management, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China, National Health Commission Key Laboratory of Radiobiology, School of Public Health of Jilin University, Jilin, Changchun 130021, P.R. China - Published online on: February 6, 2023 https://doi.org/10.3892/mmr.2023.12953
- Article Number: 66
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Obrador E, Salvador R, Villaescusa JI, Soriano JM, Estrela JM and Montoro A: Radioprotection and radiomitigation: From the bench to clinical practice. Biomedicines. 8:4612020. View Article : Google Scholar : PubMed/NCBI | |
Mishra K and Alsbeih G: Appraisal of biochemical classes of radioprotectors: Evidence, current status and guidelines for future development. 3 Biotech. 7:2922017. View Article : Google Scholar : PubMed/NCBI | |
Li X, Wang X, Miao L, Guo Y, Yuan R, Ren J, Huang Y and Tian H: Design, synthesis, and biological evaluation of a novel aminothiol compound as potential radioprotector. Oxid Med Cell Longev. 2021:47146492021.PubMed/NCBI | |
Mishra KN, Moftah BA and Alsbeih GA: Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures. Biomed Pharmacother. 106:610–617. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Bi K, Yang R, Li H, Nikitaki Z and Chang L: Role of DNA damage and repair in radiation cancer therapy: A current update and a look to the future. Int J Radiat Biol. 96:1329–1338. 2020. View Article : Google Scholar : PubMed/NCBI | |
Santivasi WL and Xia F: Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal. 21:251–259. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Bao C, Shang Y, He X, Ma C, Lei X, Mi D and Sun Y: The determinant of DNA repair pathway choices in ionising radiation-induced DNA double-strand breaks. Biomed Res Int. 2020:48349652020. View Article : Google Scholar : PubMed/NCBI | |
Yao M, Rogers L, Suchowerska N, Choe D, Al-Dabbas MA, Narula RS, Lyons JG, Sved P, Li Z and Dong Q: Sensitization of prostate cancer to radiation therapy: Molecules and pathways to target. Radiother Oncol. 128:283–300. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kavanagh JN, Redmond KM, Schettino G and Prise KM: DNA double strand break repair: A radiation perspective. Antioxid Redox Signal. 18:2458–2472. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huang RX and Zhou PK: DNA damage response signaling pathways and targets for radiotherapy sensitization in cancer. Signal Transduct Target Ther. 5:602020. View Article : Google Scholar : PubMed/NCBI | |
Allegra AG, Mannino F, Innao V, Musolino C and Allegra A: Radioprotective agents and enhancers factors. Preventive and therapeutic strategies for oxidative induced radiotherapy damages in hematological malignancies. Antioxidants (Basel). 9:11162020. View Article : Google Scholar : PubMed/NCBI | |
Kalman NS, Zhao SS, Anscher MS and Urdaneta AI: Current status of targeted radioprotection and radiation injury mitigation and treatment agents: A critical review of the literature. Int J Radiat Oncol Biol Phys. 98:662–682. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deas SD, Huprikar N and Skabelund A: Radiation exposure and lung disease in today's nuclear world. Curr Opin Pulm Med. 23:167–172. 2017. View Article : Google Scholar : PubMed/NCBI | |
Gudkov SV, Popova NR and Bruskov VI: Radioprotectors: History, trends and prospects. Biofizika. 60:801–811. 2015.(In Russian). PubMed/NCBI | |
Singh VK and Seed TM: Pharmacological management of ionizing radiation injuries: Current and prospective agents and targeted organ systems. Expert Opin Pharmacother. 21:317–337. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patyar RR and Patyar S: Role of drugs in the prevention and amelioration of radiation induced toxic effects. Eur J Pharmacol. 819:207–216. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mun GI, Kim S, Choi E, Kim CS and Lee YS: Correction to: Pharmacology of natural radioprotectors. Arch Pharm Res. 43:272–274. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cheema AK, Li Y, Girgis M, Jayatilake M, Fatanmi OO, Wise SY, Seed TM and Singh VK: Alterations in tissue metabolite profiles with amifostine-prophylaxed mice exposed to gamma radiation. Metabolites. 10:2112020. View Article : Google Scholar : PubMed/NCBI | |
King M, Joseph S, Albert A, Thomas TV, Nittala MR, Woods WC, Vijayakumar S and Packianathan S: Use of amifostine for cytoprotection during radiation therapy: A review. Oncology. 98:61–80. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barbosa SCM, Pereira VBM, Wong DVT, Santana APM, Lucetti LT, Carvalho LL, Barbosa CRN, Callado RB, Silva CAA, Lopes CDH, et al: Amifostine reduces inflammation and protects against 5-fluorouracil-induced oral mucositis and hyposalivation. Braz J Med Biol Res. 52:e82512019. View Article : Google Scholar : PubMed/NCBI | |
Chang H, Yi W, Wang X, Tao Y, Yang X, Chen C, Zhang W, Zhou S, Liu S, Li X, et al: Effectiveness and safety of different amifostine regimens: Preliminary results of a phase II multicenter randomized controlled trial. Chin J Cancer Res. 30:307–314. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferraiolo DM and Veitz-Keenan A: Insufficient evidence for interventions to prevent dry mouth and salivary gland dysfunction post head and neck radiotherapy. Evid Based Dent. 19:30–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kim JM, Kim JW, Choi ME, Kim SK, Kim YM and Choi JS: Protective effects of curcumin on radioiodine-induced salivary gland dysfunction in mice. J Tissue Eng Regen Med. 13:674–681. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma SJ, Rivers CI, Serra LM and Singh AK: Long-term outcomes of interventions for radiation-induced xerostomia: A review. World J Clin Oncol. 10:1–13. 2019. View Article : Google Scholar : PubMed/NCBI | |
Riley P, Glenny AM, Hua F and Worthington HV: Pharmacological interventions for preventing dry mouth and salivary gland dysfunction following radiotherapy. Cochrane Database Syst Rev. 7:CD0127442017.PubMed/NCBI | |
Torun N, Muratli A, Serim BD, Ergulen A and Altun GD: Radioprotective effects of amifostine, L-carnitine and vitamin e in preventing early salivary gland injury due to radioactive iodine treatment. Curr Med Imaging Rev. 15:395–404. 2019. View Article : Google Scholar : PubMed/NCBI | |
Luby AO, Subramanian C, Buchman LK, Lynn JV, Urlaub KM, Nelson NS, Donneys A, Cohen MS and Buchman SR: Amifostine prophylaxis in irradiated breast reconstruction: A study of oncologic safety in vitro. Ann Plast Surg. 85:424–429. 2020. View Article : Google Scholar : PubMed/NCBI | |
Molkentine JM, Fujimoto TN, Horvath TD, Grossberg AJ, Garcia CJG, Deorukhkar A, de la Cruz Bonilla M, Lin D, Samuel ELG, Chan WK, et al: Enteral activation of WR-2721 mediates radioprotection and improved survival from lethal fractionated radiation. Sci Rep. 9:19492019. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Li M, Zhu L, Li J, Zhang G, Fang R, Wu Z and Jin Y: Amifostine-loaded armored dissolving microneedles for long-term prevention of ionizing radiation-induced injury. Acta Biomater. 112:87–100. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singh VK and Seed TM: The efficacy and safety of amifostine for the acute radiation syndrome. Expert Opin Drug Saf. 18:1077–1090. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang D, Zhong D, Ouyang J, He J, Qi Y, Chen W, Zhang X, Tao W and Zhou M: Microalgae-based oral microcarriers for gut microbiota homeostasis and intestinal protection in cancer radiotherapy. Nat Commun. 13:14132022. View Article : Google Scholar : PubMed/NCBI | |
Daugėlaitė G, Užkuraitytė K, Jagelavičienė E and Filipauskas A: Prevention and treatment of chemotherapy and radiotherapy induced oral mucositis. Medicina (Kaunas). 55:252019. View Article : Google Scholar : PubMed/NCBI | |
Epstein JB, Silverman S Jr, Paggiarino DA, Crockett S, Schubert MM, Senzer NN, Lockhart PB, Gallagher MJ, Peterson DE and Leveque FG: Benzydamine HCl for prophylaxis of radiation-induced oral mucositis: Results from a multicenter, randomized, double-blind, placebo-controlled clinical trial. Cancer. 92:875–885. 2001. View Article : Google Scholar : PubMed/NCBI | |
Nicolatou-Galitis O, Bossi P, Orlandi E and Bensadoun RJ: The role of benzydamine in prevention and treatment of chemoradiotherapy-induced mucositis. Support Care Cancer. 29:5701–5709. 2021. View Article : Google Scholar : PubMed/NCBI | |
Manoharan V, Fareed N, Battur H, Khanagar S and Praveena J: Effectiveness of mouthrinses in prevention and treatment of radiation induced mucositis: A systematic review. J Cancer Res Ther. 16 (Suppl):S1–S10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu YT, Deng JL, Jin XR, Zhang ZZ, Zhang XH and Zhou X: Effects of 9 oral care solutions on the prevention of oral mucositis: A network meta-analysis of randomized controlled trials. Medicine (Baltimore). 99:e196612020. View Article : Google Scholar : PubMed/NCBI | |
Chitapanarux I, Tungkasamit T, Petsuksiri J, Kannarunimit D, Katanyoo K, Chakkabat C, Setakornnukul J, Wongsrita S, Jirawatwarakul N, Lertbusayanukul C, et al: Randomized control trial of benzydamine HCl versus sodium bicarbonate for prophylaxis of concurrent chemoradiation-induced oral mucositis. Support Care Cancer. 26:879–886. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kakoei S, Pardakhty A, Hashemipour MA, Larizadeh H, Kalantari B and Tahmasebi E: Comparison the pain relief of amitriptyline mouthwash with benzydamine in oral mucositis. J Dent (Shiraz). 19:34–40. 2018.PubMed/NCBI | |
Papanikolopoulou A, Syrigos N, Vini L, Papasavva M, Lazopoulos G, Kteniadakis S, Spandidos DA, Charpidou A and Drakoulis N: Use of oral glutamine in radiation-induced adverse effects in patients with thoracic and upper aerodigestive malignancies: Results of a prospective observational study. Oncol Lett. 23:192022. View Article : Google Scholar : PubMed/NCBI | |
Chang SC, Lai YC, Hung JC and Chang CY: Oral glutamine supplements reduce concurrent chemoradiotherapy-induced esophagitis in patients with advanced non-small cell lung cancer. Medicine (Baltimore). 98:e144632019. View Article : Google Scholar : PubMed/NCBI | |
Cao DD, Xu HL, Xu M, Qian XY, Yin ZC and Ge W: Therapeutic role of glutamine in management of radiation enteritis: A meta-analysis of 13 randomized controlled trials. Oncotarget. 8:30595–30605. 2017. View Article : Google Scholar : PubMed/NCBI | |
Vidal-Casariego A, Calleja-Fernández A, de Urbina-González JJ, Cano-Rodríguez I, Cordido F and Ballesteros-Pomar MD: Efficacy of glutamine in the prevention of acute radiation enteritis: A randomized controlled trial. JPEN J Parenter Enteral Nutr. 38:205–213. 2014. View Article : Google Scholar : PubMed/NCBI | |
Vidal-Casariego A, Calleja-Fernández A, Cano-Rodríguez I, Cordido F and Ballesteros-Pomar MD: Effects of oral glutamine during abdominal radiotherapy on chronic radiation enteritis: A randomized controlled trial. Nutrition. 31:200–204. 2015. View Article : Google Scholar : PubMed/NCBI | |
Erbil Y, Oztezcan S, Giriş M, Barbaros U, Olgaç V, Bilge H, Küçücük H and Toker G: The effect of glutamine on radiation-induced organ damage. Life Sci. 78:376–382. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ersin S, Tuncyurek P, Esassolak M, Alkanat M, Buke C, Yilmaz M, Telefoncu A and Kose T: The prophylactic and therapeutic effects of glutamine- and arginine-enriched diets on radiation-induced enteritis in rats. J Surg Res. 89:121–125. 2000. View Article : Google Scholar : PubMed/NCBI | |
Alshawa A, Cadena AP, Stephen B, Reddy A, Mendoza TR, McQuinn L, Lawhorn K, Zarifa A, Bernhardt AM, Fessaheye S, et al: Effects of glutamine for prevention of radiation-induced esophagitis: A double-blind placebo-controlled trial. Invest New Drugs. 39:1113–1122. 2021. View Article : Google Scholar : PubMed/NCBI | |
Topkan E, Yavuz MN, Onal C and Yavuz AA: Prevention of acute radiation-induced esophagitis with glutamine in non-small cell lung cancer patients treated with radiotherapy: Evaluation of clinical and dosimetric parameters. Lung Cancer. 63:393–399. 2009. View Article : Google Scholar : PubMed/NCBI | |
Vidal-Casariego A, Calleja-Fernández A, Ballesteros-Pomar MD and Cano-Rodríguez I: Efficacy of glutamine in the prevention of oral mucositis and acute radiation-induced esophagitis: A retrospective study. Nutr Cancer. 65:424–429. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rubio I, Suva LJ, Todorova V, Bhattacharyya S, Kaufmann Y, Maners A, Smith M and Klimberg VS: Oral glutamine reduces radiation morbidity in breast conservation surgery. JPEN J Parenter Enteral Nutr. 37:623–630. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yavas C, Yavas G, Celik E, Buyukyoruk A, Buyukyoruk C, Yuce D and Ata O: Beta-hydroxy-beta-methyl-butyrate, L-glutamine, and L-arginine supplementation improves radiation-induce acute intestinal toxicity. J Diet Suppl. 16:576–591. 2019. View Article : Google Scholar : PubMed/NCBI | |
Setiadi A, Korim WS, May CN and Yao ST: Systemic administration of pentoxifylline attenuates the development of hypertension in renovascular hypertensive rats. Hypertens Res. 43:667–678. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hendawy N: Pentoxifylline attenuates cytokine stress and Fas system in syngeneic liver proteins induced experimental autoimmune hepatitis. Biomed Pharmacother. 92:316–323. 2017. View Article : Google Scholar : PubMed/NCBI | |
Seirafianpour F, Mozafarpoor S, Fattahi N, Sadeghzadeh-Bazargan A, Hanifiha M and Goodarzi A: Treatment of COVID-19 with pentoxifylline: Could it be a potential adjuvant therapy? Dermatol Ther. 33:e137332020. View Article : Google Scholar : PubMed/NCBI | |
Wang K and Tepper JE: Radiation therapy-associated toxicity: Etiology, management, and prevention. CA Cancer J Clin. 71:437–454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Price ML, Lai YE, Marcus KL, Robertson JB, Lascelles BDX and Nolan MW: Early radiation-induced oral pain signaling responses are reduced with pentoxifylline treatment. Vet Radiol Ultrasound. 62:255–263. 2021. View Article : Google Scholar : PubMed/NCBI | |
Andreyev HJN, Matthews J, Adams C, Gothard L, Lucy C, Tovey H, Boyle S, Anbalagan S, Musallam A, Yarnold J, et al: Randomised single centre double-blind placebo controlled phase II trial of Tocovid SupraBio in combination with pentoxifylline in patients suffering long-term gastrointestinal adverse effects of radiotherapy for pelvic cancer: The PPALM study. Radiother Oncol. 168:130–137. 2022. View Article : Google Scholar : PubMed/NCBI | |
Pedro-Botet J and Pintó X: LDL-cholesterol: The lower the better. Clin Investig Arterioscler. 31 (Suppl 2):S16–S27. 2019.PubMed/NCBI | |
Lee MS, Liu DW, Hung SK, Yu CC, Chi CL, Chiou WY, Chen LC, Lin RI, Huang LW, Chew CH, et al: Emerging challenges of radiation-associated cardiovascular dysfunction (RACVD) in modern radiation oncology: Clinical practice, bench investigation, and multidisciplinary care. Front Cardiovasc Med. 7:162020. View Article : Google Scholar : PubMed/NCBI | |
Moon SH, Huang CH, Houlihan SL, Regunath K, Freed-Pastor WA, Morris JP IV, Tschaharganeh DF, Kastenhuber ER, Barsotti AM, Culp-Hill R, et al: p53 represses the mevalonate pathway to mediate tumor suppression. Cell. 176:564–580.e19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li P, Liu X, Zhao T, Li F, Wang Q, Zhang P, Hirayama R, Chen W, Jin X, Zheng X, et al: Comparable radiation sensitivity in p53 wild-type and p53 deficient tumor cells associated with different cell death modalities. Cell Death Discov. 7:1842021. View Article : Google Scholar : PubMed/NCBI | |
Kwak SY, Park S, Kim H, Lee SJ, Jang WS, Kim MJ, Lee S, Jang WI, Kim AR, Kim EH, et al: Atorvastatin inhibits endothelial PAI-1-mediated monocyte migration and alleviates radiation-induced enteropathy. Int J Mol Sci. 22:18282021. View Article : Google Scholar : PubMed/NCBI | |
Pathak R, Kumar VP, Hauer-Jensen M and Ghosh SP: Enhanced survival in mice exposed to ionizing radiation by combination of gamma-tocotrienol and simvastatin. Mil Med. 184 (Suppl 1):S644–S651. 2019. View Article : Google Scholar | |
Anscher MS, Chang MG, Moghanaki D, Rosu M, Mikkelsen RB, Holdford D, Skinner V, Grob BM, Sanyal A, Wang A and Mukhopadhyay ND: A phase II study to prevent radiation-induced rectal injury with lovastatin. Am J Clin Oncol. 41:544–548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ostrau C, Hülsenbeck J, Herzog M, Schad A, Torzewski M, Lackner KJ and Fritz G: Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo. Radiother Oncol. 92:492–499. 2009. View Article : Google Scholar : PubMed/NCBI | |
Ziegler V, Henninger C, Simiantonakis I, Buchholzer M, Ahmadian MR, Budach W and Fritz G: Rho inhibition by lovastatin affects apoptosis and DSB repair of primary human lung cells in vitro and lung tissue in vivo following fractionated irradiation. Cell Death Dis. 8:e29782017. View Article : Google Scholar : PubMed/NCBI | |
Bachelet JT, Granzotto A, Ferlazzo M, Sonzogni L, Berthel E, Devic C and Foray N: First radiobiological characterization of the McCune-Albright syndrome: Influence of the ATM protein and effect of statins + bisphosphonates treatment. Int J Radiat Biol. 97:317–328. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wedlake LJ, Silia F, Benton B, Lalji A, Thomas K, Dearnaley DP, Blake P, Tait D, Khoo VS and Andreyev HJ: Evaluating the efficacy of statins and ACE-inhibitors in reducing gastrointestinal toxicity in patients receiving radiotherapy for pelvic malignancies. Eur J Cancer. 48:2117–2124. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cui M, Xiao H, Li Y, Zhang S, Dong J, Wang B, Zhu C, Jiang M, Zhu T, He J, et al: Sexual dimorphism of gut microbiota dictates therapeutics efficacy of radiation injuries. Adv Sci (Weinh). 6:19010482019. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, He X, Zhou Y, Gao L, Qi Z, Chen J and Gao X: Atorvastatin ameliorates radiation-induced cardiac fibrosis in rats. Radiat Res. 184:611–620. 2015. View Article : Google Scholar : PubMed/NCBI | |
Do TM, Unis GD, Kattar N, Ananth A and McCoul ED: Neuromodulators for atypical facial pain and neuralgias: A systematic review and meta-analysis. Laryngoscope. 131:1235–1253. 2021. View Article : Google Scholar : PubMed/NCBI | |
Guéguen Y, Bontemps A and Ebrahimian TG: Adaptive responses to low doses of radiation or chemicals: Their cellular and molecular mechanisms. Cell Mol Life Sci. 76:1255–1273. 2019. View Article : Google Scholar : PubMed/NCBI | |
Di Stefano G, Maarbjerg S and Truini A: Trigeminal neuralgia secondary to multiple sclerosis: From the clinical picture to the treatment options. J Headache Pain. 20:202019. View Article : Google Scholar : PubMed/NCBI | |
Bal W, Łabuz-Roszak B, Tarnawski R and Lasek-Bal A: Effectiveness and safety of CyberKnife radiosurgery in treatment of trigeminalgia-experiences of Polish neurological and oncological centres. Neurol Neurochir Pol. 54:28–32. 2020. View Article : Google Scholar : PubMed/NCBI | |
Khalil NY and Aldosari KF: Meloxicam. Profiles Drug Subst Excip Relat Methodol. 45:159–197. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki MC, Roque-Torres GD, Peroni LV, Nascimento EHL, Salmon B, Oliveira ML, Freitas DQ and Correr-Sobrinho L: Does the administration of meloxicam before head and neck radiotherapy reduce the risk of mandibular osteoradionecrosis? An animal model study. Clin Oral Investig. 25:3739–3745. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yamasaki MC, Nejaim Y, Roque-Torres GD and Freitas DQ: Meloxicam as a radiation-protective agent on mandibles of irradiated rats. Braz Dent J. 28:249–255. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Dong X, Xiu P, Wang X, Yang J, Li L, Li Z, Sun P, Shi X and Zhong J: Meloxicam, a selective COX-2 inhibitor, mediates hypoxia-inducible factor-(HIF-) 1α signaling in hepatocellular carcinoma. Oxid Med Cell Longev. 2020:70793082020. View Article : Google Scholar : PubMed/NCBI | |
Uehara Y, Murata Y, Shiga S and Hosoi Y: NSAIDs diclofenac, indomethacin, and meloxicam highly upregulate expression of ICAM-1 and COX-2 induced by X-irradiation in human endothelial cells. Biochem Biophys Res Commun. 479:847–852. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang KF, Wang J, Guo J, Huang YY and Huang TR: Metformin enhances radiosensitivity in hepatocellular carcinoma by inhibition of specificity protein 1 and epithelial-to-mesenchymal transition. J Cancer Res Ther. 15:1603–1610. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang Y, Han J, Mei H, Yu D, Ding Q, Zhang T, Wu G, Peng G and Lin Z: Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat Res. 188:105–113. 2017. View Article : Google Scholar : PubMed/NCBI | |
Da F, Guo J, Yao L, Gao Q, Jiao S, Miao X and Liu J: Pretreatment with metformin protects mice from whole-body irradiation. J Radiat Res. 62:618–625. 2021. View Article : Google Scholar : PubMed/NCBI | |
Adeberg S, Bernhardt D, Harrabi SB, Nicolay NH, Hörner-Rieber J, König L, Repka M, Mohr A, Abdollahi A, Weber KJ, et al: Metformin enhanced in vitro radiosensitivity associates with G2/M cell cycle arrest and elevated adenosine-5′-monophosphate-activated protein kinase levels in glioblastoma. Radiol Oncol. 51:431–437. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nakayama A, Ninomiya I, Harada S, Tsukada T, Okamoto K, Nakanuma S, Sakai S, Makino I, Kinoshita J, Hayashi H, et al: Metformin inhibits the radiation-induced invasive phenotype of esophageal squamous cell carcinoma. Int J Oncol. 49:1890–1898. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rezaei N, Neshasteh-Riz A, Mazaheri Z, Koosha F and Hoormand M: The combination of metformin and disulfiram-cu for effective radiosensitization on glioblastoma cells. Cell J. 22:263–272. 2020.PubMed/NCBI | |
Kolivand S, Motevaseli E, Cheki M, Mahmoudzadeh A, Shirazi A and Fait V: The anti-apoptotic mechanism of metformin against apoptosis induced by ionizing radiation in human peripheral blood mononuclear cells. Klin Onkol. 30:372–379. 2017. View Article : Google Scholar : PubMed/NCBI | |
Batinic-Haberle I, Tovmasyan A, Huang Z, Duan W, Du L, Siamakpour-Reihani S, Cao Z, Sheng H, Spasojevic I and Alvarez Secord A: H2O2-driven anticancer activity of Mn porphyrins and the underlying molecular pathways. Oxid Med Cell Longev. 2021:66537902021. View Article : Google Scholar : PubMed/NCBI | |
Feliciano CP and Nagasaki Y: Oral nanotherapeutics: Redox nanoparticles attenuate ultraviolet B radiation-induced skin inflammatory disorders in Kud: Hr-hairless mice. Biomaterials. 142:162–170. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang F, Gao P, Guo L, Meng P, Fan Y, Chen Y, Lin Y, Guo G, Ding G and Wang H: Radio-protective effect and mechanism of 4-Acetamido-2,2,6,6-tetramethylpiperidin-1-oxyl in HUVEC cells. Environ Health Prev Med. 22:142017. View Article : Google Scholar : PubMed/NCBI | |
Feliciano CP, Tsuboi K, Suzuki K, Kimura H and Nagasaki Y: Long-term bioavailability of redox nanoparticles effectively reduces organ dysfunctions and death in whole-body irradiated mice. Biomaterials. 129:68–82. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Lei X, Li X, Cai JM, Gao F and Yang YY: Toll-like receptors and radiation protection. Eur Rev Med Pharmacol Sci. 22:31–39. 2018.PubMed/NCBI | |
Chen Y, Xu Y, Du J, Guo J, Lei X, Cui J, Liu C, Cheng Y, Li B, Gao F, et al: Radioprotective effects of heat-killed mycobacterium tuberculosis in cultured cells and radiosensitive tissues. Cell Physiol Biochem. 40:716–726. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shi T, Li L, Zhou G, Wang C, Chen X, Zhang R, Xu J, Lu X, Jiang H and Chen J: Toll-like receptor 5 agonist CBLB502 induces radioprotective effects in vitro. Acta Biochim Biophys Sin (Shanghai). 49:487–495. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zheng L, Asprodites N, Keene AH, Rodriguez P, Brown KD and Davila E: TLR9 engagement on CD4 T lymphocytes represses gamma-radiation-induced apoptosis through activation of checkpoint kinase response elements. Blood. 111:2704–2713. 2008. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Zhang C, Mitchel RE, Cui J, Lin J, Yang Y, Liu X and Cai J: A critical role of toll-like receptor 4 (TLR4) and its' in vivo ligands in basal radio-resistance. Cell Death Dis. 4:e6492013. View Article : Google Scholar : PubMed/NCBI | |
Burdelya LG, Krivokrysenko VI, Tallant TC, Strom E, Gleiberman AS, Gupta D, Kurnasov OV, Fort FL, Osterman AL, Didonato JA, et al: An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science. 320:226–230. 2008. View Article : Google Scholar : PubMed/NCBI | |
Bai H, Sun F, Yang G, Wang L, Zhang Q, Zhang Q, Zhan Y, Chen J, Yu M, Li C, et al: CBLB502, a Toll-like receptor 5 agonist, offers protection against radiation-induced male reproductive system damage in mice. Biol Reprod. 100:281–291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Saha S, Bhanja P, Liu L, Alfieri AA, Yu D, Kandimalla ER, Agrawal S and Guha C: TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome. PLoS One. 7:e293572012. View Article : Google Scholar : PubMed/NCBI | |
Walshaw RC, Honeychurch J, Choudhury A and Illidge TM: Toll-like receptor agonists and radiation therapy combinations: An untapped opportunity to induce anticancer immunity and improve tumor control. Int J Radiat Oncol Biol Phys. 108:27–37. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schmitt H, Ulmschneider J, Billmeier U, Vieth M, Scarozza P, Sonnewald S, Reid S, Atreya I, Rath T, Zundler S, et al: The TLR9 agonist cobitolimod induces IL10-producing wound healing macrophages and regulatory T cells in ulcerative colitis. J Crohns Colitis. 14:508–524. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ogretmen B: Sphingolipid metabolism in cancer signalling and therapy. Nat Rev Cancer. 18:33–50. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Jiang X, Luo T, Xia J, Lee MJ, Weichselbaum RR and Lin W: TLR3 agonist nanoscale coordination polymer synergizes with immune checkpoint blockade for immunotherapy of cancer. Biomaterials. 290:1218312022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Feng Z and Liu J, Li J, Su Q, Zhang J, Huang P, Wang W and Liu J: Polarization of tumor-associated macrophages by TLR7/8 conjugated radiosensitive peptide hydrogel for overcoming tumor radioresistance. Bioact Mater. 16:359–371. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Huang H and Ding SF: Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int. 42:1492–1502. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nitzsche A, Poittevin M, Benarab A, Bonnin P, Faraco G, Uchida H, Favre J, Garcia-Bonilla L, Garcia MCL, Léger PL, et al: Endothelial S1P1 signaling counteracts infarct expansion in ischemic stroke. Circ Res. 128:363–382. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zelinski MB, Murphy MK, Lawson MS, Jurisicova A, Pau KY, Toscano NP, Jacob DS, Fanton JK, Casper RF, Dertinger SD and Tilly JL: In vivo delivery of FTY720 prevents radiation-induced ovarian failure and infertility in adult female nonhuman primates. Fertil Steril. 95:1440–1445.e1-e7. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guzel Y, Bildik G and Oktem O: Sphingosine-1-phosphate protects human ovarian follicles from apoptosis in vitro. Eur J Obstet Gynecol Reprod Biol. 222:19–24. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ghasemnezhad Targhi R and Saba V: Grape seed extract alleviates radiation-induced damages in human blood lymphocytes. Avicenna J Phytomed. 10:398–406. 2020.PubMed/NCBI | |
Ansari L, Banaei A, Dastranj L, Majdaeen M, Vafapour H, Zamani H, Ataei G and Abedi-Firouzjah R: Evaluating the radioprotective effect of single dose and daily oral consumption of green tea, grape seed, and coffee bean extracts against gamma irradiation. Appl Radiat Isot. 174:1097812021. View Article : Google Scholar : PubMed/NCBI | |
Ghosh D, Pal S, Saha C, Chakrabarti AK, Datta SC and Dey SK: Black tea extract: A supplementary antioxidant in radiation-induced damage to DNA and normal lymphocytes. J Environ Pathol Toxicol Oncol. 31:155–166. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ježovičová M, Koňariková K, Ďuračková Z, Keresteš J, Králik G and Žitňanová I: Protective effects of black tea extract against oxidative DNA damage in human lymphocytes. Mol Med Rep. 13:1839–1844. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shen N, Wang T, Gan Q, Liu S, Wang L and Jin B: Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. Food Chem. 383:1325312022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Yu M, Li S, Yang X, Qiao B, Shi S, Zhao C and Fu Y: Valorization of Fig (Ficus carica L.) waste leaves: HPLC-QTOF-MS/MS-DPPH system for online screening and identification of antioxidant compounds. Plants (Basel). 10:25322021. View Article : Google Scholar : PubMed/NCBI | |
Kamran MZ, Ranjan A, Kaur N, Sur S and Tandon V: Radioprotective agents: Strategies and translational advances. Med Res Rev. 36:461–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mortazavi SM, Rahimi S, Mosleh-Shirazi MA, Arjomandi M, Soleimani A, Koohi Hossein-Abadi O, Haghani M and Alavi M: A comparative study on the life-saving radioprotective effects of vitamins A, E, C and over-the-counter multivitamins. J Biomed Phys Eng. 5:59–66. 2015.PubMed/NCBI | |
Harapanhalli RS, Narra VR, Yaghmai V, Azure MT, Goddu SM, Howell RW and Rao DV: Vitamins as radioprotectors in vivo. II. Protection by vitamin A and soybean oil against radiation damage caused by internal radionuclides. Radiat Res. 139:115–122. 1994. View Article : Google Scholar : PubMed/NCBI | |
Safaei M, Jafarpour SM, Mohseni M, Salimian M, Akbari H, Karami F, Aliasgharzadeh A and Farhood B: Vitamins E and C prevent DNA double-strand breaks in peripheral lymphocytes exposed to radiations from iodine-131. Indian J Nucl Med. 33:20–24. 2018.PubMed/NCBI | |
Narra VR, Howell RW, Sastry KS and Rao DV: Vitamin C as a radioprotector against iodine-131 in vivo. J Nucl Med. 34:637–640. 1993.PubMed/NCBI | |
Srinivasan V and Weiss JF: Radioprotection by vitamin E: Injectable vitamin E administered alone or with WR-3689 enhances survival of irradiated mice. Int J Radiat Oncol Biol Phys. 23:841–845. 1992. View Article : Google Scholar : PubMed/NCBI | |
Bagheri H, Salajegheh A, Javadi A, Amini P, Shekarchi B, Shabeeb D, Eleojo Musa A and Najafi M: Radioprotective effects of zinc and selenium on mice spermatogenesis. J Biomed Phys Eng. 10:707–712. 2020.PubMed/NCBI | |
Liang S, Jin YX, Yuan B, Zhang JB and Kim NH: Melatonin enhances the developmental competence of porcine somatic cell nuclear transfer embryos by preventing DNA damage induced by oxidative stress. Sci Rep. 7:111142017. View Article : Google Scholar : PubMed/NCBI | |
Mao A, Guo H, Liu Y, Wang F, Tang J, Liao S, Zhang Y, Sun C, Xia X and Zhang H: Exogenous melatonin modulates carbon ion radiation-induced immune dysfunction in mice. Toxicology. 417:35–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Shibai A, Satoh K, Kawada M, Kotani H, Narumi I and Furusawa C: Complete genome sequence of a radioresistant bacterial strain, Deinococcus grandis ATCC 43672. Microbiol Resour Announc. 8:e01226–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lin SM, Baek CY, Jung JH, Kim WS, Song HY, Lee JH, Ji HJ, Zhi Y, Kang BS, Bahn YS, et al: Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci Rep. 10:552020. View Article : Google Scholar : PubMed/NCBI | |
Riehl TE, Alvarado D, Ee X, Zuckerman A, Foster L, Kapoor V, Thotala D, Ciorba MA and Stenson WF: Lactobacillus rhamnosus GG protects the intestinal epithelium from radiation injury through release of lipoteichoic acid, macrophage activation and the migration of mesenchymal stem cells. Gut. 68:1003–1013. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Chou WC, Lai Y, Liang K, Tam JW, Brickey WJ, Chen L, Montgomery ND, Li X, Bohannon LM, et al: Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites. Science. 370:eaay90972020. View Article : Google Scholar : PubMed/NCBI | |
Akeem S, Lukman O, Eltahir K, Fatai O, Abiola B and Khadijat O: Bone marrow and peripheral blood cells toxicity of a single 2.0 Gy Cobalt60 ionizing radiation: An animal model. Ethiop J Health Sci. 29:195–202. 2019.PubMed/NCBI | |
Chin SP, Mohd-Shahrizal MY, Liyana MZ, Then KY and Cheong SK: High dose of intravenous allogeneic umbilical cord-derived mesenchymal stem cells (CLV-100) infusion displays better immunomodulatory effect among healthy volunteers: A phase 1 clinical study. Stem Cells Int. 2020:88770032020. View Article : Google Scholar : PubMed/NCBI | |
Lykov AP, Bondarenko NA, Poveshchenko OV, Kabakov AV, Surovtseva MA, Kim II, Kazakov OV, Poveshchenko AF and Iankaĭte EV: Therapeutic potential of a biomedical cellular product in rats with lower limb ischaemia. Angiol Sosud Khir. 26:37–43. 2020.(In Russian). View Article : Google Scholar : PubMed/NCBI | |
DiCarlo AL, Horta ZP, Aldrich JT, Jakubowski AA, Skinner WK and Case CM Jr: Use of growth factors and other cytokines for treatment of injuries during a radiation public health emergency. Radiat Res. 192:99–120. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pourgholaminejad A, Aghdami N, Baharvand H and Moazzeni SM: The effect of pro-inflammatory cytokines on immunophenotype, differentiation capacity and immunomodulatory functions of human mesenchymal stem cells. Cytokine. 85:51–60. 2016. View Article : Google Scholar : PubMed/NCBI | |
Qiao S, Ren H, Shi Y and Liu W: Allogeneic compact bone-derived mesenchymal stem cell transplantation increases survival of mice exposed to lethal total body irradiation: A potential immunological mechanism. Chin Med J (Engl). 127:475–482. 2014.PubMed/NCBI | |
Nevens F and van der Merwe S: Mesenchymal stem cell transplantation in liver diseases. Semin Liver Dis. 42:283–292. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu FD, Tam K, Pishesha N, Poon Z and Van Vliet KJ: Improving hematopoietic recovery through modeling and modulation of the mesenchymal stromal cell secretome. Stem Cell Res Ther. 9:2682018. View Article : Google Scholar : PubMed/NCBI | |
Court AC, Le-Gatt A, Luz-Crawford P, Parra E, Aliaga-Tobar V, Bátiz LF, Contreras RA, Ortúzar MI, Kurte M, Elizondo-Vega R, et al: Mitochondrial transfer from MSCs to T cells induces Treg differentiation and restricts inflammatory response. EMBO Rep. 21:e480522020. View Article : Google Scholar : PubMed/NCBI | |
Haarer J, Johnson CL, Soeder Y and Dahlke MH: Caveats of mesenchymal stem cell therapy in solid organ transplantation. Transpl Int. 28:1–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jo H, Brito S, Kwak BM, Park S, Lee MG and Bin BH: Applications of mesenchymal stem cells in skin regeneration and rejuvenation. Int J Mol Sci. 2:24102021. View Article : Google Scholar | |
Huang YZ, Gou M, Da LC, Zhang WQ and Xie HQ: Mesenchymal stem cells for chronic wound healing: Current status of preclinical and clinical studies. Tissue Eng Part B Rev. 26:555–570. 2020. View Article : Google Scholar : PubMed/NCBI | |
Benderitter M, Herrera-Reyes E and Tamarat R: Mesenchymal stromal cells in the regeneration of radiation-induced organ sequelae: Will they make the difference? J Radiol Prot. 42:2022. View Article : Google Scholar | |
Sun J, Zhang Y, Song X, Zhu J and Zhu Q: The healing effects of conditioned medium derived from mesenchymal stem cells on radiation-induced skin wounds in rats. Cell Transplant. 28:105–115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dao A, McDonald MM, Savage PB, Little DG and Schindeler A: Preventing osteolytic lesions and osteomyelitis in multiple myeloma. J Bone Oncol. 37:1004602022. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Yang J, Liu F, Tao J, Xu J and Zhang M: Embryonic stem cell-derived mesenchymal stem cells alleviate skeletal muscle injury induced by acute compartment syndrome. Stem Cell Res Ther. 13:3132022. View Article : Google Scholar : PubMed/NCBI | |
Rahyussalim AJ, Nasser MK, Al As'ady FM and Kurniawati T: Umbilical cord-derived mesenchymal stem cells implantation on Hemivertebra defect with three-year follow-up: Biological approach in congenital scoliosis treatment-a case report. Int J Surg Case Rep. 99:1076022022. View Article : Google Scholar : PubMed/NCBI | |
Fujii S and Miura Y: Immunomodulatory and regenerative effects of MSC-derived extracellular vesicles to treat acute GVHD. Stem Cells. 40:977–990. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gong W, Guo M, Han Z, Wang Y, Yang P, Xu C, Wang Q, Du L, Li Q, Zhao H, et al: Mesenchymal stem cells stimulate intestinal stem cells to repair radiation-induced intestinal injury. Cell Death Dis. 7:e23872016. View Article : Google Scholar : PubMed/NCBI | |
Hou G, Li J, Liu W, Wei J, Xin Y and Jiang X: Mesenchymal stem cells in radiation-induced lung injury: From mechanisms to therapeutic potential. Front Cell Dev Biol. 10:11003052022. View Article : Google Scholar : PubMed/NCBI | |
Leclerc T, Thepenier C, Jault P, Bey E, Peltzer J, Trouillas M, Duhamel P, Bargues L, Prat M, Bonderriter M and Lataillade JJ: Cell therapy of burns. Cell Prolif. 44 (Suppl 1):S48–S54. 2011. View Article : Google Scholar | |
Maleki M, Ghanbarvand F, Reza Behvarz M, Ejtemaei M and Ghadirkhomi E: Comparison of mesenchymal stem cell markers in multiple human adult stem cells. Int J Stem Cells. 7:118–126. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lin H, Ouyang H, Zhu J, Huang S, Liu Z, Chen S, Cao G, Li G, Signer RA, Xu Y, et al: Lens regeneration using endogenous stem cells with gain of visual function. Nature. 531:323–328. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xing Y, Li B, He J and Hua H: Labial gland mesenchymal stem cell derived exosomes-mediated miRNA-125b attenuates experimental Sjogren's syndrome by targeting PRDM1 and suppressing plasma cells. Front Immunol. 13:8710962022. View Article : Google Scholar : PubMed/NCBI | |
Sun T, Liu S, Yang G, Zhu R, Li Z, Yao G, Chen H and Sun L: Mesenchymal stem cell transplantation alleviates Sjögren's syndrome symptoms by modulating Tim-3 expression. Int Immunopharmacol. 111:1091522022. View Article : Google Scholar : PubMed/NCBI | |
Jansson PM, Lynggaard CD, Carlander AF, Jensen SB, Follin B, Hoeeg C, Kousholt BS, Larsen RT, Grønhøj C, Jakobsen KK, et al: Mesenchymal stromal/stem cell therapy for radiation-induced salivary gland hypofunction in animal models: A protocol for a systematic review and meta-analysis. Syst Rev. 11:722022. View Article : Google Scholar : PubMed/NCBI | |
Lynggaard CD, Grønhøj C, Jensen SB, Christensen R, Specht L, Andersen E, Andersen TT, Ciochon UM, Rathje GS, Hansen AE, et al: Long-term safety of treatment with autologous mesenchymal stem cells in patients with radiation-induced xerostomia: Primary results of the MESRIX phase I/II randomized trial. Clin Cancer Res. 28:2890–2897. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hérodin F and Drouet M: Cytokine-based treatment of accidentally irradiated victims and new approaches. Exp Hematol. 33:1071–1080. 2005. View Article : Google Scholar : PubMed/NCBI | |
Peng Y, Wu S, Tang Q, Li S and Peng C: KGF-1 accelerates wound contraction through the TGF-β1/Smad signaling pathway in a double-paracrine manner. J Biol Chem. 294:8361–8370. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Rubin P, Williams J, Hernady E, Smudzin T and Okunieff P: Circulating IL-6 as a predictor of radiation pneumonitis. Int J Radiat Oncol Biol Phys. 49:641–648. 2001. View Article : Google Scholar : PubMed/NCBI | |
Damm R, Pech M, Haag F, Cavalli P, Gylstorff S, Omari J, Seidensticker R, Ricke J, Seidensticker M and Relja B: TNF-α indicates radiation-induced liver injury after interstitial high dose-rate brachytherapy. In Vivo. 36:2265–2274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu Z, Wang Z, Du G and Lun L: Corrigendum to ‘TGF-beta signaling in cancer radiotherapy’ [Cytokine 148 (2021) 155709]. Cytokine. 149:1557532022. View Article : Google Scholar : PubMed/NCBI | |
Lee S and Ki CS: Inflammatory responses of macrophage-like RAW264.7 cells in a 3D hydrogel matrix to ultrasonicated schizophyllan. Carbohydr Polym. 229:1155552020. View Article : Google Scholar : PubMed/NCBI | |
Moorlag SJCFM, Khan N, Novakovic B, Kaufmann E, Jansen T, van Crevel R, Divangahi M and Netea MG: β-Glucan induces protective trained immunity against mycobacterium tuberculosis infection: A key role for IL-1. Cell Rep. 31:1076342020. View Article : Google Scholar : PubMed/NCBI | |
Song JY, Han SK, Bae KG, Lim DS, Son SJ, Jung IS, Yi SY and Yun YS: Radioprotective effects of ginsan, an immunomodulator. Radiat Res. 159:768–774. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wu T, Liu W, Fan T, Zhong H, Zhou H, Guo W and Zhu X: 5-Androstenediol prevents radiation injury in mice by promoting NF-κB signaling and inhibiting AIM2 inflammasome activation. Biomed Pharmacother. 121:1095972020. View Article : Google Scholar : PubMed/NCBI | |
Everett WH and Curiel DT: Gene therapy for radioprotection. Cancer Gene Ther. 22:172–180. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khalifa J, François S, Rancoule C, Riccobono D, Magné N, Drouet M and Chargari C: Gene therapy and cell therapy for the management of radiation damages to healthy tissues: Rationale and early results. Cancer Radiother. 23:449–465. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maier P, Veldwijk MR and Wenz F: Radioprotective gene therapy. Expert Opin Biol Ther. 11:1135–1151. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Lang J, Cao Z, Li R, Wang X and Wang W: Radiation-induced SOD2 overexpression sensitizes colorectal cancer to radiation while protecting normal tissue. Oncotarget. 8:7791–7800. 2017. View Article : Google Scholar : PubMed/NCBI |