P2X7 purinergic receptor: A potential target in heart diseases (Review)
- Authors:
- Anfal F. Bin Dayel
- Asma S. Alonazi
- Tahani K. Alshammari
- Nouf M. Alrasheed
-
Affiliations: Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 12371 Riyadh, Kingdom of Saudi Arabia - Published online on: February 15, 2023 https://doi.org/10.3892/mmr.2023.12961
- Article Number: 74
This article is mentioned in:
Abstract
WHO, . Cardiovascular Diseases (CVDs). Fact sheet. WHO; Geneva: 2021 | |
Mathers CD and Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3:e4422006. View Article : Google Scholar : PubMed/NCBI | |
Takenouchi T, Sekiyama K, Sekigawa A, Fujita M, Waragai M, Sugama S, Iwamaru Y, Kitani H and Hashimoto M: P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz). 58:91–96. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zhang WJ, Zhu ZM and Liu ZX: The role and pharmacological properties of the P2X7 receptor in neuropathic pain. Brain Res Bull. 155:19–28. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alves LA, Bezerra RJS, Faria RX, Ferreira LG and da Silva Frutuoso V: Physiological roles and potential therapeutic applications of the P2X7 receptor in inflammation and pain. Molecules. 18:10953–10972. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Zhu X, Song W, Peng X and Zhao R: The P2X7 purinergic receptor: A potential therapeutic target for lung cancer. J Cancer Res Clin Oncol. 146:2731–2741. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Shi S, Su Y, Tong JS and Li L: P2X7R promotes angiogenesis and tumour-associated macrophage recruitment by regulating the NF-κB signalling pathway in colorectal cancer cells. J Cell Mol Med. 24:10830–10841. 2020. View Article : Google Scholar : PubMed/NCBI | |
Giannuzzo A, Saccomano M, Napp J, Ellegaard M, Alves F and Novak I: Targeting of the P2X7 receptor in pancreatic cancer and stellate cells. Int J Cancer Res. 139:2540–2552. 2016. View Article : Google Scholar : PubMed/NCBI | |
Huang H, He YM, Lin MM, Wang Y, Zhang X, Liang L and He X: P2X7Rs: New therapeutic targets for osteoporosis. Purinergic Signal. Feb 2–2022.(Epub ahead of print). View Article : Google Scholar | |
Grygorowicz T, Strużyńska L, Sulkowski G, Chalimoniuk M and Sulejczak D: Temporal expression of P2X7 purinergic receptor during the course of experimental autoimmune encephalomyelitis. Neurochem Int. 57:823–829. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vessey DA, Li L and Kelley M: Pannexin-I/P2X 7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre-and postconditioning. J Cardiovasc Pharmacol Ther. 15:190–195. 2010. View Article : Google Scholar : PubMed/NCBI | |
Zempo H, Sugita Y, Ogawa M, Watanabe R, Suzuki J and Isobe M: A P2X7 receptor antagonist attenuates experimental autoimmune myocarditis via suppressed myocardial CD4+ T and macrophage infiltration and NADPH oxidase 2/4 expression in mice. Heart Vessels. 30:527–533. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Yin J, Shi Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Li Y, et al: Targeted P2X7R shRNA delivery attenuates sympathetic nerve sprouting and ameliorates cardiac dysfunction in rats with myocardial infarction. Cardiovasc Ther. 35:2017. View Article : Google Scholar | |
Dos Anjos F, Simões JLB, Assmann CE, Carvalho FB and Bagatini MD: Potential therapeutic role of purinergic receptors in cardiovascular disease mediated by SARS-CoV-2. J Immunol Res. 2020:86320482020. View Article : Google Scholar : PubMed/NCBI | |
Di Virgilio F, Tang Y, Sarti AC and Rossato M: A rationale for targeting the P2X7 receptor in Coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020. View Article : Google Scholar : PubMed/NCBI | |
Batista Simões JL, Sobierai LD, Pereira SM, Rodrigues dos Santos MV and Bagatini MD: Therapeutic potential of P2X7 purinergic receptor modulation in the main organs affected by the COVID-19 Cytokine Storm. Curr Pharm Des. 28:1798–1814. 2022. View Article : Google Scholar : PubMed/NCBI | |
Burnstock G: A basis for distinguishing two types of purinergic receptor. Cell Membrane Receptors for Drugs and Hormone: A Multidisciplinary Approach. 107–118. 1978. | |
Burnstock G and Kennedy C: Is there a basis for distinguishing two types of P2-purinoceptor? Gen Pharmacol. 16:433–440. 1985. View Article : Google Scholar : PubMed/NCBI | |
Abbracchio MP and Burnstock G: Purinoceptors: Are there families of P2X and P2Y purinoceptors? Pharmacol Ther. 64:445–475. 1994. View Article : Google Scholar : PubMed/NCBI | |
North RA: Molecular physiology of P2X receptors. Physiol Rev. 82:1013–1067. 2002. View Article : Google Scholar : PubMed/NCBI | |
Abbracchio MP, Burnstock G, Boeynaems JM, Barnard EA, Boyer JL, Kennedy C, Knight GE, Fumagalli M, Gachet C, Jacobson KA and Weisman GA: International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev. 58:281–341. 2006. View Article : Google Scholar : PubMed/NCBI | |
Burnstock G and Verkhratsky A: Receptors for purines and pyrimidines. Springer Berlin; Heidelberg: 2012, View Article : Google Scholar | |
Bodin P and Burnstock G: Purinergic signalling: ATP release. Neurochem Res. 26:959–969. 2001. View Article : Google Scholar : PubMed/NCBI | |
Dosch M, Gerber J, Jebbawi F and Beldi G: Mechanisms of ATP release by inflammatory cells. Int J Mol Sci. 19:12222018. View Article : Google Scholar : PubMed/NCBI | |
Sawada K, Echigo N, Juge N, Miyaji T, Otsuka M, Omote H, Yamamoto A and Moriyama Y: Identification of a vesicular nucleotide transporter. Proc Natl Acad Sci USA. 105:5683–5686. 2008. View Article : Google Scholar : PubMed/NCBI | |
Junger WG: Immune cell regulation by autocrine purinergic signalling. Nat Rev Immunol. 11:201–212. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xiong Y, Sun S, Teng S, Jin M and Zhou Z: Ca2+-dependent and Ca2+-independent ATP release in astrocytes. Front Mol Neurosci. 11:2242018. View Article : Google Scholar : PubMed/NCBI | |
Abbracchio MP, Burnstock G, Verkhratsky A and Zimmermann H: Purinergic signalling in the nervous system: An overview. Trends Neurosci. 32:19–29. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kuzmin AI, Lakomkin VL, Kapelko VI and Vassort G: Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol. 275:C766–C771. 1998. View Article : Google Scholar : PubMed/NCBI | |
Jiang LH, Baldwin JM, Roger S and Baldwin SA: Insights into the molecular mechanisms underlying mammalian P2X7 receptor functions and contributions in diseases, revealed by structural modeling and single nucleotide polymorphisms. Front Pharmacol. 4:552013. View Article : Google Scholar : PubMed/NCBI | |
Burnstock G and Kennedy C: P2X receptors in health and disease. Adv Pharmacol. 61:333–372. 2011. View Article : Google Scholar : PubMed/NCBI | |
Adinolfi E, Giuliani AL, De Marchi E, Pegoraro A, Orioli E and Di Virgilio F: The P2X7 receptor: A main player in inflammation. Biochem Pharmacol. 151:234–244. 2018. View Article : Google Scholar : PubMed/NCBI | |
Andrejew R, Oliveira-Giacomelli Á, Ribeiro DE, Glaser T, Arnaud-Sampaio VF, Lameu C and Ulrich H: The P2X7 receptor: Central hub of brain diseases. Front Mol Neurosci. 13:1242020. View Article : Google Scholar : PubMed/NCBI | |
Virginio C, MacKenzie A, Rassendren FA, North RA and Surprenant A: Pore dilation of neuronal P2X receptor channels. Nat Neurosci. 2:315–321. 1999. View Article : Google Scholar : PubMed/NCBI | |
Wiley JS, Sluyter R, Gu BJ, Stokes L and Fuller SJ: The human P2X7 receptor and its role in innate immunity. Tissue Antigens. 78:321–332. 2011. View Article : Google Scholar : PubMed/NCBI | |
Alves LA, de Melo Reis RA, de Souza CA, de Freitas MS, Teixeira PC, Neto Moreira Ferreira D and Xavier RF: The P2X7 receptor: Shifting from a low-to a high-conductance channel-an enigmatic phenomenon? Biochim Biophys Acta. 1838:2578–2587. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bartlett R, Stokes L and Sluyter R: The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev. 66:638–675. 2014. View Article : Google Scholar : PubMed/NCBI | |
Artlett CM: The role of the NLRP3 inflammasome in fibrosis. Open Rheumatol J. 6:80–86. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang Z, Ruan J, Pan Y, Magupalli VG, Wu H and Lieberman J: Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature. 535:153–158. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ferrari D, Wesselborg S, Bauer MK and Schulze-Osthoff K: Extracellular ATP activates transcription factor NF-kappaB through the P2Z purinoreceptor by selectively targeting NF-kappaB p65 (RelA). J Cell Biol. 139:1635–1643. 1997. View Article : Google Scholar : PubMed/NCBI | |
Ferrari D, Stroh C and Schulze-Osthoff K: P2X7/P2Z purinoreceptor-mediated activation of transcription factor NFAT in microglial cells. J Biol Chem. 274:13205–13210. 1999. View Article : Google Scholar : PubMed/NCBI | |
Yip L, Woehrle T, Corriden R, Hirsh M, Chen Y, Inoue Y, Ferrari V, Insel PA and Junger WG: Autocrine regulation of T-cell activation by ATP release and P2X7 receptors. FASEB J. 23:1685–1693. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Cheng H, Li W, Wu H and Yang Y: Highly-expressed P2X7 receptor promotes growth and metastasis of human HOS/MNNG osteosarcoma cells via PI3K/Akt/GSK3β/β-catenin and mTOR/HIF1α/VEGF signaling. Int J Cancer. 145:1068–1082. 2019. View Article : Google Scholar : PubMed/NCBI | |
Langhner E, Taghavi P, Chiles K, Mahon PC and Semenza GL: HEER2 (neu) signaling increase the rate of hypoxia inducible factor 1-alpha (HIF-1-alpha) synthesis: Novel mechanism for HIF-mediated vascular endothelial growth factor expression. Mol Cell Bioi. 21:3995–4004. 2001. View Article : Google Scholar : PubMed/NCBI | |
Amoroso F, Capece M, Rotondo A, Cangelosi D, Ferracin M, Franceschini A, Raffaghello L, Pistoia V, Varesio L and Adinolfi E: The P2X7 receptor is a key modulator of the PI3K/GSK3β/VEGF signaling network: Evidence in experimental neuroblastoma. Oncogene. 34:5240–5251. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hill LM, Gavala ML, Lenertz LY and Bertics PJ: Extracellular ATP may contribute to tissue repair by rapidly stimulating purinergic receptor X7-dependent vascular endothelial growth factor release from primary human monocytes. J Immunol. 185:3028–3034. 2010. View Article : Google Scholar : PubMed/NCBI | |
Tafani M, Schito L, Pellegrini L, Villanova L, Marfe G, Anwar T, Rosa R, Indelicato M, Fini M, Pucci B and Russo MA: Hypoxia-increased RAGE and P2X7R expression regulates tumor cell invasion through phosphorylation of Erk1/2 and Akt and nuclear translocation of NF-{kappa}B. Carcinogenesis. 32:1167–1175. 2011. View Article : Google Scholar : PubMed/NCBI | |
Ji Z, Xie Y, Guan Y, Zhang Y, Cho KS, Ji M and You Y: Involvement of P2X7 receptor in proliferation and migration of human glioma cells. Biomed Res Int. 2018:85913972018. View Article : Google Scholar : PubMed/NCBI | |
Bartlett R, Yerbury JJ and Sluyter R: P2X7 receptor activation induces reactive oxygen species formation and cell death in murine EOC13 microglia. Mediators Inflamm. 2013:2718132013. View Article : Google Scholar : PubMed/NCBI | |
Mazrouei S, Sharifpanah F, Bekhite MM, Figulla HR, Sauer H and Wartenberg M: Cardiomyogenesis of embryonic stem cells upon purinergic receptor activation by ADP and ATP. Purinergic Signal. 11:491–506. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hesse J, Leberling S, Boden E, Friebe D, Schmidt T, Ding Z, Dieterich P, Deussen A, Roderigo C, Rose CR, et al: CD73-derived adenosine and tenascin-C control cytokine production by epicardium-derived cells formed after myocardial infarction. FASEB J. 31:3040–3053. 2017. View Article : Google Scholar : PubMed/NCBI | |
Musa H, Tellez JO, Chandler NJ, Greener ID, Mączewski M, Mackiewicz U, Beresewicz A, Molenaar P, Boyett MR and Dobrzynski H: P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. Naunyn Schmiedebergs Arch Pharmacol. 379:541–549. 2009. View Article : Google Scholar : PubMed/NCBI | |
Barth K, Pfleger C, Linge A, Sim JA, Surprenant A, Steinbronn N, Strasser RH and Kasper M: Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice. Histochem. Cell Biol. 134:31–38. 2010.PubMed/NCBI | |
Gentile D, Natale M, Lazzerini PE, Capecchi PL and Laghi-Pasini F: The role of P2X7 receptors in tissue fibrosis: A brief review. Purinergic Signal. 11:435–440. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for Universal Definition of Myocardial Infarction; Authors/Task Force Members Chairpersons, ; Thygesen K, Alpert JS, et al: Third universal definition of myocardial infarction. J Am Coll Cardiol. 60:1581–1598. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liehn EA, Postea O, Curaj A and Marx N: Repair after myocardial infarction, between fantasy and reality: The role of chemokines. J Am Coll Cardiol. 58:2357–2362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Forte E, Furtado MB and Rosenthal N: The interstitium in cardiac repair: Role of the immune-stromal cell interplay. Nat Rev Cardiol. 15:601–616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ferrini A, Stevens MM, Sattler S and Rosenthal N: Toward regeneration of the heart: Bioengineering strategies for immunomodulation. Front Cardiovasc Med. 6:262019. View Article : Google Scholar : PubMed/NCBI | |
Yin J, Wang Y, Hu H, Li X, Xue M, Cheng W, Wang Y, Li X, Yang N, Shi Y and Yan S: P2X7 receptor inhibition attenuated sympathetic nerve sprouting after myocardial infarction via the NLRP3/IL-1β pathway. J Cell Mol Med. 21:2695–2710. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cheng W, Sun Y, Wu Q, Ooi K, Feng Y, Xia C and Zhu D: Paraventricular nucleus P2X7 receptors aggravate acute myocardial infarction injury via ROS-induced vasopressin-V1b activation in rats. Neurosci Bull. 37:641–656. 2021. View Article : Google Scholar : PubMed/NCBI | |
Shi XX, Zheng KC, Shan PR, Zhang L, Wu SJ and Huang ZQ: Elevated circulating level of P2X7 receptor is related to severity of coronary artery stenosis and prognosis of acute myocardial infarction. Cardiol J. 28:453–459. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA. 108:19725–19730. 2011. View Article : Google Scholar : PubMed/NCBI | |
Frank A, Bonney M, Bonney S, Weitzel L, Koeppen M and Eckle T: Myocardial ischemia reperfusion injury: From basic science to clinical bedside. Semin Cardiothorac Vasc Anesth. 16:123–132. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gu M, Zheng AB, Jin J, Cui Y, Zhang N, Che ZP, Wang Y, Zhan J and Tu WJ: Cardioprotective effects of genistin in rat myocardial ischemia-reperfusion injury studies by regulation of P2X7/NF-κB pathway. Evid Based Complement Alternat Med. 2016:53812902016. View Article : Google Scholar : PubMed/NCBI | |
Tu G, Zou L, Liu S, Wu B, Lv Q, Wang S, Xue Y, Zhang C, Yi Z, Zhang X, et al: Long noncoding NONRATT021972 siRNA normalized abnormal sympathetic activity mediated by the upregulation of P2X7 receptor in superior cervical ganglia after myocardial ischemia. Purinergic Signal. 12:521–535. 2016. View Article : Google Scholar : PubMed/NCBI | |
Vessey DA, Li L and Kelley M: Ischemic preconditioning requires opening of pannexin-1/P2X7 channels not only during preconditioning but again after index ischemia at full reperfusion. Mol Cell Biochem. 351:77–84. 2011. View Article : Google Scholar : PubMed/NCBI | |
Wang Y: Mitogen-activated protein kinases in heart development and diseases. Circulation. 116:1413–1423. 2007. View Article : Google Scholar : PubMed/NCBI | |
Magnani JW and Dec GW: Myocarditis: Current trends in diagnosis and treatment. Circulation. 113:876–890. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fung G, Luo H, Qiu Y, Yang D and McManus B: Myocarditis. Circ Res. 118:496–514. 2016. View Article : Google Scholar : PubMed/NCBI | |
Amoah BP, Yang H, Zhang P, Su Z and Xu H: Immunopathogenesis of myocarditis: The interplay between cardiac fibroblast cells, dendritic cells, macrophages and CD 4+ T cells. Scand J Immunol. 82:1–9. 2015. View Article : Google Scholar : PubMed/NCBI | |
Martinez CG, Zamith-Miranda D, Da Silva MG, Ribeiro KC, Brandão IT, Silva CL, Diaz BL, Bellio M, Persechini PM and Kurtenbach E: P2×7 purinergic signaling in dilated cardiomyopathy induced by auto-immunity against muscarinic M2 receptors: Autoantibody levels, heart functionality and cytokine expression. Sci Rep. 5:169402015. View Article : Google Scholar : PubMed/NCBI | |
Maron BJ, Towbin JA, Thiene G, Antzelevitch C, Corrado D, Arnett D, Moss AJ, Seidman CE, Young JB; American Heart Association, ; et al: Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation. 113:1807–1816. 2006. View Article : Google Scholar : PubMed/NCBI | |
Eijgenraam TR, Silljé HHW and de Boer RA: Current understanding of fibrosis in genetic cardiomyopathies. Trends Cardiovasc Med. 30:353–361. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Tian G, Quan Y, Li J, Wang X, Wu W, Li M and Liu X: Inhibition of P2X7 purinergic receptor ameliorates cardiac fibrosis by suppressing NLRP3/IL-1β pathway. Oxid Med Cell Longev. 2020:79562742020. View Article : Google Scholar : PubMed/NCBI | |
Huang S, Wang W, Li L, Wang T, Zhao Y, Lin Y, Huang W, Wang Y and Huang Z: P2X7 receptor deficiency ameliorates STZ-induced cardiac damage and remodeling through PKCβ and ERK. Front Cell Dev Biol. 9:6920282021. View Article : Google Scholar : PubMed/NCBI | |
Biswas A, Raza A, Das S, Kapoor M, Jayarajan R, Verma A, Shamsudheen KV, Murry B, Seth S, Bhargava B, et al: Loss of function mutation in the P2X7, a ligand-gated ion channel gene associated with hypertrophic cardiomyopathy. Purinergic Signal. 15:205–210. 2019. View Article : Google Scholar : PubMed/NCBI | |
Whitworth J: COVID-19: A fast evolving pandemic. Trans R Soc Trop Med Hyg. 114:241–248. 2020. View Article : Google Scholar : PubMed/NCBI | |
Siripanthong B, Nazarian S, Muser D, Deo R, Santangeli P, Khanji MY, Cooper LT Jr and Chahal CAA: Recognizing COVID-19-related myocarditis: The possible pathophysiology and proposed guideline for diagnosis and management. Heart Rhythm. 17:1463–1471. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kang Y, Chen T, Mui D, Ferrari V, Jagasia D, Scherrer-Crosbie M, Chen Y and Han Y: Cardiovascular manifestations and treatment considerations in COVID-19. Heart. 106:1132–1141. 2020. View Article : Google Scholar : PubMed/NCBI | |
Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM, Madhur MS, Tomaszewski M, Maffia P, D'Acquisto F, et al: COVID-19 and the cardiovascular system: Implications for risk assessment, diagnosis, and treatment options. Cardiovasc Res. 116:1666–1687. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang F, Yang J, Zhang Y, Dong M, Wang S, Zhang Q, Liu FF, Zhang K and Zhang C: Angiotensin-converting enzyme 2 and angiotensin 1–7: Novel therapeutic targets. Nat Rev Cardiol. 11:413–426. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, et al: Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 11:16202020. View Article : Google Scholar : PubMed/NCBI | |
Nishiga M, Wang DW, Han Y, Lewis DB and Wu JC: COVID-19 and cardiovascular disease: From basic mechanisms to clinical perspectives. Nat Rev Cardiol. 17:543–558. 2020. View Article : Google Scholar : PubMed/NCBI | |
De Mello WC and Danser AH: Angiotensin II and the heart: On the intracrine renin-angiotensin system. Hypertension. 35:1183–1188. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wernly B and Zhou Z: More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol. 319:H723–H729. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wagner JA and Kelly RB: Topological organization of proteins in an intracellular secretory organelle: The synaptic vesicle. Proc Natl Acad Sci USA. 76:4126–4130. 1979. View Article : Google Scholar : PubMed/NCBI | |
Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN and Dagnelie PC: Adenosine 5′-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther. 112:358–404. 2006. View Article : Google Scholar : PubMed/NCBI |