1
|
Suzuki K, Matsumaru Y, Takeuchi M,
Morimoto M, Kanazawa R, Takayama Y, Kamiya Y, Shigeta K, Okubo S,
Hayakawa M, et al: Effect of mechanical thrombectomy without vs
with intravenous thrombolysis on functional outcome among patients
with acute ischemic stroke: The SKIP randomized clinical trial.
JAMA. 325:244–253. 2021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Peng T, Jiang Y, Farhan M, Lazarovici P,
Chen L and Zheng W: Anti-inflammatory effects of traditional
chinese medicines on preclinical in vivo models of brain
ischemia-reperfusion-injury: Prospects for neuroprotective drug
discovery and therapy. Front Pharmacol. 10:2042019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Eltzschig HK and Eckle T: Ischemia and
reperfusion-from mechanism to translation. Nat Med. 17:1391–1401.
2011. View
Article : Google Scholar : PubMed/NCBI
|
4
|
Jin R, Yang G and Li G: Molecular insights
and therapeutic targets for blood-brain barrier disruption in
ischemic stroke: Critical role of matrix metalloproteinases and
tissue-type plasminogen activator. Neurobiol Dis. 38:376–385. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Abbott NJ, Patabendige AA, Dolman DE,
Yusof SR and Begley DJ: Structure and function of the blood-brain
barrier. Neurobiol Dis. 37:13–25. 2010. View Article : Google Scholar : PubMed/NCBI
|
6
|
Jiang X, Andjelkovic AV, Zhu L, Yang T,
Bennett MVL, Chen J, Keep RF and Shi Y: Blood-brain barrier
dysfunction and recovery after ischemic stroke. Prog Neurobiol.
163–164. 144–171. 2018.PubMed/NCBI
|
7
|
Iadecola C and Anrather J: The immunology
of stroke: From mechanisms to translation. Nat Med. 17:796–808.
2011. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Sincer I, Mansiroglu AK, Aktas G, Gunes Y
and Kocak MZ: Association between hemogram parameters and coronary
collateral development in subjects with Non-ST-Elevation myocardial
infarction. Rev Assoc Med Bras (1992). 66:160–165. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xiong XY, Liu L and Yang QW: Functions and
mechanisms of microglia/macrophages in neuroinflammation and
neurogenesis after stroke. Prog Neurobiol. 142:23–44. 2016.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Maida CD, Norrito RL, Daidone M,
Tuttolomondo A and Pinto A: Neuroinflammatory mechanisms in
ischemic stroke: Focus on cardioembolic stroke, background, and
therapeutic approaches. Int J Mol Sci. 21:64542020. View Article : Google Scholar : PubMed/NCBI
|
11
|
Mahley RW, Nathan BP and Pitas RE:
Apolipoprotein E. Structure, function, and possible roles in
Alzheimer's disease. Ann N Y Acad Sci. 777:139–145. 1996.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Tai LM, Thomas R, Marottoli FM, Koster KP,
Kanekiyo T, Morris AW and Bu G: The role of APOE in cerebrovascular
dysfunction. Acta Neuropathol. 131:709–723. 2016. View Article : Google Scholar : PubMed/NCBI
|
13
|
Bell RD, Winkler EA, Singh I, Sagare AP,
Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, et
al: Apolipoprotein E controls cerebrovascular integrity via
cyclophilin A. Nature. 485:512–516. 2012. View Article : Google Scholar : PubMed/NCBI
|
14
|
Tukhovskaya EA, Yukin AY, Khokhlova ON,
Murashev AN and Vitek MP: COG1410, a novel apolipoprotein-E
mimetic, improves functional and morphological recovery in a rat
model of focal brain ischemia. J Neurosci Res. 87:677–682. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Laskowitz DT, Fillit H, Yeung N, Toku K
and Vitek MP: Apolipoprotein E-derived peptides reduce CNS
inflammation: Implications for therapy of neurological disease.
Acta Neurol Scand Suppl. 185:15–20. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Wang H, Anderson LG, Lascola CD, James ML,
Venkatraman TN, Bennett ER, Acheson SK, Vitek MP and Laskowitz DT:
ApolipoproteinE mimetic peptides improve outcome after focal
ischemia. Exp Neurol. 241:67–74. 2013. View Article : Google Scholar : PubMed/NCBI
|
17
|
Pang J, Chen Y, Kuai L, Yang P, Peng J, Wu
Y, Chen Y, Vitek MP, Chen L, Sun X and Jiang Y: Inhibition of
blood-brain barrier disruption by an apolipoprotein E-Mimetic
peptide ameliorates early brain injury in experimental subarachnoid
hemorrhage. Transl Stroke Res. 8:257–272. 2017. View Article : Google Scholar : PubMed/NCBI
|
18
|
Peng J, Pang J, Huang L, Enkhjargal B,
Zhang T, Mo J, Wu P, Xu W, Zuo Y, Peng J, et al: LRP1 activation
attenuates white matter injury by modulating microglial
polarization through Shc1/PI3K/Akt pathway after subarachnoid
hemorrhage in rats. Redox Biol. 21:1011212019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Wu Y, Pang J, Peng J, Cao F, Vitek MP, Li
F, Jiang Y and Sun X: An apoE-derived mimic peptide, COG1410,
alleviates early brain injury via reducing apoptosis and
neuroinflammation in a mouse model of subarachnoid hemorrhage.
Neurosci Lett. 627:92–99. 2016. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cao F, Jiang Y, Wu Y, Zhong J, Liu J, Qin
X, Chen L, Vitek MP, Li F, Xu L and Sun X: Apolipoprotein E-Mimetic
COG1410 reduces acute vasogenic edema following traumatic brain
injury. J Neurotrauma. 33:175–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Laskowitz DT, McKenna SE, Song P, Wang H,
Durham L, Yeung N, Christensen D and Vitek MP: COG1410, a novel
apolipoprotein E-based peptide, improves functional recovery in a
murine model of traumatic brain injury. J Neurotrauma.
24:1093–1107. 2007. View Article : Google Scholar : PubMed/NCBI
|
22
|
Hoane MR, Kaufman N, Vitek MP and McKenna
SE: COG1410 improves cognitive performance and reduces cortical
neuronal loss in the traumatically injured brain. J Neurotrauma.
26:121–129. 2009. View Article : Google Scholar : PubMed/NCBI
|
23
|
Pang J, Peng J, Matei N, Yang P, Kuai L,
Wu Y, Chen L, Vitek MP, Li F, Sun X, et al: Apolipoprotein E exerts
a whole-brain protective property by promoting m1? microglia
quiescence after experimental subarachnoid hemorrhage in mice.
Transl Stroke Res. 9:654–668. 2018. View Article : Google Scholar : PubMed/NCBI
|
24
|
Qin X, You H, Cao F, Wu Y, Peng J, Pang J,
Xu H, Chen Y, Chen L, Vitek MP, et al: Apolipoprotein E mimetic
peptide increases cerebral glucose uptake by reducing blood-brain
barrier disruption after controlled cortical impact in mice: An
18F-Fluorodeoxyglucose PET/CT study. J Neurotrauma.
34:943–951. 2017. View Article : Google Scholar : PubMed/NCBI
|
25
|
Chen S, Peng J, Sherchan P, Ma Y, Xiang S,
Yan F, Zhao H, Jiang Y, Wang N, Zhang JH and Zhang H: TREM2
activation attenuates neuroinflammation and neuronal apoptosis via
PI3K/Akt pathway after intracerebral hemorrhage in mice. J
Neuroinflammation. 17:1682020. View Article : Google Scholar : PubMed/NCBI
|
26
|
Krasemann S, Madore C, Cialic R, Baufeld
C, Calcagno N, El Fatimy R, Beckers L, O'Loughlin E, Xu Y, Fanek Z,
et al: The TREM2-APOE pathway drives the transcriptional phenotype
of dysfunctional microglia in neurodegenerative diseases. Immunity.
47:566–581.e9. 2017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Atagi Y, Liu CC, Painter MM, Chen XF,
Verbeeck C, Zheng H, Li X, Rademakers R, Kang SS, Xu H, et al:
Apolipoprotein E is a ligand for triggering receptor expressed on
myeloid cells 2 (TREM2). J Biol Chem. 29:26043–26050. 2015.
View Article : Google Scholar : PubMed/NCBI
|
28
|
Li C, Zhao B, Lin C, Gong Z and An X:
TREM2 inhibits inflammatory responses in mouse microglia by
suppressing the PI3K/NF-κB signaling. Cell Biol Int. 43:360–372.
2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wu R, Li X, Xu P, Huang L, Cheng J, Huang
X, Jiang J, Wu LJ and Tang Y: TREM2 protects against cerebral
ischemia/reperfusion injury. Mol Brain. 10:202017. View Article : Google Scholar : PubMed/NCBI
|
30
|
Deczkowska A, Weiner A and Amit I: The
physiology, pathology, and potential therapeutic applications of
the TREM2 signaling pathway. Cell. 181:1207–1217. 2020. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhai Q, Li F, Chen X, Jia J, Sun S, Zhou
D, Ma L, Jiang T, Bai F, Xiong L and Wang Q: Triggering receptor
expressed on myeloid cells 2, a novel regulator of immunocyte
phenotypes, confers neuroprotection by relieving neuroinflammation.
Anesthesiology. 127:98–110. 2017. View Article : Google Scholar : PubMed/NCBI
|
32
|
Kawabori M, Kacimi R, Kauppinen T,
Calosing C, Kim JY, Hsieh CL, Nakamura MC and Yenari MA: Triggering
receptor expressed on myeloid cells 2 (TREM2) deficiency attenuates
phagocytic activities of microglia and exacerbates ischemic damage
in experimental stroke. J Neurosci. 35:3384–3396. 2015. View Article : Google Scholar : PubMed/NCBI
|
33
|
Li M, Chen S, Shi X, Lyu C, Zhang Y, Tan
M, Wang C, Zang N, Liu X, Hu Y, et al: Cell permeable HMGB1-binding
heptamer peptide ameliorates neurovascular complications associated
with thrombolytic therapy in rats with transient ischemic stroke. J
Neuroinflammation. 15:2372018. View Article : Google Scholar : PubMed/NCBI
|
34
|
Tsoi B, Wang S, Gao C, Luo Y, Li W, Yang
D, Yang D and Shen J: Realgar and cinnabar are essential components
contributing to neuroprotection of Angong Niuhuang Wan with no
hepatorenal toxicity in transient ischemic brain injury. Toxicol
Appl Pharmacol. 377:1146132019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Assarsson E, Lundberg M, Holmquist G,
Björkesten J, Thorsen SB, Ekman D, Eriksson A, Rennel Dickens E,
Ohlsson S, Edfeldt G, et al: Homogenous 96-plex PEA immunoassay
exhibiting high sensitivity, specificity, and excellent
scalability. PLoS One. 9:e951922014. View Article : Google Scholar : PubMed/NCBI
|
36
|
Sifat AE, Vaidya B and Abbruscato TJ:
Blood-brain barrier protection as a therapeutic strategy for acute
ischemic stroke. AAPS J. 19:957–972. 2017. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yang C, Yang Y, DeMars KM, Rosenberg GA
and Candelario-Jalil E: Genetic deletion or pharmacological
inhibition of cyclooxygenase-2 reduces blood-brain barrier damage
in experimental ischemic stroke. Front Neurol. 11:8872020.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Daneman R and Prat A: The blood-brain
barrier. Cold Spring Harb Perspect Biol. 7:a0204122015. View Article : Google Scholar : PubMed/NCBI
|
39
|
Lakhan SE, Kirchgessner A and Hofer M:
Inflammatory mechanisms in ischemic stroke: Therapeutic approaches.
J Transl Med. 7:972009. View Article : Google Scholar : PubMed/NCBI
|
40
|
Jin R, Yang G and Li G: Inflammatory
mechanisms in ischemic stroke: Role of inflammatory cells. J Leukoc
Biol. 87:779–789. 2010. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhu X, Yao Y, Yang J, Zhengxie J, Li X, Hu
S, Zhang A, Dong J, Zhang C and Gan G: COX-2-PGE(2) signaling
pathway contributes to hippocampal neuronal injury and cognitive
impairment in PTZ-kindled epilepsy mice. Int Immunopharmacol.
87:1068012020. View Article : Google Scholar : PubMed/NCBI
|
42
|
Li Y, Luo W, Zhang J, Luo Y, Han W, Wang
H, Xia H, Chen Z, Yang Y, Chen Q, et al: Maternal inflammation
exaggerates offspring susceptibility to cerebral
ischemia-reperfusion injury via the COX-2/PGD2/DP2 pathway
activation. Oxid Med Cell Longev. 2022:15717052022.PubMed/NCBI
|
43
|
Yan W, Ren D, Feng X, Huang J, Wang D, Li
T and Zhang D: Neuroprotective and anti-inflammatory effect of
pterostilbene against cerebral ischemia/reperfusion injury via
suppression of COX-2. Front Pharmacol. 12:7703292021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Yang T, Zhang A, Pasumarthy A, Zhang L,
Warnock Z and Schnermann JB: Nitric oxide stimulates COX-2
expression in cultured collecting duct cells through MAP kinases
and superoxide but not cGMP. Am J Physiol Renal Physiol.
291:F891–F895. 2006. View Article : Google Scholar : PubMed/NCBI
|
45
|
Manabe Y, Anrather J, Kawano T, Niwa K,
Zhou P, Ross ME and Iadecola C: Prostanoids, not reactive oxygen
species, mediate COX-2-dependent neurotoxicity. Ann Neurol.
55:668–675. 2004. View Article : Google Scholar : PubMed/NCBI
|
46
|
Sorokin A: Nitric oxide synthase and
cyclooxygenase pathways: A complex interplay in cellular signaling.
Curr Med Chem. 23:2559–2578. 2016. View Article : Google Scholar : PubMed/NCBI
|
47
|
Gu Y, Dee CM and Shen J: Interaction of
free radicals, matrix metalloproteinases and caveolin-1 impacts
blood-brain barrier permeability. Front Biosci (Schol Ed).
3:1216–1231. 2011. View
Article : Google Scholar : PubMed/NCBI
|
48
|
Schmidley JW, Dadson J, Iyer RS and
Salomon RG: Brain tissue injury and blood-brain barrier opening
induced by injection of LGE2 or PGE2. Prostaglandins Leukot Essent
Fatty Acids. 47:105–110. 1992. View Article : Google Scholar : PubMed/NCBI
|
49
|
Candelario-Jalil E, González-Falcón A,
García-Cabrera M, León OS and Fiebich BL: Post-ischaemic treatment
with the cyclooxygenase-2 inhibitor nimesulide reduces blood-brain
barrier disruption and leukocyte infiltration following transient
focal cerebral ischaemia in rats. J Neurochem. 100:1108–1120. 2007.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Ford JW and McVicar DW: TREM and TREM-like
receptors in inflammation and disease. Curr Opin Immunol. 21:38–46.
2009. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhang J, Zheng Y, Luo Y, Du Y, Zhang X and
Fu J: Curcumin inhibits LPS-induced neuroinflammation by promoting
microglial M2 polarization via TREM2/ TLR4/ NF-κB pathways in BV2
cells. Mol Immunol. 116:29–37. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Sharif O, Gawish R, Warszawska JM, Martins
R, Lakovits K, Hladik A, Doninger B, Brunner J, Korosec A,
Schwarzenbacher RE, et al: The triggering receptor expressed on
myeloid cells 2 inhibits complement component 1q effector
mechanisms and exerts detrimental effects during pneumococcal
pneumonia. PLoS Pathog. 10:e10041672014. View Article : Google Scholar : PubMed/NCBI
|
53
|
Wu K, Byers DE, Jin X, Agapov E,
Alexander-Brett J, Patel AC, Cella M, Gilfilan S, Colonna M, Kober
DL, et al: TREM-2 promotes macrophage survival and lung disease
after respiratory viral infection. J Exp Med. 212:681–697. 2015.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Hu R, He Y and Chen Z: Maprotiline
ameliorates isoflurane-induced microglial activation via regulating
triggering receptor expressed in myeloid cells 2 (TREM2).
Bioengineered. 12:12332–12344. 2021. View Article : Google Scholar : PubMed/NCBI
|
55
|
Bailey CC, DeVaux LB and Farzan M: The
triggering receptor expressed on myeloid cells 2 binds
apolipoprotein E. J Biol Chem. 290:26033–26042. 2015. View Article : Google Scholar : PubMed/NCBI
|
56
|
Yeh FL, Wang Y, Tom I, Gonzalez LC and
Sheng M: TREM2 binds to apolipoproteins, including APOE and
CLU/APOJ, and thereby facilitates uptake of amyloid-beta by
microglia. Neuron. 91:328–340. 2016. View Article : Google Scholar : PubMed/NCBI
|
57
|
Jendresen C, Rskog V, Daws MR and Nilsson
LN: The Alzheimer's disease risk factors apolipoprotein E and TREM2
are linked in a receptor signaling pathway. J Neuroinflammation.
14:592017. View Article : Google Scholar : PubMed/NCBI
|
58
|
Nguyen AT, Wang K, Hu G, Wang X, Miao Z,
Azevedo JA, Suh E, Van Deerlin VM, Choi D, Roeder K, et al: APOE
and TREM2 regulate amyloid-responsive microglia in Alzheimer's
disease. Acta Neuropathol. 140:477–493. 2020. View Article : Google Scholar : PubMed/NCBI
|
59
|
Wolfe CM, Fitz NF, Nam KN, Lefterov I and
Koldamova R: The Role of APOE and TREM2 in Alzheimer's
disease-current understanding and perspectives. Int J Mol Sci.
20:812018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Shi D, Si Z, Xu Z, Cheng Y, Lin Q, Fu Z,
Fu W, Yang T, Shi H and Cheng D: Synthesis and Evaluation of
68Ga-NOTA-COG1410 Targeting to TREM2 of TAMs as a
Specific PET probe for digestive tumor diagnosis. Anal Chem.
94:3819–3830. 2022. View Article : Google Scholar : PubMed/NCBI
|
61
|
Voet S, Srinivasan S, Lamkanfi M and van
Loo G: Inflammasomes in neuroinflammatory and neurodegenerative
diseases. EMBO Mol Med. 11:e102482019. View Article : Google Scholar : PubMed/NCBI
|
62
|
Fiedler M, Mendoza-Topaz C, Rutherford TJ,
Mieszczanek J and Bienz M: Dishevelled interacts with the DIX
domain polymerization interface of Axin to interfere with its
function in down-regulating β-catenin. Proc Natl Acad Sci USA.
108:1937–1942. 2011. View Article : Google Scholar : PubMed/NCBI
|
63
|
Jin D, Zhang YG, Wu S, Lu R, Lin Z, Zheng
Y, Chen H, Cs-Szabo G and Sun J: Vitamin D receptor is a novel
transcriptional regulator for Axin1. J Steroid Biochem Mol Biol.
165:430–437. 2017. View Article : Google Scholar : PubMed/NCBI
|
64
|
Uzdensky A, Demyanenko S, Fedorenko G,
Lapteva T and Fedorenko A: Protein profile and morphological
alterations in penumbra after focal photothrombotic infarction in
the rat cerebral cortex. Mol Neurobiol. 54:4172–4188. 2017.
View Article : Google Scholar : PubMed/NCBI
|
65
|
Cuartero MI, Ballesteros I, de la Parra J,
Harkin AL, Abautret-Daly A, Sherwin E, Fernández-Salguero P, Corbí
AL, Lizasoain I and Moro MA: L-kynurenine/aryl hydrocarbon receptor
pathway mediates brain damage after experimental stroke.
Circulation. 130:2040–2051. 2014. View Article : Google Scholar : PubMed/NCBI
|
66
|
Ren R, Lu Q, Sherchan P, Fang Y, Lenahan
C, Tang L, Huang Y, Liu R, Zhang JH, Zhang J and Tang J: Inhibition
of aryl hydrocarbon receptor attenuates hyperglycemia-induced
hematoma expansion in an intracerebral hemorrhage mouse model. J Am
Heart Assoc. 10:e0227012021. View Article : Google Scholar : PubMed/NCBI
|
67
|
Khan AS, Wolf A and Langmann T: The AhR
ligand 2, 2′-aminophenyl indole (2AI) regulates microglia
homeostasis and reduces pro-inflammatory signaling. Biochem Biophys
Res Commun. 579:15–21. 2021. View Article : Google Scholar : PubMed/NCBI
|
68
|
He YS, Yang XK, Hu YQ, Xiang K and Pan HF:
Emerging role of Fli1 in autoimmune diseases. Int Immunopharmacol.
90:1071272021. View Article : Google Scholar : PubMed/NCBI
|