1
|
Li Y, Zhang L, Ren P, Yang Y, Li S, Qin X,
Zhang M, Zhou M and Liu W: Qing-Xue-Xiao-Zhi formula attenuates
atherosclerosis by inhibiting macrophage lipid accumulation and
inflammatory response via TLR4/MyD88/NF-κB pathway regulation.
Phytomedicine. 93:1538122021. View Article : Google Scholar : PubMed/NCBI
|
2
|
Libby P: Inflammation during the life
cycle of the atherosclerotic plaque. Cardiovasc Res. 117:2525–2536.
2021.PubMed/NCBI
|
3
|
Li M, Wang ZW, Fang LJ, Cheng SQ, Wang X
and Liu NF: Programmed cell death in atherosclerosis and vascular
calcification. Cell Death Dis. 13:4672022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Qian Z, Zhao Y, Wan C, Deng Y, Zhuang Y,
Xu Y, Zhu Y, Lu S and Bao Z: Pyroptosis in the initiation and
progression of atherosclerosis. Front Pharmacol. 12:6529632021.
View Article : Google Scholar : PubMed/NCBI
|
5
|
He X, Fan X, Bai B, Lu N, Zhang S and
Zhang L: Pyroptosis is a critical immune-inflammatory response
involved in atherosclerosis. Pharmacol Res. 165:1054472021.
View Article : Google Scholar : PubMed/NCBI
|
6
|
Wang Q, Wu J, Zeng Y, Chen K, Wang C, Yang
S, Sun N, Chen H, Duan K and Zeng G: Pyroptosis: A pro-inflammatory
type of cell death in cardiovascular disease. Clin Chim Acta.
510:62–72. 2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Zhang Y, Jiao Y, Li X, Gao S, Zhou N, Duan
J and Zhang M: Pyroptosis: A new insight into eye disease therapy.
Front Pharmacol. 12:7971102021. View Article : Google Scholar : PubMed/NCBI
|
8
|
Burdette BE, Esparza AN, Zhu H and Wang S:
Gasdermin D in pyroptosis. Acta Pharm Sin B. 11:2768–2782. 2021.
View Article : Google Scholar : PubMed/NCBI
|
9
|
He B, Nie Q, Wang F, Han Y, Yang B, Sun M,
Fan X, Ye Z, Liu P and Wen J: Role of pyroptosis in atherosclerosis
and its therapeutic implications. J Cell Physiol. 236:7159–7175.
2021. View Article : Google Scholar : PubMed/NCBI
|
10
|
Yao F, Jin Z, Zheng Z, Lv X, Ren L, Yang
J, Chen D, Wang B, Yang W, Chen L, et al: HDAC11 promotes both
NLRP3/caspase-1/GSDMD and caspase-3/GSDME pathways causing
pyroptosis via ERG in vascular endothelial cells. Cell Death
Discov. 8:1122022. View Article : Google Scholar : PubMed/NCBI
|
11
|
Yao F, Jin Z, Lv X, Zheng Z, Gao H, Deng
Y, Liu Y, Chen L, Wang W, He J, et al: Hydroxytyrosol acetate
inhibits vascular endothelial cell pyroptosis via the HDAC11
signaling pathway in atherosclerosis. Front Pharmacol.
12:6562722021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Yao F, Lv X, Jin Z, Chen D, Zheng Z, Yang
J, Ren L, Wang B, Wang W, He J, et al: Sirt6 inhibits vascular
endothelial cell pyroptosis by regulation of the Lin28b/let-7
pathway in atherosclerosis. Int Immunopharmacol. 110:1090562022.
View Article : Google Scholar : PubMed/NCBI
|
13
|
Gao J, Chen X, Wei P, Wang Y, Li P and
Shao K: Regulation of pyroptosis in cardiovascular pathologies:
Role of noncoding RNAs. Mol Ther Nucleic Acids. 25:220–236. 2021.
View Article : Google Scholar : PubMed/NCBI
|
14
|
Wu A, Sun W and Mou F: lncRNA-MALAT1
promotes high glucose-induced H9C2 cardiomyocyte pyroptosis by
downregulating miR-141-3p expression. Mol Med Rep. 23:2592021.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Han Y, Qiu H, Pei X, Fan Y, Tian H and
Geng J: Low-dose sinapic acid abates the pyroptosis of macrophages
by downregulation of lncRNA-MALAT1 in rats with diabetic
atherosclerosis. J Cardiovasc Pharmacol. 71:104–112. 2018.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Li X, Zeng L, Cao C, Lu C, Lian W, Han J,
Zhang X, Zhang J, Tang T and Li M: Long noncoding RNA MALAT1
regulates renal tubular epithelial pyroptosis by modulated miR-23c
targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res.
350:327–335. 2017. View Article : Google Scholar : PubMed/NCBI
|
17
|
Song Y, Yang L, Guo R, Lu N, Shi Y and
Wang X: Long noncoding RNA MALAT1 promotes high glucose-induced
human endothelial cells pyroptosis by affecting NLRP3 expression
through competitively binding miR-22. Biochem Biophys Res Commun.
509:359–366. 2019. View Article : Google Scholar : PubMed/NCBI
|
18
|
Rahimian P and He JJ: HIV-1 tat-shortened
neurite outgrowth through regulation of microRNA-132 and its target
gene expression. J Neuroinflammation. 13:2472016. View Article : Google Scholar : PubMed/NCBI
|
19
|
Ceolotto G, Giannella A, Albiero M,
Kuppusamy M, Radu C, Simioni P, Garlaschelli K, Baragetti A,
Catapano AL, Iori E, et al: miR-30c-5p regulates
macrophage-mediated inflammation and pro-atherosclerosis pathways.
Cardiovasc Res. 114:19082018. View Article : Google Scholar
|
20
|
Li P, Zhong X, Li J, Liu H, Ma X, He R and
Zhao Y: MicroRNA-30c-5p inhibits NLRP3 inflammasome-mediated
endothelial cell pyroptosis through FOXO3 down-regulation in
atherosclerosis. Biochem Biophys Res Commun. 503:2833–2840. 2018.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Morel S, Burnier L and Kwak BR: Connexins
participate in the initiation and progression of atherosclerosis.
Semin Immunopathol. 31:49–61. 2009. View Article : Google Scholar : PubMed/NCBI
|
22
|
Klotz LO: Posttranscriptional regulation
of connexin-43 expression. Arch Biochem Biophys. 524:23–29. 2012.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B,
Zhang Y, Xu C, Bai Y, Wang H, et al: The muscle-specific microRNA
miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1
and KCNJ2. Nat Med. 13:486–491. 2007. View
Article : Google Scholar : PubMed/NCBI
|
24
|
Osbourne A, Calway T, Broman M, McSharry
S, Earley J and Kim GH: Downregulation of connexin43 by
microRNA-130a in cardiomyocytes results in cardiac arrhythmias. J
Mol Cell Cardiol. 74:53–63. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Reus JB, Trivino-Soto GS, Wu LI, Kokott K
and Lim ES: SV40 large T antigen is not responsible for the Loss of
STING in 293T cells but can inhibit cGAS-STING interferon
induction. Viruses. 12:1372020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Wang Y, Zeng X, Wang N, Zhao W, Zhang X,
Teng S, Zhang Y and Lu Z: Long noncoding RNA DANCR, working as a
competitive endogenous RNA, promotes ROCK1-mediated proliferation
and metastasis via decoying of miR-335-5p and miR-1972 in
osteosarcoma. Mol Cancer. 17:892018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Milutinović A, Šuput D and Zorc-Pleskovič
R: Pathogenesis of atherosclerosis in the tunica intima, media, and
adventitia of coronary arteries: An updated review. Bosn J Basic
Med Sci. 20:21–30. 2020.PubMed/NCBI
|
29
|
Sitia S, Tomasoni L, Atzeni F, Ambrosio G,
Cordiano C, Catapano A, Tramontana S, Perticone F, Naccarato P,
Camici P, et al: From endothelial dysfunction to atherosclerosis.
Autoimmun Rev. 9:830–834. 2010. View Article : Google Scholar : PubMed/NCBI
|
30
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D,
Zheng X, Luo S, Li Z, Liu P, Han J, et al: Endothelial dysfunction
in atherosclerotic cardiovascular diseases and beyond: From
mechanism to pharmacotherapies. Pharmacol Rev. 73:924–967. 2021.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Raggi P, Genest J, Giles JT, Rayner KJ,
Dwivedi G, Beanlands RS and Gupta M: Role of inflammation in the
pathogenesis of atherosclerosis and therapeutic interventions.
Atherosclerosis. 276:98–108. 2018. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ezquerro S, Mocha F, Frühbeck G,
Guzmán-Ruiz R, Valentí V, Mugueta C, Becerril S, Catalán V,
Gómez-Ambrosi J, Silva C, et al: Ghrelin reduces TNF-α-induced
human hepatocyte apoptosis, autophagy, and pyroptosis: Role in
obesity-associated NAFLD. J Clin Endocrinol Metab. 104:21–37.
2019.PubMed/NCBI
|
33
|
Liu Y and Tie L: Apolipoprotein M and
sphingosine-1-phosphate complex alleviates TNF-α-induced
endothelial cell injury and inflammation through PI3K/AKT signaling
pathway. BMC Cardiovasc Disord. 19:2792019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Jing ZT, Liu W, Xue CR, Wu SX, Chen WN,
Lin XJ and Lin X: AKT activator SC79 protects hepatocytes from
TNF-α-mediated apoptosis and alleviates d-Gal/LPS-induced liver
injury. Am J Physiol Gastrointest Liver Physiol. 316:G387–G396.
2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Wang Y, Zhang H, Chen Q, Jiao F, Shi C,
Pei M, Lv J, Zhang H, Wang L and Gong Z: TNF-α/HMGB1 inflammation
signalling pathway regulates pyroptosis during liver failure and
acute kidney injury. Cell Prolif. 53:e128292020. View Article : Google Scholar : PubMed/NCBI
|
36
|
Chen W, Wang F, Wang J, Chen F and Chen T:
The molecular mechanism of long non-coding RNA MALAT1-mediated
regulation of chondrocyte pyroptosis in ankylosing spondylitis. Mol
Cells. 45:365–375. 2022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Shu B, Zhou YX, Li H, Zhang RZ, He C and
Yang X: The METTL3/MALAT1/PTBP1/USP8/TAK1 axis promotes pyroptosis
and M1 polarization of macrophages and contributes to liver
fibrosis. Cell Death Discov. 7:3682021. View Article : Google Scholar : PubMed/NCBI
|
38
|
Kato M, Wang M, Chen Z, Bhatt K, Oh HJ,
Lanting L, Deshpande S, Jia Y, Lai JY, O'Connor CL, et al: An
endoplasmic reticulum stress-regulated lncRNA hosting a microRNA
megacluster induces early features of diabetic nephropathy. Nat
Commun. 7:128642016. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhou Y, Shi H, Du Y, Zhao G, Wang X, Li Q,
Liu J, Ye L, Shen Z, Guo Y and Huang Y: lncRNA DLEU2 modulates cell
proliferation and invasion of non-small cell lung cancer by
regulating miR-30c-5p/SOX9 axis. Aging (Albany NY). 11:7386–7401.
2019. View Article : Google Scholar : PubMed/NCBI
|
40
|
Tanaka T, Okada R, Hozaka Y, Wada M,
Moriya S, Satake S, Idichi T, Kurahara H, Ohtsuka T and Seki N:
Molecular pathogenesis of pancreatic ductal adenocarcinoma: Impact
of miR-30c-5p and miR-30c-2-3p regulation on oncogenic genes.
Cancers (Basel). 12:27312020. View Article : Google Scholar : PubMed/NCBI
|
41
|
He Z, Tian M and Fu X: Reduced expression
of miR-30c-5p promotes hepatocellular carcinoma progression by
targeting RAB32. Mol Ther Nucleic Acids. 26:603–612. 2021.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Gao BH, Wu H, Wang X, Ji LL and Chen C:
MiR-30c-5p inhibits high glucose-induced EMT and renal fibrogenesis
by down-regulation of JAK1 in diabetic nephropathy. Eur Rev Med
Pharmacol Sci. 24:1338–1349. 2020.PubMed/NCBI
|
43
|
Wang L, Chen X and Wang Y, Zhao L, Zhao X
and Wang Y: MiR-30c-5p mediates the effects of panax notoginseng
saponins in myocardial ischemia reperfusion injury by inhibiting
oxidative stress-induced cell damage. Biomed Pharmacother.
125:1099632020. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huntzinger E and Izaurralde E: Gene
silencing by microRNAs: Contributions of translational repression
and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar : PubMed/NCBI
|
45
|
Martins-Marques T, Ribeiro-Rodrigues T,
Batista-Almeida D, Aasen T, Kwak BR and Girao H: Biological
functions of connexin43 beyond intercellular communication. Trends
Cell Biol. 29:835–847. 2019. View Article : Google Scholar : PubMed/NCBI
|
46
|
Li C, Tian M, Gou Q, Jia YR and Su X:
Connexin43 modulates X-ray-induced pyroptosis in human umbilical
vein endothelial cells. Biomed Environ Sci. 32:177–188.
2019.PubMed/NCBI
|
47
|
Ji H, Qiu R, Gao X, Zhang R, Li X, Hei Z
and Yuan D: Propofol attenuates monocyte-endothelial adhesion via
modulating connexin43 expression in monocytes. Life Sci.
232:1166242019. View Article : Google Scholar : PubMed/NCBI
|
48
|
Meghwani H and Berk BC: MST1
kinase-Cx43-YAP/TAZ pathway mediates disturbed flow endothelial
dysfunction. Circ Res. 131:765–767. 2022. View Article : Google Scholar : PubMed/NCBI
|
49
|
Morel S, Chanson M, Nguyen TD, Glass AM,
Sarieddine MZ, Meens MJ, Burnier L, Kwak BR and Taffet SM:
Titration of the gap junction protein Connexin43 reduces
atherogenesis. Thromb Haemost. 112:390–401. 2014. View Article : Google Scholar : PubMed/NCBI
|
50
|
Yin X, Feng L, Ma D, Yin P, Wang X, Hou S,
Hao Y, Zhang J, Xin M and Feng J: Roles of astrocytic connexin-43,
hemichannels, and gap junctions in oxygen-glucose
deprivation/reperfusion injury induced neuroinflammation and the
possible regulatory mechanisms of salvianolic acid B and
carbenoxolone. J Neuroinflammation. 15:972018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Zhu Y, Chen X, Lu Y, Fan S, Yang Y, Chen
Q, Huang Q, Xia L, Wei Y, Zheng J and Liu X: Diphenyleneiodonium
enhances P2X7 dependent non-opsonized phagocytosis and suppresses
inflammasome activation via blocking CX43-mediated ATP leakage.
Pharmacol Res. 166:1054702021. View Article : Google Scholar : PubMed/NCBI
|
52
|
Huang Y, Mao Z, Zhang Z, Obata F, Yang X,
Zhang X, Huang Y, Mitsui T, Fan J, Takeda M and Yao J: Connexin43
contributes to inflammasome activation and
lipopolysaccharide-initiated acute renal injury via modulation of
intracellular oxidative status. Antioxid Redox Signal.
31:1194–1212. 2019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tonkin RS, Bowles C, Perera CJ, Keating
BA, Makker PGS, Duffy SS, Lees JG, Tran C, Don AS, Fath T, et al:
Attenuation of mechanical pain hypersensitivity by treatment with
Peptide5, a connexin-43 mimetic peptide, involves inhibition of
NLRP3 inflammasome in nerve-injured mice. Exp Neurol. 300:1–12.
2018. View Article : Google Scholar : PubMed/NCBI
|
54
|
Lyon H, Shome A, Rupenthal ID, Green CR
and Mugisho OO: Tonabersat inhibits connexin43 hemichannel opening
and inflammasome activation in an in vitro retinal epithelial cell
model of diabetic retinopathy. Int J Mol Sci. 22:2982020.
View Article : Google Scholar : PubMed/NCBI
|
55
|
Price GW, Chadjichristos CE, Kavvadas P,
Tang SCW, Yiu WH, Green CR, Potter JA, Siamantouras E, Squires PE
and Hills CE: Blocking connexin-43 mediated hemichannel activity
protects against early tubular injury in experimental chronic
kidney disease. Cell Commun Signal. 18:792020. View Article : Google Scholar : PubMed/NCBI
|
56
|
Zhang K, Chai B, Ji H, Chen L, Ma Y, Zhu
L, Xu J, Wu Y, Lan Y, Li H, et al: Bioglass promotes wound healing
by inhibiting endothelial cell pyroptosis through regulation of the
connexin 43/reactive oxygen species (ROS) signaling pathway. Lab
Invest. 102:90–101. 2022. View Article : Google Scholar
|
57
|
Xu H, Wang M, Li Y, Shi M, Wang Z, Cao C,
Hong Y, Hu B, Zhu H, Zhao Z, et al: Blocking connexin 43 and its
promotion of ATP release from renal tubular epithelial cells
ameliorates renal fibrosis. Cell Death Dis. 13:5112022. View Article : Google Scholar : PubMed/NCBI
|
58
|
Xia J, Tian Y, Shao Z, Li C, Ding M, Qi Y,
Xu X, Dai K, Wu C, Yao W and Hao C: MALAT1-miR-30c-5p-CTGF/ATG5
axis regulates silica-induced experimental silicosis by mediating
EMT in alveolar epithelial cells. Ecotoxicol Environ Saf.
249:1143922023. View Article : Google Scholar : PubMed/NCBI
|
59
|
Jiang T, Cai Z, Ji Z, Zou J, Liang Z,
Zhang G, Liang Y, Lin H and Tan M: The lncRNA MALAT1/miR-30/spastin
axis regulates hippocampal neurite outgrowth. Front Cell Neurosci.
14:5557472020. View Article : Google Scholar : PubMed/NCBI
|
60
|
Yi J, Liu D and Xiao J: LncRNA MALAT1
sponges miR-30 to promote osteoblast differentiation of
adipose-derived mesenchymal stem cells by promotion of Runx2
expression. Cell Tissue Res. 376:113–121. 2019. View Article : Google Scholar : PubMed/NCBI
|