1
|
Torrisi F, Alberghina C, D'Aprile S,
Pavone AM, Longhitano L, Giallongo S, Tibullo D, Di Rosa M, Zappalà
A, Cammarata FP, et al: The hallmarks of glioblastoma:
Heterogeneity, intercellular crosstalk and molecular signature of
invasiveness and progression. Biomedicines. 10:8062022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Grech N, Dalli T, Mizzi S, Meilak L,
Calleja N and Zrinzo A: Rising incidence of glioblastoma multiforme
in a well-defined population. Cureus. 12:e81952020.PubMed/NCBI
|
3
|
IARC Working Group on the Evaluation of
Carcinogenic Risks to Humans, . Non-ionizing radiation, Part 2:
Radiofrequency electromagnetic fields. IARC Monogr Eval Carcinog
Risks Hum. 102:1–460. 2013.PubMed/NCBI
|
4
|
Fuks KB, Weinmayr G, Basagana X, Gruzieva
O, Hampel R, Oftedal B, Sørensen M, Wolf K, Aamodt G, Aasvang GM,
et al: Long-term exposure to ambient air pollution and traffic
noise and incident hypertension in seven cohorts of the European
study of cohorts for air pollution effects (ESCAPE). Eur Heart J.
38:983–990. 2017.PubMed/NCBI
|
5
|
Smetana K Jr, Lacina L, Szabo P,
Dvorankova B, Broz P and Sedo A: Ageing as an important risk factor
for cancer. Anticancer Res. 36:5009–5017. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Trylcova J, Busek P, Smetana K Jr,
Balaziova E, Dvorankova B, Mifkova A and Sedo A: Effect of
cancer-associated fibroblasts on the migration of glioma cells in
vitro. Tumour Biol. 36:5873–5879. 2015. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chang K, Zhang B, Guo X, Zong M, Rahman R,
Sanchez D, Winder N, Reardon DA, Zhao B, Wen PY and Huang RY:
Multimodal imaging patterns predict survival in recurrent
glioblastoma patients treated with bevacizumab. Neuro Oncol.
18:1680–1687. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Stupp R, Hegi ME, Mason WP, van den Bent
MJ, Taphoorn MJB, Janzer RC, Ludwin SK, Allgeier A, Fisher B,
Belanger K, et al: Effects of radiotherapy with concomitant and
adjuvant temozolomide versus radiotherapy alone on survival in
glioblastoma in a randomised phase III study: 5-year analysis of
the EORTC-NCIC trial. Lancet Oncol. 10:459–466. 2009. View Article : Google Scholar : PubMed/NCBI
|
9
|
Stupp R, Mason WP, van den Bent MJ, Weller
M, Fisher B, Taphoorn MJB, Belanger K, Brandes AA, Marosi C,
Bogdahn U, et al: Radiotherapy plus concomitant and adjuvant
temozolomide for glioblastoma. New Eng J Med. 352:987–996. 2005.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Lee K, Liu Y, Mo JQ, Zhang J, Dong Z and
Lu S: Vav3 oncogene activates estrogen receptor and its
overexpression may be involved in human breast cancer. BMC Cancer.
8:1582008. View Article : Google Scholar : PubMed/NCBI
|
11
|
Rahaman SO, Li W and Silverstein RL: Vav
Guanine nucleotide exchange factors regulate atherosclerotic lesion
development in mice. Arterioscler Thromb Vasc Biol. 33:2053–2057.
2013. View Article : Google Scholar : PubMed/NCBI
|
12
|
Fujikawa K, Inoue Y, Sakai M, Koyama Y,
Nishi S, Funada R, Alt FW and Swat W: Vav3 is regulated during the
cell cycle and effects cell division. Proc Natl Acad Sci USA.
99:4313–4318. 2002. View Article : Google Scholar : PubMed/NCBI
|
13
|
Hornstein I, Alcover A and Katzav S: Vav
proteins, masters of the world of cytoskeleton organization. Cel
Signal. 16:1–11. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Uen YH, Fang CL, Hseu YC, Shen PC, Yang
HL, Wen KS, Hung ST, Wang LH and Lin KY: VAV3 oncogene expression
in colorectal cancer: Clinical aspects and functional
characterization. Sci Rep. 5:93602015. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lyons LS and Burnstein KL: Vav3, a Rho
GTPase guanine nucleotide exchange factor, increases during
progression to androgen independence in prostate cancer cells and
potentiates androgen receptor transcriptional activity. Mol
Endocrinol. 20:1061–1072. 2006. View Article : Google Scholar : PubMed/NCBI
|
16
|
Boesch M, Sopper S, Marth C, Fiegl H,
Wiedemair A, Rössler J, Hatina J, Wolf D, Reimer D and Zeimet AG:
Evaluation of Vav3.1 as prognostic marker in endometrial cancer. J
Cancer Res Clin Oncol. 144:2067–2076. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Tan B, Li Y, Zhao Q, Fan L, Wang D and Liu
Y: Inhibition of gastric cancer cell growth and invasion through
siRNA-mediated knockdown of guanine nucleotide exchange factor
Vav3. Tumour Biol. 35:1481–1488. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Salhia B, Tran NL, Chan A, Wolf A, Nakada
M, Rutka F, Ennis M, McDonough WS, Berens ME, Symons M and Rutka
JT: The guanine nucleotide exchange factors trio, Ect2, and Vav3
mediate the invasive behavior of glioblastoma. Am J Pathol.
173:1828–1838. 2008. View Article : Google Scholar : PubMed/NCBI
|
19
|
Qiang L, Yang Y, Ma YJ, Chen FH, Zhang LB,
Liu W, Qi Q, Lu N, Tao L, Wang XT, et al: Isolation and
characterization of cancer stem like cells in human glioblastoma
cell lines. Cancer Lett. 279:13–21. 2009. View Article : Google Scholar : PubMed/NCBI
|
20
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Tu Y, Gao X, Li G, Fu H, Cui D, Liu H, Jin
W and Zhang Y: MicroRNA-218 inhibits glioma invasion, migration,
proliferation, and cancer stem-like cell self-renewal by targeting
the polycomb group gene Bmi1. Cancer Res. 73:6046–6055. 2013.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Tropepe V, Sibilia M, Ciruna BG, Rossant
J, Wagner EF and van der Kooy D: Distinct neural stem cells
proliferate in response to EGF and FGF in the developing mouse
telencephalon. Dev Biol. 208:166–188. 1999. View Article : Google Scholar : PubMed/NCBI
|
23
|
Bowman RL, Wang Q, Carro A, Verhaak RG and
Squatrito M: GlioVis data portal for visualization and analysis of
brain tumor expression datasets. Neuro Oncol. 19:139–141. 2017.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhao Z, Zhang KN, Wang Q, Li G, Zeng F,
Zhang Y, Wu F, Chai R, Wang Z, Zhang C, et al: Chinese glioma
genome atlas (CGGA): A comprehensive resource with functional
genomic data from chinese glioma patients. Genomics Proteomics
Bioinformatics. 19:1–12. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Liu Y, Mo JQ, Hu Q, Boivin G, Levin L and
Lu S, Yang D, Dong Z and Lu S: Targeted overexpression of vav3
oncogene in prostatic epithelium induces nonbacterial prostatitis
and prostate cancer. Cancer Res. 68:6396–6406. 2008. View Article : Google Scholar : PubMed/NCBI
|
26
|
Nayak RC, Chang KH, Singh AK, Kotliar M,
Desai M, Wellendorf AM, Wunderlich M, Bartram J, Mizukawa B,
Cuadrado M, et al: Nuclear Vav3 is required for polycomb repression
complex-1 activity in B-cell lymphoblastic leukemogenesis. Nat
Commun. 13:30562022. View Article : Google Scholar : PubMed/NCBI
|
27
|
Baxter PA, Lin Q, Mao H, Kogiso M, Zhao X,
Liu Z, Huang Y, Voicu H, Gurusiddappa S, Su JM, et al: Silencing
BMI1 eliminates tumor formation of pediatric glioma CD133+ cells
not by affecting known targets but by down-regulating a novel set
of core genes. Acta Neuropathol Commun. 2:1602014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liang J, Wang P, Xie S, Wang W, Zhou X, Hu
J, Shi Q, Zhang X and Yu R: Bmi-1 regulates the migration and
invasion of glioma cells through p16. Cell Biol Int. 39:283–290.
2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Vora P, Seyfrid M, Venugopal C, Qazi MA,
Salim SA, Isserlin R, Subapanditha M, O'Farrell E, Mahendram S,
Singh M, et al: Bmi1 regulates human glioblastoma stem cells
through activation of differential gene networks in CD133+ brain
tumor initiating cells. J Neurooncol. 143:417–428. 2019. View Article : Google Scholar : PubMed/NCBI
|
30
|
Freire-Beneitez V, Pomella N, Millner TO,
Dumas AA, Niklison-Chirou MV, Maniati E, Wang J, Rajeeve V,
Cutillas P and Marino S: Elucidation of the BMI1 interactome
identifies novel regulatory roles in glioblastoma. NAR Cancer.
3:zcab0092021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Crosas-Molist E, Samain R, Kohlhammer L,
Orgaz JL, George SL, Maiques O, Barcelo J and Sanz-Moreno V: Rho
GTPase signaling in cancer progression and dissemination. Physiol
Rev. 102:455–510. 2022. View Article : Google Scholar : PubMed/NCBI
|
32
|
Mosaddeghzadeh N and Ahmadian MR: The RHO
family GTPases: Mechanisms of regulation and signaling. Cells.
10:18312021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Karlsson R, Pedersen ED, Wang Z and
Brakebusch C: Rho GTPase function in tumorigenesis. Biochim Biophys
Acta. 1796:91–98. 2009.PubMed/NCBI
|
34
|
Kwiatkowska A, Didier S, Fortin S, Chuang
Y, White T, Berens ME, Rushing E, Eschbacher J, Tran NL, Chan A and
Symons M: The small GTPase RhoG mediates glioblastoma cell
invasion. Mol Cancer. 11:652012. View Article : Google Scholar : PubMed/NCBI
|
35
|
Si W, Shen J, Zheng H and Fan W: The role
and mechanisms of action of microRNAs in cancer drug resistance.
Clin Epigenetics. 11:252019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Li Y, Xu J, Chen H, Bai J, Li S, Zhao Z,
Shao T, Jiang T, Ren H, Kang C and Li X: Comprehensive analysis of
the functional microRNA-mRNA regulatory network identifies miRNA
signatures associated with glioma malignant progression. Nucleic
Acids Res. 41:e2032013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Lian S, Shi R, Bai T, Liu Y, Miao W, Wang
H, Liu X and Fan Y: Anti-miRNA-23a oligonucleotide suppresses
glioma cells growth by targeting apoptotic protease activating
factor-1. Curr Pharm Des. 19:6382–6389. 2013. View Article : Google Scholar : PubMed/NCBI
|
38
|
Sun G, Cao Y, Shi L, Sun L, Wang Y, Chen
C, Wan Z, Fu L and You Y: Overexpressed miRNA-137 inhibits human
glioma cells growth by targeting Rac1. Cancer Biother Radiopharm.
28:327–334. 2013.PubMed/NCBI
|
39
|
Que T, Song Y, Liu Z, Zheng S, Long H, Li
Z, Liu Y, Wang G, Liu Y, Zhou J, et al: Decreased miRNA-637 is an
unfavorable prognosis marker and promotes glioma cell growth,
migration and invasion via direct targeting Akt1. Oncogene.
34:4952–4963. 2015. View Article : Google Scholar : PubMed/NCBI
|
40
|
Zhang JF, Zhang JS, Zhao ZH, Yang PB, Ji
SF, Li N, Shi QD, Tan J, Xu X, Xu CB and Zhao LY: MicroRNA-770
affects proliferation and cell cycle transition by directly
targeting CDK8 in glioma. Cancer Cell Int. 18:1952018. View Article : Google Scholar : PubMed/NCBI
|