Small‑molecule PKR‑like endoplasmic reticulum kinase inhibitors as a novel targeted therapy for Parkinson's disease
- Authors:
- Weronika Lusa
- Wioletta Rozpędek-Kamińska
- Natalia Siwecka
- Grzegorz Galita
- Ireneusz Majsterek
- Ewa Kucharska
-
Affiliations: Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-213 Lodz, Poland, Department of Geriatrics and Social Work, Jesuit University Ignatianum in Krakow, 31-501 Krakow, Poland - Published online on: March 30, 2023 https://doi.org/10.3892/mmr.2023.12989
- Article Number: 102
This article is mentioned in:
Abstract
2H‑tetrazolium‑5‑carboxanilide assay and apoptosis was assessed using a caspase‑3 assay. Moreover, cell cycle progression was evaluated using flow cytometry. The results indicated that LDN‑87357 treatment induced a significant decrease in ER stress markers gene expression in SH‑SY5Y cells exposed to ER stress. Furthermore, LDN‑87357 significantly increased viability, diminished apoptosis and restored the normal cell cycle distribution of SH‑SY5Y cells after ER stress induction. Therefore, the evaluation of small‑molecule PERK inhibitors, such as LDN‑87357, may lead to the development of novel therapeutic strategies against PD.
Balestrino R and Schapira AHV: Parkinson disease. Eur J Neurol. 27:27–42. 2020. View Article : Google Scholar : PubMed/NCBI | |
Aarsland D, Batzu L, Halliday GM, Geurtsen GJ, Ballard C, Ray Chaudhuri K and Weintraub D: Parkinson disease-associated cognitive impairment. Nat Rev Dis Primers. 7:472021. View Article : Google Scholar : PubMed/NCBI | |
Twelves D, Perkins KS and Counsell C: Systematic review of incidence studies of Parkinson's disease. Mov Disord. 18:19–31. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simon DK, Tanner CM and Brundin P: Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin Geriatr Med. 36:1–12. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dorsey ER, Sherer T, Okun MS and Bloem BR: The emerging evidence of the parkinson pandemic. J Parkinsons Dis. 8 (Suppl 1):S3–S8. 2018. View Article : Google Scholar : PubMed/NCBI | |
Prakash KG, Bannur BM, Chavan MD, Saniya K, Sailesh KS and Rajagopalan A: Neuroanatomical changes in Parkinson's disease in relation to cognition: An update. J Adv Pharm Technol Res. 7:123–126. 2016. View Article : Google Scholar : PubMed/NCBI | |
Comi C, Magistrelli L, Oggioni GD, Carecchio M, Fleetwood T, Cantello R, Mancini F and Antonini A: Peripheral nervous system involvement in Parkinson's disease: Evidence and controversies. Parkinsonism Relat Disord. 20:1329–1334. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cacabelos R: Parkinson's disease: From pathogenesis to pharmacogenomics. Int J Mol Sci. 18:5512017. View Article : Google Scholar : PubMed/NCBI | |
Jankovic J: Parkinson's disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 79:368–376. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tolosa E, Garrido A, Scholz SW and Poewe W: Challenges in the diagnosis of Parkinson's disease. Lancet Neurol. 20:385–397. 2021. View Article : Google Scholar : PubMed/NCBI | |
Aarsland D, Creese B, Politis M, Chaudhuri KR, Ffytche DH, Weintraub D and Ballard C: Cognitive decline in Parkinson disease. Nat Rev Neurol. 13:217–231. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bloem BR, Okun MS and Klein C: Parkinson's disease. Lancet. 397:2284–2303. 2021. View Article : Google Scholar : PubMed/NCBI | |
Day JO and Mullin S: The genetics of Parkinson's disease and implications for clinical practice. Genes (Basel). 12:10062021. View Article : Google Scholar : PubMed/NCBI | |
Antony PM, Diederich NJ, Kruger R and Balling R: The hallmarks of Parkinson's disease. FEBS J. 280:5981–5993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Belvisi D, Pellicciari R, Fabbrini G, Tinazzi M, Berardelli A and Defazio G: Modifiable risk and protective factors in disease development, progression and clinical subtypes of Parkinson's disease: What do prospective studies suggest? Neurobiol Dis. 134:1046712020. View Article : Google Scholar : PubMed/NCBI | |
Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ and Schrag A: Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol. 72:893–901. 2012. View Article : Google Scholar : PubMed/NCBI | |
Colla E: Linking the endoplasmic reticulum to Parkinson's disease and Alpha-Synucleinopathy. Front Neurosci. 13:5602019. View Article : Google Scholar : PubMed/NCBI | |
Malpartida AB, Williamson M, Narendra DP, Wade-Martins R and Ryan BJ: Mitochondrial dysfunction and mitophagy in Parkinson's disease: From mechanism to therapy. Trends Biochem Sci. 46:329–343. 2021. View Article : Google Scholar : PubMed/NCBI | |
Trist BG, Hare DJ and Double KL: Oxidative stress in the aging substantia nigra and the etiology of Parkinson's disease. Aging Cell. 18:e130312019. View Article : Google Scholar : PubMed/NCBI | |
Hou X, Watzlawik JO, Fiesel FC and Springer W: Autophagy in Parkinson's disease. J Mol Biol. 432:2651–2672. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ghemrawi R and Khair M: Endoplasmic reticulum stress and unfolded protein response in neurodegenerative diseases. Int J Mol Sci. 21:61272020. View Article : Google Scholar : PubMed/NCBI | |
Tsujii S, Ishisaka M and Hara H: Modulation of endoplasmic reticulum stress in Parkinson's disease. Eur J Pharmacol. 765:154–156. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ni M and Lee AS: ER chaperones in mammalian development and human diseases. FEBS Lett. 581:3641–3651. 2007. View Article : Google Scholar : PubMed/NCBI | |
Mercado G, Castillo V, Soto P and Sidhu A: ER stress and Parkinson's disease: Pathological inputs that converge into the secretory pathway. Brain Res. 1648:626–632. 2016. View Article : Google Scholar : PubMed/NCBI | |
Martinez A, Lopez N, Gonzalez C and Hetz C: Targeting of the unfolded protein response (UPR) as therapy for Parkinson's disease. Biol Cell. 111:161–168. 2019. View Article : Google Scholar : PubMed/NCBI | |
Teske BF, Wek SA, Bunpo P, Cundiff JK, McClintick JN, Anthony TG and Wek RC: The eIF2 kinase PERK and the integrated stress response facilitate activation of ATF6 during endoplasmic reticulum stress. Mol Biol Cell. 22:4390–4405. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jaud M, Philippe C, Van Den Berghe L, Ségura C, Mazzolini L, Pyronnet S, Laurell H and Touriol C: The PERK branch of the unfolded protein response promotes DLL4 expression by activating an alternative translation mechanism. Cancers (Basel). 11:1422019. View Article : Google Scholar : PubMed/NCBI | |
Saito A and Imaizumi K: The broad spectrum of signaling pathways regulated by unfolded protein response in neuronal homeostasis. Neurochem Int. 119:26–34. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, Lewin AS, Muzyczka N and Gorbatyuk OS: Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of Parkinson disease. Mol Ther. 20:1327–1337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rozpedek W, Pytel D, Mucha B, Leszczynska H, Diehl JA and Majsterek I: The role of the PERK/eIF2alpha/ATF4/CHOP signaling pathway in tumor progression during endoplasmic reticulum stress. Curr Mol Med. 16:533–544. 2016. View Article : Google Scholar : PubMed/NCBI | |
Szegezdi E, Logue SE, Gorman AM and Samali A: Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep. 7:880–885. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rozpedek-Kaminska W, Siwecka N, Wawrzynkiewicz A, Wojtczak R, Pytel D, Diehl JA and Majsterek I: The PERK-dependent molecular mechanisms as a novel therapeutic target for neurodegenerative diseases. Int J Mol Sci. 21:21082020. View Article : Google Scholar : PubMed/NCBI | |
Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM and Scheper W: Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun. 354:707–711. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gully JC, Sergeyev VG, Bhootada Y, Mendez-Gomez H, Meyers CA, Zolotukhin S, Gorbatyuk MS and Gorbatyuk OS: Up-regulation of activating transcription factor 4 induces severe loss of dopamine nigral neurons in a rat model of Parkinson's disease. Neurosci Lett. 627:36–41. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, Battistin L, Spillantini M, Missale C and Spano P: Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson's disease. J Neurochem. 116:588–605. 2011. View Article : Google Scholar : PubMed/NCBI | |
Betzer C, Lassen LB, Olsen A, Kofoed RH, Reimer L, Gregersen E, Zheng J, Calì T, Gai WP, Chen T, et al: Alpha-synuclein aggregates activate calcium pump SERCA leading to calcium dysregulation. EMBO Rep. 19:e446172018. View Article : Google Scholar : PubMed/NCBI | |
Jankovic J and Tan EK: Parkinson's disease: Etiopathogenesis and treatment. J Neurol Neurosurg Psychiatry. 91:795–808. 2020. View Article : Google Scholar : PubMed/NCBI | |
Oertel W and Schulz JB: Current and experimental treatments of Parkinson disease: A guide for neuroscientists. J Neurochem. 139 (Suppl 1):S325–S337. 2016. View Article : Google Scholar : PubMed/NCBI | |
Pytel D, Seyb K, Liu M, Ray SS, Concannon J, Huang M, Cuny GD, Diehl JA and Glicksman MA: Enzymatic characterization of ER Stress-dependent kinase, PERK, and development of a high-throughput assay for identification of PERK inhibitors. J Biomol Screen. 19:1024–1034. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bandyopadhyay S, Ni J, Ruggiero A, Walshe K, Rogers MS, Chattopadhyay N, Glicksman MA and Rogers JT: A high-throughput drug screen targeted to the 5′untranslated region of Alzheimer amyloid precursor protein mRNA. J Biomol Screen. 11:469–480. 2006. View Article : Google Scholar : PubMed/NCBI | |
Xicoy H, Wieringa B and Martens GJ: The SH-SY5Y cell line in Parkinson's disease research: A systematic review. Mol Neurodegener. 12:102017. View Article : Google Scholar : PubMed/NCBI | |
Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Lin F, Peng L, Ullah K, Wu H, Qing H and Deng Y: Methylglyoxal increases dopamine level and leads to oxidative stress in SH-SY5Y cells. Acta Biochim Biophys Sin (Shanghai). 46:950–956. 2014. View Article : Google Scholar : PubMed/NCBI | |
Slanzi A, Iannoto G, Rossi B, Zenaro E and Constantin G: In vitro models of neurodegenerative diseases. Front Cell Dev Biol. 8:3282020. View Article : Google Scholar : PubMed/NCBI | |
Falkenburger BH, Saridaki T and Dinter E: Cellular models for Parkinson's disease. J Neurochemistry. 139 (Suppl 1):S121–S130. 2016. View Article : Google Scholar | |
Bai X and Strong R: Expression of synaptophysin protein in different dopaminergic cell lines. J Biochem Pharmacol Res. 2:185–190. 2014.PubMed/NCBI | |
Rozpedek W, Pytel D, Diehl JA and Majsterek I: Niskoczasteczkowe inhibitory szlaku adaptacyjnej odpowiedzi na stres zaleznego od kinazy PERK jako nowatorska strategia terapeutyczna w leczeniu choroby Alzheimera. Pol Merkur Lekarski. 46:9–15. 2019.(In Polish). PubMed/NCBI | |
Rivero-Rios P, Gomez-Suaga P, Fdez E and Hilfiker S: Upstream deregulation of calcium signaling in Parkinson's disease. Front Mol Neuroscience. 7:532014.PubMed/NCBI | |
Sun Y, Selvaraj S, Pandey S, Humphrey KM, Foster JD, Wu M, Watt JA, Singh BB and Ohm JE: MPP+ decreases store-operated calcium entry and TRPC1 expression in Mesenchymal Stem Cell derived dopaminergic neurons. Sci Rep. 8:117152018. View Article : Google Scholar : PubMed/NCBI | |
Brodnanova M, Hatokova Z, Evinova A, Cibulka M and Racay P: Differential impact of imipramine on thapsigargin- and tunicamycin-induced endoplasmic reticulum stress and mitochondrial dysfunction in neuroblastoma SH-SY5Y cells. Eur J Pharmacol. 902:1740732021. View Article : Google Scholar : PubMed/NCBI | |
Panagaki T, Michael M and Holscher C: Liraglutide restores chronic ER stress, autophagy impairments and apoptotic signalling in SH-SY5Y cells. Sci Rep. 7:161582017. View Article : Google Scholar : PubMed/NCBI | |
Koo HJ, Piao Y and Pak YK: Endoplasmic reticulum stress impairs insulin signaling through mitochondrial damage in SH-SY5Y cells. Neurosignals. 20:265–280. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chung H, Chung HY, Bae CW, Kim CJ and Park S: Ghrelin suppresses tunicamycin- or thapsigargin-triggered endoplasmic reticulum stress-mediated apoptosis in primary cultured rat cortical neuronal cells. Endocr J. 58:409–420. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dibdiakova K, Saksonova S, Pilchova I, Klacanova K, Tatarkova Z and Racay P: Both thapsigargin- and tunicamycin-induced endoplasmic reticulum stress increases expression of Hrd1 in IRE1-dependent fashion. Neurol Res. 41:177–188. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ullrich C and Humpel C: The pro-apoptotic substance thapsigargin selectively stimulates re-growth of brain capillaries. Curr Neurovasc Res. 6:171–180. 2009. View Article : Google Scholar : PubMed/NCBI | |
Goodwin J, Nath S, Engelborghs Y and Pountney DL: Raised calcium and oxidative stress cooperatively promote alpha-synuclein aggregate formation. Neurochem Int. 62:703–711. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ito S, Nakaso K, Imamura K, Takeshima T and Nakashima K: Endogenous catecholamine enhances the dysfunction of unfolded protein response and alpha-synuclein oligomerization in PC12 cells overexpressing human alpha-synuclein. Neurosci Rese. 66:124–130. 2010. View Article : Google Scholar | |
Rozpedek W, Pytel D, Poplawski T, Walczak A, Gradzik K, Wawrzynkiewicz A, Wojtczak R, Mucha B, Diehl JA and Majsterek I: Inhibition of the PERK-dependent unfolded protein response signaling pathway involved in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 16:209–218. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rozpedek-Kaminska W, Galita G, Siwecka N, Carroll SL, Diehl JA, Kucharska E, Pytel D and Majsterek I: The potential role of small-molecule PERK inhibitor LDN-0060609 in primary open-angle glaucoma treatment. Int J Mol Sci. 22:44942021. View Article : Google Scholar : PubMed/NCBI | |
Colla E, Coune P, Liu Y, Pletnikova O, Troncoso JC, Iwatsubo T, Schneider BL and Lee MK: Endoplasmic reticulum stress is important for the manifestations of alpha-synucleinopathy in vivo. J Neurosci. 32:3306–3320. 2012. View Article : Google Scholar : PubMed/NCBI | |
Smith WW, Jiang H, Pei Z, Tanaka Y, Morita H, Sawa A, Dawson VL, Dawson TM and Ross CA: Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet. 14:3801–3811. 2005. View Article : Google Scholar : PubMed/NCBI | |
Smedley GD, Walker KE and Yuan SH: The role of PERK in understanding development of neurodegenerative diseases. Int J Mol Sci. 22:81462021. View Article : Google Scholar : PubMed/NCBI | |
Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, Willis AE, Fischer PM, Barrett DA and Mallucci GR: Oral treatment targeting the unfolded protein response prevents neurodegeneration and clinical disease in prion-infected mice. Sci Transl Med. 5:206ra1382013. View Article : Google Scholar : PubMed/NCBI | |
Costa CAD, Manaa WE, Duplan E and Checler F: The endoplasmic reticulum stress/unfolded protein response and their contributions to Parkinson's disease physiopathology. Cells. 9:24952020. View Article : Google Scholar : PubMed/NCBI | |
Baek JH, Mamula D, Tingstam B, Pereira M, He Y and Svenningsson P: GRP78 level is altered in the brain, but not in plasma or cerebrospinal fluid in Parkinson's disease patients. Front Neurosci. 13:6972019. View Article : Google Scholar : PubMed/NCBI | |
Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L and Singh BB: Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest. 122:1354–1367. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bellani S, Mescola A, Ronzitti G, Tsushima H, Tilve S, Canale C, Valtorta F and Chieregatti E: GRP78 clustering at the cell surface of neurons transduces the action of exogenous alpha-synuclein. Cell Death Differ. 21:1971–1983. 2014. View Article : Google Scholar : PubMed/NCBI | |
Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, Wills J and Sidhu A: α-Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in Parkinson's disease. Neurobiol Dis. 76:112–125. 2015. View Article : Google Scholar : PubMed/NCBI | |
Cooper AA, Gitler AD, Cashikar A, Haynes CM, Hill KJ, Bhullar B, Liu K, Xu K, Strathearn KE, Liu F, et al: Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson's models. Science. 313:324–328. 2006. View Article : Google Scholar : PubMed/NCBI | |
Gitler AD, Bevis BJ, Shorter J, Strathearn KE, Hamamichi S, Su LJ, Caldwell KA, Caldwell GA, Rochet JC, McCaffery JM, et al: The Parkinson's disease protein alpha-synuclein disrupts cellular Rab homeostasis. Proc Natl Acad Sci USA. 105:145–150. 2008. View Article : Google Scholar : PubMed/NCBI | |
Paiva I, Jain G, Lázaro DF, Jerčić KG, Hentrich T, Kerimoglu C, Pinho R, Szegő ÈM, Burkhardt S, Capece V, et al: Alpha-synuclein deregulates the expression of COL4A2 and impairs ER-Golgi function. Neurobiol Dis. 119:121–135. 2018. View Article : Google Scholar : PubMed/NCBI | |
Jung EM, Yoo YM, Park SY, Ahn C, Jeon BH, Hong EJ, Kim WY and Jeung EB: Calbindin-D9k is a novel risk gene for neurodegenerative disease. Cell Physiol Biochem. 54:438–456. 2020. View Article : Google Scholar : PubMed/NCBI | |
Giorgi C, Bonora M, Sorrentino G, Missiroli S, Poletti F, Suski JM, Galindo Ramirez F, Rizzuto R, Di Virgilio F, Zito E, et al: p53 at the endoplasmic reticulum regulates apoptosis in a Ca2+-dependent manner. Proc Natl Acad Sci USA. 112:1779–1784. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kovaleva V and Saarma M: Endoplasmic reticulum stress regulators: New drug targets for Parkinson's disease. J Parkinsons Dis. 11 (Suppl 2):S219–S228. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, Hoozemans JJM and Hetz C: Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis. 112:136–148. 2018. View Article : Google Scholar : PubMed/NCBI | |
Radford H, Moreno JA, Verity N, Halliday M and Mallucci GR: PERK inhibition prevents tau-mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta Neuropathol. 130:633–642. 2015. View Article : Google Scholar : PubMed/NCBI | |
Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, Heerding DA, Minthorn E, Mencken T, et al: Discovery of 7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J Med Chem. 55:7193–7207. 2012. View Article : Google Scholar : PubMed/NCBI | |
O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, et al: Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron. 60:988–1009. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang ZF, Gao C, Chen W, Gao Y, Wang HC, Meng Y, Luo CL, Zhang MY, Chen G, Chen XP, et al: Salubrinal offers neuroprotection through suppressing endoplasmic reticulum stress, autophagy and apoptosis in a mouse traumatic brain injury model. Neurobiol Learn Mem. 161:12–25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu L, Luo N, Zhao HR, Gao Q, Lu J, Pan Y, Shi JP, Tian YY and Zhang YD: Salubrinal protects against rotenone-induced SH-SY5Y cell death via ATF4-parkin pathway. Brain Res. 1549:52–62. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gupta S, Mishra A and Singh S: Cardinal role of eukaryotic initiation factor 2 (eIF2α) in progressive dopaminergic neuronal death & DNA fragmentation: Implication of PERK:IRE1α:ATF6 axis in Parkinson's pathology. Cell Signal. 81:1099222021. View Article : Google Scholar : PubMed/NCBI | |
Cankara FN, Kuş MS, Günaydın C, Şafak S, Bilge SS, Ozmen O, Tural E and Kortholt A: The beneficial effect of salubrinal on neuroinflammation and neuronal loss in intranigral LPS-induced hemi-Parkinson disease model in rats. Immunopharmacol Immunotoxicol. 44:168–177. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Chen Y, Zhang H, Ma Q, Zhang YW and Xu H: Salubrinal attenuates β-amyloid-induced neuronal death and microglial activation by inhibition of the NF-κB pathway. Neurobiol Aging. 33:1007.e9–e17. 2012. View Article : Google Scholar : PubMed/NCBI | |
Sidrauski C, Tsai JC, Kampmann M, Hearn BR, Vedantham P, Jaishankar P, Sokabe M, Mendez AS, Newton BW, Tang EL, et al: Pharmacological dimerization and activation of the exchange factor eIF2B antagonizes the integrated stress response. Elife. 4:e073142015. View Article : Google Scholar : PubMed/NCBI | |
Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, Barrett DA, Fromont C, Fischer PM, et al: Partial restoration of protein synthesis rates by the small molecule ISRIB prevents neurodegeneration without pancreatic toxicity. Cell Death Dis. 6:e16722015. View Article : Google Scholar : PubMed/NCBI | |
Hughes D and Mallucci GR: The unfolded protein response in neurodegenerative disorders-therapeutic modulation of the PERK pathway. FEBS J. 286:342–355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chia SJ, Tan EK and Chao YX: Historical perspective: Models of Parkinson's Disease. Int J Mol Sci. 21:24642020. View Article : Google Scholar : PubMed/NCBI |