Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review)
- Authors:
- Qingqing Liu
- Xiaojuan Jin
- Jun Cheng
- Huajun Zhou
- Yingjie Zhang
- Yuzhu Dai
-
Affiliations: School of Laboratory Medicine, Bengbu Medical College, Bengbu, Anhui 233000, P.R. China, Department of Clinical Research, The 903rd Hospital of The People's Liberation Army, Hangzhou, Zhejiang 310013, P.R. China, Department of Clinical Research, The 903rd Hospital of The People's Liberation Army, Hangzhou, Zhejiang 310013, P.R. China - Published online on: April 3, 2023 https://doi.org/10.3892/mmr.2023.12991
- Article Number: 104
-
Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Zhu L, Ling J, Zhu Z, Tian T, Song Y and Yang C: Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem. 413:4563–4579. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ling Z, Xiao H and Chen W: Gut microbiome: The cornerstone of life and health. Adv Gut Microbiome Res. 2022:1–3. 2022. View Article : Google Scholar | |
Vengesai A, Kasambala M, Mutandadzi H, Mduluza-Jokonya TL, Mduluza T and Naicker T: Scoping review of the applications of peptide microarrays on the fight against human infections. PLoS One. 17:e02486662022. View Article : Google Scholar : PubMed/NCBI | |
Casanova JL and Abel L: Lethal Infectious diseases as inborn errors of immunity: Toward a synthesis of the germ and genetic theories. Annu Rev Pathol. 16:23–50. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Jianying L and Pei-Yong S: SARS-CoV-2 variants and vaccination. Zoonoses (Burlingt). 2:62022. | |
Micoli F, Bagnoli F, Rappuoli R and Serruto D: The role of vaccines in combatting antimicrobial resistance. Nat Rev Microbiol. 19:287–302. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mercer A: Protection against severe infectious disease in the past. Pathog Glob Health. 115:151–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu L and Moore MD: A survey of analytical techniques for noroviruses. Foods. 9:3182020. View Article : Google Scholar : PubMed/NCBI | |
Xiang Z, Jiang B, Li W, Zhai G, Zhou H, Wang Y and Wu J: The diagnostic and prognostic value of serum exosome-derived carbamoyl phosphate synthase 1 in HEV-related acute liver failure patients. J Med Virol. 94:5015–5025. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang HS, Tsai CL, Chang J, Hsu TC, Lin S and Lee CC: Multiplex PCR system for the rapid diagnosis of respiratory virus infection: Systematic review and meta-analysis. Clin Microbiol Infect. 24:1055–1063. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Bortolanza M, Zhai G, Shang A, Ling Z, Jiang B, Shen X, Yao Y, Yu J, Li L and Cao H: Gut microbiota dysbiosis associated with plasma levels of Interferon-γ and viral load in patients with acute hepatitis E infection. J Med Virol. 94:692–702. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xu Y, Cui Y, Bortolanza M, Wang M, Jiang B, Yan M, Liang W, Yao Y, Pan Q, et al: Dynamic changes of serum metabolites associated with infection and severity of patients with acute hepatitis E infection. J Med Virol. 94:2714–2726. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang B, Zhou J, Li M, Wei Y, Wang J, Wang Y, Shi P, Li X, Huang Z, Tang H and Song Z: Evaluation of CRISPR/Cas9 site-specific function and validation of sgRNA sequence by a Cas9/sgRNA-assisted reverse PCR technique. Anal Bioanal Chem. 413:2447–2456. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sidstedt M, Rådström P and Hedman J: PCR inhibition in qPCR, dPCR and MPS-mechanisms and solutions. Anal Bioanal Chem. 412:2009–2023. 2020. View Article : Google Scholar : PubMed/NCBI | |
García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, Vicente B, López-Abán J and Muro A: Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: Towards a ready-to-use test. Sci Rep. 9:147442019. View Article : Google Scholar : PubMed/NCBI | |
Jiang W, Ji W, Zhang Y, Xie Y, Chen S, Jin Y and Duan G: An update on detection technologies for SARS-CoV-2 variants of concern. Viruses. 14:23242022. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Deng W, Wang L, Qin Z, Zhou X and Xu J: Molecular techniques as alternatives of diagnostic tools in china as schistosomiasis moving towards elimination. Pathogens. 11:2872022. View Article : Google Scholar : PubMed/NCBI | |
Mackay IM, Arden KE and Nitsche A: Real-time PCR in virology. Nucleic Acids Re. 30:1292–1305. 2002. View Article : Google Scholar : PubMed/NCBI | |
Castelli G, Bruno F, Reale S, Catanzaro S, Valenza V and Vitale F: Molecular diagnosis of leishmaniasis: Quantification of parasite load by a Real-Time PCR assay with high sensitivity. Pathogens. 10:8652021. View Article : Google Scholar : PubMed/NCBI | |
Vidanapathirana G, Angulmaduwa ALSK, Munasinghe TS, Ekanayake EWMA, Harasgama P, Kudagammana ST, Dissanayake BN and Liyanapathirana LVC: Comparison of pneumococcal colonization density among healthy children and children with respiratory symptoms using real time PCR (RT-PCR). BMC Microbiol. 22:312022. View Article : Google Scholar : PubMed/NCBI | |
Ingalagi P, Bhat KG, Kulkarni RD, Kotrashetti VS, Kumbar V and Kugaji M: Detection and comparison of prevalence of Porphyromonas gingivalis through culture and Real Time-polymerase chain reaction in subgingival plaque samples of chronic periodontitis and healthy individuals. J Oral Maxillofac Pathol. 26:2882022.PubMed/NCBI | |
Marrero Rolon R, Cunningham SA, Mandrekar JN, Polo ET and Patel R: Erratum for Marrero Rolon et al., ‘Clinical evaluation of a real-time pCR assay for simultaneous detection of helicobacter pylori and genotypic markers of clarithromycin resistance directly from stool’. J Clin Microbiol. 60:e02452212022. View Article : Google Scholar : PubMed/NCBI | |
Bennett S and Gunson RN: The development of a multiplex real-time RT-PCR for the detection of adenovirus, astrovirus, rotavirus and sapovirus from stool samples. J Virol Methods. 242:30–34. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jiang XW, Huang TS, Xie L, Chen SZ, Wang SD, Huang ZW, Li XY and Ling WP: Development of a diagnostic assay by three-tube multiplex real-time PCR for simultaneous detection of nine microorganisms causing acute respiratory infections. Sci Rep. 12:133062022. View Article : Google Scholar : PubMed/NCBI | |
Liu L, Zhang Y, Cui P, Wang C, Zeng X, Deng G and Wang X: Development of a duplex TaqMan real-time RT-PCR assay for simultaneous detection of newly emerged H5N6 influenza viruses. Virol J. 16:1192019. View Article : Google Scholar : PubMed/NCBI | |
Das Mukhopadhyay C, Sharma P, Sinha K and Rajarshi K: Recent trends in analytical and digital techniques for the detection of the SARS-Cov-2. Biophys Chem. 270:1065382021. View Article : Google Scholar : PubMed/NCBI | |
Yu CY, Chan KG, Yean CY and Ang GY: Nucleic acid-based diagnostic tests for the detection SARS-CoV-2: An Update. Diagnostics (Basel). 11:532021. View Article : Google Scholar : PubMed/NCBI | |
Li H, Bai R, Zhao Z, Tao L, Ma M, Ji Z, Jian M, Ding Z, Dai X, Bao F and Liu A: Application of droplet digital PCR to detect the pathogens of infectious diseases. Biosci Rep. 38:BSR201811702018. View Article : Google Scholar : PubMed/NCBI | |
Lei S, Chen S and Zhong Q: Digital PCR for accurate quantification of pathogens: Principles, applications, challenges and future prospects. Int J Biol Macromol. 184:750–759. 2021. View Article : Google Scholar : PubMed/NCBI | |
Das S, Hammond-McKibben D, Guralski D, Lobo S and Fiedler PN: Development of a sensitive molecular diagnostic assay for detecting Borrelia burgdorferi DNA from the blood of Lyme disease patients by digital PCR. PLoS One. 15:e02353722020. View Article : Google Scholar : PubMed/NCBI | |
Cao Y, Yu M, Dong G, Chen B and Zhang B: Digital PCR as an emerging tool for monitoring of microbial biodegradation. Molecules. 25:7062020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Parvin R, Fan Q and Ye F: Emerging digital PCR technology in precision medicine. Biosens Bioelectron. 211:1143442020. View Article : Google Scholar : PubMed/NCBI | |
Košir AB, Spilsberg B, Holst-Jensen A, Žel J and Dobnik D: Development and inter-laboratory assessment of droplet digital PCR assays for multiplex quantification of 15 genetically modified soybean lines. Sci Rep. 9:37352019. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Qu H, Alonso DG, Yu Z, Yu Y, Shi Y, Hu C, Zhu T, Wu N and Shen F: Portable integrated digital PCR system for the point-of-care quantification of BK virus from urine samples. Biosens Bioelectron. 175:1129082021. View Article : Google Scholar : PubMed/NCBI | |
Sedlak RH, Nguyen T, Palileo I, Jerome KR and Kuypers J: Superiority of Digital Reverse Transcription-PCR (RT-PCR) over Real-Time RT-PCR for Quantitation of Highly Divergent Human Rhinoviruses. J Clin Microbiol. 55:442–449. 2017. View Article : Google Scholar : PubMed/NCBI | |
van Snippenberg W, Gleerup D, Rutsaert S, Vandekerckhove L, De Spiegelaere W and Trypsteen W: Triplex digital PCR assays for the quantification of intact proviral HIV-1 DNA. Methods. 201:41–48. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bønløkke S, Stougaard M, Sorensen BS, Booth BB, Høgdall E, Nyvang GB, Lindegaard JC, Blaakær J, Bertelsen J, Fuglsang K, et al: The diagnostic value of circulating Cell-Free HPV DNA in plasma from cervical cancer patients. Cells. 11:21702022. View Article : Google Scholar : PubMed/NCBI | |
Lyu L, Li Z, Pan L, Jia H, Sun Q, Liu Q and Zhang Z: Evaluation of digital PCR assay in detection of M. tuberculosis IS6110 and IS1081 in tuberculosis patients plasma. BMC Infect Dis. 20:6572020. View Article : Google Scholar : PubMed/NCBI | |
Salipante SJ and Jerome KR: Digital PCR-An emerging technology with broad applications in microbiology. Clin Chem. 66:117–123. 2020. View Article : Google Scholar : PubMed/NCBI | |
Rutsaert S, Bosman K, Trypsteen W, Nijhuis M and Vandekerckhove L: Digital PCR as a tool to measure HIV persistence. Retrovirology. 15:162018. View Article : Google Scholar : PubMed/NCBI | |
Kojabad AA, Farzanehpour M, Galeh HEG, Dorostkar R, Jafarpour A, Bolandian M and Nodooshan MM: Droplet digital PCR of viral DNA/RNA, current progress, challenges, and future perspectives. J Med Virol. 93:4182–4197. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dingle TC, Sedlak RH, Cook L and Jerome KR: Tolerance of droplet-digital PCR vs real-time quantitative PCR to inhibitory substances. Clin Chem. 59:1670–1672. 2013. View Article : Google Scholar : PubMed/NCBI | |
Pan SW, Su WJ, Chan YJ, Chuang FY, Feng JY and Chen YM: Mycobacterium tuberculosis-derived circulating cell-free DNA in patients with pulmonary tuberculosis and persons with latent tuberculosis infection. PLoS One. 16:e02538792021. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Liu E, Liu H, Jin X, Niu C, Gao Y and Su X: A droplet digital PCR assay for detection and quantification of Verticillium nonalfalfae and V. albo-atrum. Front Cell Infect Microbiol. 12:11106842023. View Article : Google Scholar : PubMed/NCBI | |
Gundry CN, Vandersteen JG, Reed GH, Pryor RJ, Chen J and Wittwer CT: Amplicon melting analysis with labeled primers: A closed-tube method for differentiating homozygotes and heterozygotes. Clin Chem. 49:396–406. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tamburro M and Ripabelli G: High Resolution Melting as a rapid, reliable, accurate and cost-effective emerging tool for genotyping pathogenic bacteria and enhancing molecular epidemiological surveillance: A comprehensive review of the literature. Ann Ig. 29:293–316. 2017.PubMed/NCBI | |
Hu M, Yang D, Wu X, Luo M and Xu F: A novel high-resolution melting analysis-based method for Salmonella genotyping. J Microbiol Methods. 172:1058062020. View Article : Google Scholar : PubMed/NCBI | |
Wen X, Chen Q, Yin H, Wu S and Wang X: Rapid identification of clinical common invasive fungi via a multi-channel real-time fluorescent polymerase chain reaction melting curve analysis. Medicine (Baltimore). 99:e191942020. View Article : Google Scholar : PubMed/NCBI | |
Banowary B, Dang VT, Sarker S, Connolly JH, Chenu J, Groves P, Ayton M, Raidal S, Devi A, Vanniasinkam T and Ghorashi SA: Differentiation of Campylobacter jejuni and campylobacter coli using Multiplex-PCR and high resolution melt curve analysis. PLoS One. 10:e01388082015. View Article : Google Scholar : PubMed/NCBI | |
Tong SY, Dakh F, Hurt AC, Deng YM, Freeman K, Fagan PK, Barr IG and Giffard PM: Rapid detection of the H275Y oseltamivir resistance mutation in influenza A/H1N1 2009 by single base pair RT-PCR and high-resolution melting. PLoS One. 6:e214462020. View Article : Google Scholar : PubMed/NCBI | |
Kafi H, Emaneini M, Halimi S, Rahdar HA, Jabalameli F and Beigverdi R: Multiplex high-resolution melting assay for simultaneous detection of five key bacterial pathogens in urinary tract infections: A pilot study. Front Microbiol. 13:10491782022. View Article : Google Scholar : PubMed/NCBI | |
Tong SY and Giffard PM: Microbiological applications of high-resolution melting analysis. J Clin Microbiol. 50:3418–3421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ghorbani J, Hashemi FB, Jabalameli F, Emaneini M and Beigverdi R: Multiplex detection of five common respiratory pathogens from bronchoalveolar lavages using high resolution melting curve analysis. BMC Microbiol. 22:1412020. View Article : Google Scholar : PubMed/NCBI | |
Zamani M, Furst AL and Klapperich CM: Strategies for engineering affordable technologies for point-of-Care diagnostics of infectious diseases. Acc Chem Res. 54:3772–3779. 2021. View Article : Google Scholar : PubMed/NCBI | |
Du J, Ma B, Li J, Wang Y, Dou T, Xu S and Zhang M: Rapid detection and differentiation of legionella pneumophila and Non-legionella pneumophila Species by using recombinase polymerase amplification combined with EuNPs-based lateral flow immunochromatography. Front Chem. 9:8151892022. View Article : Google Scholar : PubMed/NCBI | |
Soroka M, Wasowicz B and Rymaszewska A: Loop-Mediated isothermal amplification (LAMP): The better sibling of PCR? Cells. 10:19312021. View Article : Google Scholar : PubMed/NCBI | |
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI | |
Parija SC and Poddar A: Molecular diagnosis of infectious parasites in the post-COVID-19 era. Trop Parasitol. 11:3–10. 2021. View Article : Google Scholar : PubMed/NCBI | |
Vo DT and Story MD: Facile and direct detection of human papillomavirus (HPV) DNA in cells using loop-mediated isothermal amplification (LAMP). Mol Cell Probes. 59:1017602021. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Si Y, Li G, Zong M, Zhang W, Ye Y and Fan L: Development of a loop-mediated isothermal amplification assay for the rapid detection of six common respiratory viruses. Eur J Clin Microbiol Infect Dis. 40:2525–2532. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Park BG, Lim DH, Jang WS, Nam J, Mihn DC and Lim CS: Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS One. 16:e02447532021. View Article : Google Scholar : PubMed/NCBI | |
Phillips EA, Moehling TJ, Ejendal KFK, Hoilett OS, Byers KM, Basing LA, Jankowski LA, Bennett JB, Lin LK, Stanciu LA and Linnes JC: Microfluidic rapid and autonomous analytical device (microRAAD) to detect HIV from whole blood samples. Lab Chip. 19:3375–3386. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Zhang J, Pan M, Qin Y, Zhao H, Qin P, Yang Q, Li X, Zeng W, Xiang Z, et al: Loop-mediated isothermal amplification (LAMP) assays targeting 18S ribosomal RNA genes for identifying P. vivax and P. ovale species and mitochondrial DNA for detecting the genus Plasmodium. Parasit Vectors. 14:2782021. View Article : Google Scholar : PubMed/NCBI | |
Trinh KTL and Lee NY: Fabrication of wearable PDMS device for rapid detection of nucleic acids via recombinase polymerase amplification operated by human body heat. Biosensors (Basel). 12:722022. View Article : Google Scholar : PubMed/NCBI | |
Islam MN, Moriam S, Umer M, Phan HP, Salomon C, Kline R, Nguyen NT and Shiddiky MJA: Naked-eye and electrochemical detection of isothermally amplified HOTAIR long non-coding RNA. Analyst. 143:3021–3028. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mota DS, Guimarães JM, Gandarilla AMD, Filho JCBS, Brito WR and Mariúba LAM: Recombinase polymerase amplification in the molecular diagnosis of microbiological targets and its applications. Can J Microbiol. 68:383–402. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Macdonald J and von Stetten F: Review: A comprehensive summary of a decade development of the recombinase polymerase amplification. Analyst. 145:1950–1960. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qi Y, Li W, Li X, Shen W, Zhang J, Li J, Lv R, Lu N, Zong L, Zhuang S, et al: Development of rapid and visual nucleic acid detection methods towards four serotypes of human adenovirus species B based on RPA-LF test. Biomed Res Int. 2021:99577472021. View Article : Google Scholar : PubMed/NCBI | |
Mayran C, Foulongne V, Van de Perre P, Fournier-Wirth C, Molès JP and Cantaloube JF: Rapid diagnostic test for hepatitis B virus viral load based on recombinase polymerase amplification combined with a lateral flow read-out. Diagnostics (Basel). 12:6212022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Pollak NM and Macdonald J: Multiplex detection of nucleic acids using recombinase polymerase amplification and a molecular colorimetric 7-Segment display. ACS Omega. 4:11388–11396. 2019. View Article : Google Scholar : PubMed/NCBI | |
Munawar MA: Critical insight into recombinase polymerase amplification technology. Expert Rev Mol Diagn. 22:725–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Duan J, Chen J, Ding S and Cheng W: Recent advances in rolling circle amplification-based biosensing strategies-A review. Anal Chim Acta. 1148:2381872021. View Article : Google Scholar : PubMed/NCBI | |
Compton J: Nucleic acid sequence-based amplification. Nature. 350:91–92. 1991. View Article : Google Scholar : PubMed/NCBI | |
Glökler J, Lim TS, Ida J and Frohme M: Isothermal amplifications-a comprehensive review on current methods. Crit Rev Biochem Mol Biol. 56:543–586. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kia V, Tafti A, Paryan M and Mohammadi-Yeganeh S: Evaluation of real-time NASBA assay for the detection of SARS-CoV-2 compared with real-time PCR. Ir J Med Sci. 6:1–7. 2022. | |
Yrad FM, Castañares JM and Alocilja EC: Visual detection of Dengue-1 RNA using gold nanoparticle-based lateral flow biosensor. Diagnostics (Basel). 9:742019. View Article : Google Scholar : PubMed/NCBI | |
Mohammadi-Yeganeh S, Paryan M, Mirab Samiee S, Kia V and Rezvan H: Molecular beacon probes-base multiplex NASBA Real-time for detection of HIV-1 and HCV. Iran J Microbiol. 4:47–54. 2012.PubMed/NCBI | |
Gao YP, Huang KJ, Wang FT, Hou YY, Xu J and Li G: Recent advances in biological detection with rolling circle amplification: Design strategy, biosensing mechanism, and practical applications. Analyst. 147:3396–3414. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wöhrle J, Krämer SD, Meyer PA, Rath C, Hügle M, Urban GA and Roth G: Digital DNA microarray generation on glass substrates. Sci Rep. 10:57702020. View Article : Google Scholar : PubMed/NCBI | |
Xie C, Hu X, Liu Y and Shu C: Performance comparison of GeneXpert MTB/RIF, gene chip technology, and modified roche culture method in detecting mycobacterium tuberculosis and drug susceptibility in sputum. Contrast Media Mol Imaging. 2022:29954642022. View Article : Google Scholar : PubMed/NCBI | |
Nasrabadi Z, Ranjbar R, Poorali F and Sarshar M: Detection of eight foodborne bacterial pathogens by oligonucleotide array hybridization. Electron Physician. 9:4405–4411. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ma X, Li Y, Liang Y, Liu Y, Yu L, Li C, Liu Q and Chen L: Development of a DNA microarray assay for rapid detection of fifteen bacterial pathogens in pneumonia. BMC Microbiol. 20:1772020. View Article : Google Scholar : PubMed/NCBI | |
Feng G, Han W, Shi J, Xia R and Xu J: Analysis of the application of a gene chip method for detecting Mycobacterium tuberculosis drug resistance in clinical specimens: A retrospective study. Sci Rep. 11:179512021. View Article : Google Scholar : PubMed/NCBI | |
Zhu L, Liu Q, Martinez L, Shi J, Chen C, Shao Y, Zhong C, Song H, Li G, Ding X, et al: Diagnostic value of GeneChip for detection of resistant Mycobacterium tuberculosis in patients with differing treatment histories. J Clin Microbiol. 53:131–135. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sun B and Sun Y: Diagnostic performance of DNA microarray for detecting rifampicin and isoniazid resistance in Mycobacterium tuberculosis. J Thorac Dis. 13:4448–4454. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chandran S, Arjun R, Sasidharan A, Niyas VK and Chandran S: Clinical performance of FilmArray Meningitis/Encephalitis multiplex polymerase chain reaction panel in central nervous system infections. Indian J Crit Care Med. 26:67–70. 2022. View Article : Google Scholar : PubMed/NCBI | |
Senescau A, Kempowsky T, Bernard E, Messier S, Besse P, Fabre R and François JM: Innovative DendrisChips® Technology for a syndromic approach of in vitro diagnosis: Application to the respiratory infectious diseases. Diagnostics (Basel). 8:772018. View Article : Google Scholar : PubMed/NCBI | |
Dien Bard J and McElvania E: Panels and syndromic testing in clinical microbiology. Clin Lab Med. 40:393–420. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gonsalves S, Mahony J, Rao A, Dunbar S and Juretschko S: Multiplexed detection and identification of respiratory pathogens using the NxTAG® respiratory pathogen panel. Methods. 158:61–68. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ma ZY, Deng H, Hua LD, Lei W, Zhang CB, Dai QQ, Tao WJ and Zhang L: Suspension microarray-based comparison of oropharyngeal swab and bronchoalveolar lavage fluid for pathogen identification in young children hospitalized with respiratory tract infection. BMC Infect Dis. 20:1682020. View Article : Google Scholar : PubMed/NCBI | |
Dunbar SA: Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta. 363:71–82. 2006. View Article : Google Scholar : PubMed/NCBI | |
Reslova N, Michna V, Kasny M, Mikel P and Kralik P: xMAP technology: Applications in detection of pathogens. Front Microbiol. 8:552017. View Article : Google Scholar : PubMed/NCBI | |
Dai Z, Li T, Li J, Han Z, Pan Y, Tang S, Diao X and Luo M: High-throughput long paired-end sequencing of a Fosmid library by PacBio. Plant Methods. 15:1422019. View Article : Google Scholar : PubMed/NCBI | |
Duan H, Li X, Mei A, Li P, Liu Y, Li X, Li W, Wang C and Xie S: The diagnostic value of metagenomic next-generation sequencing in infectious diseases. BMC Infect Dis. 21:622021. View Article : Google Scholar : PubMed/NCBI | |
Grumaz S, Stevens P, Grumaz C, Decker SO, Weigand MA, Hofer S, Brenner T, von Haeseler A and Sohn K: Next-generation sequencing diagnostics of bacteremia in septic patients. Genome Med. 8:732016. View Article : Google Scholar : PubMed/NCBI | |
Lyimo BM, Popkin-Hall ZR, Giesbrecht DJ, Mandara CI, Madebe RA, Bakari C, Pereus D, Seth MD, Ngamba RM, Mbwambo RB, et al: Potential opportunities and challenges of deploying next generation sequencing and CRISPR-Cas systems to support diagnostics and surveillance towards malaria control and elimination in africa. Front Cell Infect Microbiol. 12:7578442022. View Article : Google Scholar : PubMed/NCBI | |
Zhang XX, Guo LY, Liu LL, Shen A, Feng WY, Huang WH, Hu HL, Hu B, Guo X, Chen TM, et al: The diagnostic value of metagenomic next-generation sequencing for identifying Streptococcus pneumoniae in paediatric bacterial meningitis. BMC Infect Dis. 19:4952019. View Article : Google Scholar : PubMed/NCBI | |
Huang J, Jiang E, Yang D, Wei J, Zhao M, Feng J and Cao J: Metagenomic Next-generation sequencing versus traditional pathogen detection in the diagnosis of peripheral pulmonary infectious lesions. Infect Drug Resist. 13:567–576. 2020. View Article : Google Scholar : PubMed/NCBI | |
Dong Y, Gao Y, Chai Y and Shou S: Use of quantitative metagenomics next-generation sequencing to confirm fever of unknown origin and infectious disease. Front Microbio. 13:9310582022. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Liu W, Ru M, Lin J, Yu G, Ye J, Zhu ZA, Liu Y, Chen J, Lai G and Wen W: The application of metagenomic next-generation sequencing in diagnosing Chlamydia psittaci pneumonia: A report of five cases. BMC Pulm Med. 20:652020. View Article : Google Scholar : PubMed/NCBI | |
Jerome H, Taylor C, Sreenu VB, Klymenko T, Filipe ADS, Jackson C, Davis C, Ashraf S, Wilson-Davies E, Jesudason N, et al: Metagenomic next-generation sequencing aids the diagnosis of viral infections in febrile returning travellers. J Infect. 79:383–388. 2019. View Article : Google Scholar : PubMed/NCBI | |
Simner PJ, Miller S and Carroll KC: Understanding the promises and hurdles of metagenomic next-generation sequencing as a diagnostic tool for infectious diseases. Clin Infect Dis. 66:778–788. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Jiang W, Shi Y, Ye H and Lin J: Applications of sequencing technology in clinical microbial infection. J Cell Mol Med. 23:7143–7150. 2019. View Article : Google Scholar : PubMed/NCBI | |
Gu W, Miller S and Chiu CY: Clinical metagenomic next-generation sequencing for pathogen detection. Annu Rev Patho. 14:319–338. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Chen F, Zeng Z, Xu M, Sun F, Yang L, Bi X, Lin Y, Gao Y, Hao H, et al: Advances in metagenomics and its application in environmental microorganisms. Front Microbiol. 12:7663642021. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Liu Y, Liu H, Pan W, Ren J, Zheng X, Tan Y, Chen Z, Deng Y, He N, et al: Recent advances and application of whole genome amplification in molecular diagnosis and medicine. Med Comm. 3:e1162022. | |
Athanasopoulou K, Boti MA, Adamopoulos PG, Skourou PC and Scorilas A: Third-Generation sequencing: The spearhead towards the radical transformation of modern genomics. Life (Basel). 12:302021.PubMed/NCBI | |
Keller MW, Rambo-Martin BL, Wilson MM, Ridenour CA, Shepard SS, Stark TJ, Neuhaus EB, Dugan VG, Wentworth DE and Barnes JR: Author Correction: Direct RNA Sequencing of the coding complete influenza A virus genome. Sci Rep. 8:157462018. View Article : Google Scholar : PubMed/NCBI | |
Wang M, Fu A, Hu B, Tong Y, Liu R, Liu Z, Gu J, Xiang B, Liu J, Jiang W, et al: Nanopore targeted sequencing for the accurate and comprehensive detection of SARS-CoV-2 and other respiratory viruses. Small. 16:e20021692020. View Article : Google Scholar : PubMed/NCBI | |
Mongan AE, Tuda JSB and Runtuwene LR: Portable sequencer in the fight against infectious disease. J Hum Genet. 65:35–40. 2020. View Article : Google Scholar : PubMed/NCBI | |
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, Bruce H, Spitters C, Ericson K, Wilkerson S, Tural A, et al: First case of 2019 novel coronavirus in the united states. N Engl J Med. 382:929–936. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wongsurawat T, Jenjaroenpun P, Taylor MK, Lee J, Tolardo AL, Parvathareddy J, Kandel S, Wadley TD, Kaewnapan B, Athipanyasilp N, et al: Rapid Sequencing of Multiple RNA Viruses in Their Native Form. Front Microbiol. 10:2602019. View Article : Google Scholar : PubMed/NCBI | |
Fang Y, Changavi A, Yang M, Sun L, Zhang A, Sun D, Sun Z, Zhang B and Xu MQ: Nanopore Whole Transcriptome Analysis and Pathogen Surveillance by a Novel Solid-Phase Catalysis Approach. Adv Sci (Weinh). 9:e21033732022. View Article : Google Scholar : PubMed/NCBI | |
Akaçin İ, Ersoy Ş, Doluca O and Güngörmüşler M: Comparing the significance of the utilization of next generation and third generation sequencing technologies in microbial metagenomics. Microbiol Res. 264:1271542022. View Article : Google Scholar : PubMed/NCBI | |
Gradisteanu Pircalabioru G, Iliescu FS, Mihaescu G, Cucu AI, Ionescu ON, Popescu M, Simion M, Burlibasa L, Tica M, Chifiriuc MC and Iliescu C: Advances in the rapid diagnostic of viral respiratory tract infections. Front Cell Infect Microbiol. 12:8072532022. View Article : Google Scholar : PubMed/NCBI | |
Sheng L, Lu Y, Deng S, Liao X, Zhang K, Ding T, Gao H, Liu D, Deng R and Li J: A transcription aptasensor: Amplified, label-free and culture-independent detection of foodborne pathogens via light-up RNA aptamers. Chem Commun (Camb). 55:10096–10099. 2019. View Article : Google Scholar : PubMed/NCBI | |
Andryukov BG, Lyapun IN, Matosova EV and Somova LM: Biosensor technologies in medicine: From detection of biochemical markers to research into molecular targets (review). Sovrem Tekhnologii Med. 12:70–83. 2021. View Article : Google Scholar : PubMed/NCBI | |
Robertson KL and Vora GJ: Locked nucleic acid flow cytometry-fluorescence in situ hybridization (LNA flow-FISH): A method for bacterial small RNA detection. J Vis Exp. 10:e36552012.PubMed/NCBI | |
Freen-van Heeren JJ: Flow-FISH as a tool for studying bacteria, fungi and viruses. BioTech (Basel). 10:212021. View Article : Google Scholar : PubMed/NCBI | |
Israr MZ, Bernieh D, Salzano A, Cassambai S, Yazaki Y and Suzuki T: Matrix-assisted laser desorption ionisation (MALDI) mass spectrometry (MS): basics and clinical applications. Clin Chem Lab Med. 58:883–896. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kailasa SK, Koduru JR, Park TJ, Wu HF and Lin YC: Progress of electrospray ionization and rapid evaporative ionization mass spectrometric techniques for the broad-range identification of microorganisms. Analyst. 145:70722020. View Article : Google Scholar : PubMed/NCBI |