
CRISPR‑based diagnostic approaches: Implications for rapid management of future pandemics (Review)
- Authors:
- Mohd Shariq
- Mohammad Firoz Khan
- Reshmi Raj
- Nuzhat Ahsan
- Rinky Singh
- Pramod Kumar
-
Affiliations: Biophotonics Group, Quant Lase Imaging Laboratory, Quant Lase Lab LLC, Abu Dhabi, United Arab Emirates - Published online on: May 3, 2023 https://doi.org/10.3892/mmr.2023.13005
- Article Number: 118
-
Copyright: © Shariq et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Jayamohan H, Lambert CJ, Sant HJ, Jafek A, Patel D, Feng H, Beeman M, Mahmood T, Nze U and Gale BK: SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal Bioanal Chem. 413:49–71. 2021. View Article : Google Scholar : PubMed/NCBI | |
Freije CA and Sabeti PC: Detect and destroy: CRISPR-based technologies for the response against viruses. Cell Host Microbe. 29:689–703. 2021. View Article : Google Scholar : PubMed/NCBI | |
da Costa VG, Moreli ML and Saivish MV: The emergence of SARS, MERS and novel SARS-2 coronaviruses in the 21st century. Arch Virol. 165:1517–1526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Johnson CK, Hitchens PL, Pandit PS, Rushmore J, Evans TS, Young CCW and Doyle MM: Global shifts in mammalian population trends reveal key predictors of virus spillover risk. Proc Biol Sci. 287:201927362020.PubMed/NCBI | |
Morse SS, Mazet JA, Woolhouse M, Parrish CR, Carroll D, Karesh WB, Zambrana-Torrelio C, Lipkin WI and Daszak P: Prediction and prevention of the next pandemic zoonosis. Lancet. 380:1956–1965. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nieto-Rabiela F, Wiratsudakul A, Suzan G and Rico-Chavez O: Viral networks and detection of potential zoonotic viruses in bats and rodents: A worldwide analysis. Zoonoses Public Health. 66:655–666. 2019. View Article : Google Scholar : PubMed/NCBI | |
Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL and Daszak P: Host and viral traits predict zoonotic spillover from mammals. Nature. 546:646–650. 2017. View Article : Google Scholar : PubMed/NCBI | |
Bouvier NM and Palese P: The biology of influenza viruses. Vaccine. 26 (Suppl 4):D49–D53. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tong S, Zhu X, Li Y, Shi M, Zhang J, Bourgeois M, Yang H, Chen X, Recuenco S, Gomez J, et al: New world bats harbor diverse influenza A viruses. PLoS Pathog. 9:e10036572013. View Article : Google Scholar : PubMed/NCBI | |
Elena SF, Bedhomme S, Carrasco P, Cuevas JM, de la Iglesia F, Lafforgue G, Lalić J, Pròsper A, Tromas N and Zwart MP: The evolutionary genetics of emerging plant RNA viruses. Mol Plant Microbe Interact. 24:287–293. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sanjuan R, Nebot MR, Chirico N, Mansky LM and Belshaw R: Viral mutation rates. J Virol. 84:9733–9748. 2010. View Article : Google Scholar : PubMed/NCBI | |
De Clercq E and Li G: Approved antiviral drugs over the past 50 years. Clin Microbiol Rev. 29:695–747. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gordon DE, Hiatt J, Bouhaddou M, Rezelj VV, Ulferts S, Braberg H, Jureka AS, Obernier K, Guo JZ, Batra J, et al: Comparative host-coronavirus protein interaction networks reveal pan-viral disease mechanisms. Science. 370:eabe94032020. View Article : Google Scholar : PubMed/NCBI | |
Gordon DE, Jang GM, Bouhaddou M, Xu J, Obernier K, O'Meara MJ, Guo JZ, Swaney DL, Tummino TA, Hüttenhain R, et al: A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature. 583:459–468. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Liu Y, Gupta S, Paramo MI, Hou Y, Mao C, Luo Y, Judd J, Wierbowski S, Bertolotti M, et al: A comprehensive SARS-CoV-2-human protein-protein interactome reveals COVID-19 pathobiology and potential host therapeutic targets. Nat Biotechnol. 41:128–139. 2023. View Article : Google Scholar : PubMed/NCBI | |
Bojkova D, Klann K, Koch B, Widera M, Krause D, Ciesek S, Cinatl J and Münch C: Proteomics of SARS-CoV-2-infected host cells reveals therapy targets. Nature. 583:469–472. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kole R, Krainer AR and Altman S: RNA therapeutics: Beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov. 11:125–140. 2012. View Article : Google Scholar : PubMed/NCBI | |
Warren TK, Warfield KL, Wells J, Swenson DL, Donner KS, Van Tongeren SA, Garza NL, Dong L, Mourich DV, Crumley S, et al: Advanced antisense therapies for postexposure protection against lethal filovirus infections. Nat Med. 16:991–994. 2010. View Article : Google Scholar : PubMed/NCBI | |
Xu Y and Li Z: CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J. 18:2401–2415. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kostyusheva A, Brezgin S, Babin Y, Vasilyeva I, Glebe D, Kostyushev D and Chulanov V: CRISPR-Cas systems for diagnosing infectious diseases. Methods. 203:431–446. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ebrahimi S, Khanbabaei H, Abbasi S, Fani M, Soltani S, Zandi M and Najafimemar Z: CRISPR-Cas System: A promising diagnostic tool for Covid-19. Avicenna J Med Biotechnol. 14:3–9. 2022.PubMed/NCBI | |
Yang S and Rothman RE: PCR-based diagnostics for infectious diseases: Uses, limitations, and future applications in acute-care settings. Lancet Infect Dis. 4:337–348. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mackay IM, Arden KE and Nitsche A: Real-time PCR in virology. Nucleic Acids Res. 30:1292–1305. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zanoli LM and Spoto G: Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. Biosensors (Basel). 3:18–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cassedy A, Parle-McDermott A and O'Kennedy R: Virus Detection: A review of the current and emerging molecular and immunological methods. Front Mol Biosci. 8:6375592021. View Article : Google Scholar : PubMed/NCBI | |
Notomi T, Okayama H, Masubuchi H, Yonekawa T, Watanabe K, Amino N and Hase T: Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:E632000. View Article : Google Scholar : PubMed/NCBI | |
Compton J: Nucleic acid sequence-based amplification. Nature. 350:91–92. 1991. View Article : Google Scholar : PubMed/NCBI | |
Piepenburg O, Williams CH, Stemple DL and Armes NA: DNA detection using recombination proteins. PLoS Biol. 4:e2042006. View Article : Google Scholar : PubMed/NCBI | |
Kurosaki Y, Martins DBG, Kimura M, Catena ADS, Borba MACSM, Mattos SDS, Abe H, Yoshikawa R, de Lima Filho JL and Yasuda J: Development and evaluation of a rapid molecular diagnostic test for Zika virus infection by reverse transcription loop-mediated isothermal amplification. Sci Rep. 7:135032017. View Article : Google Scholar : PubMed/NCBI | |
Patel P, Abd El Wahed A, Faye O, Prüger P, Kaiser M, Thaloengsok S, Ubol S, Sakuntabhai A, Leparc-Goffart I, Hufert FT, et al: A field-deployable reverse transcription recombinase polymerase amplification assay for rapid detection of the chikungunya virus. PLoS Negl Trop Dis. 10:e00049532016. View Article : Google Scholar : PubMed/NCBI | |
Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, Singh J, Miao X, Streithorst JA, Granados A, Sotomayor-Gonzalez A, et al: CRISPR-Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 38:870–874. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gootenberg JS, Abudayyeh OO, Lee JW, Essletzbichler P, Dy AJ, Joung J, Verdine V, Donghia N, Daringer NM, Freije CA, et al: Nucleic acid detection with CRISPR-Cas13a/C2c2. Science. 356:438–442. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liang Y, Lin H, Zou L, Zhao J, Li B, Wang H, Lu J, Sun J, Yang X, Deng X and Tang S: CRISPR-Cas12a-based detection for the major SARS-CoV-2 variants of concern. Microbiol Spectr. 9:e01017212021. View Article : Google Scholar : PubMed/NCBI | |
Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO and Zhang F: SHERLOCK: Nucleic acid detection with CRISPR nucleases. Nat Protoc. 14:2986–3012. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kaminski MM, Abudayyeh OO, Gootenberg JS, Zhang F and Collins JJ: CRISPR-based diagnostics. Nat Biomed Eng. 5:643–656. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen JS, Ma E, Harrington LB, Da Costa M, Tian X, Palefsky JM and Doudna JA: CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 360:436–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
East-Seletsky A, O'Connell MR, Knight SC, Burstein D, Cate JH, Tjian R and Doudna JA: Two distinct RNase activities of CRISPR-C2c2 enable guide-RNA processing and RNA detection. Nature. 538:270–273. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ and Zhang F: Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 360:439–444. 2018. View Article : Google Scholar : PubMed/NCBI | |
Marraffini LA and Sontheimer EJ: CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science. 322:1843–1845. 2008. View Article : Google Scholar : PubMed/NCBI | |
Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA and Horvath P: CRISPR provides acquired resistance against viruses in prokaryotes. Science. 315:1709–1712. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pickar-Oliver A and Gersbach CA: The next generation of CRISPR-Cas technologies and applications. Nat Rev Mol Cell Biol. 20:490–507. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA and Charpentier E: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337:816–821. 2012. View Article : Google Scholar : PubMed/NCBI | |
Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, et al: C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science. 353:aaf55732016. View Article : Google Scholar : PubMed/NCBI | |
van der Oost J, Westra ER, Jackson RN and Wiedenheft B: Unravelling the structural and mechanistic basis of CRISPR-Cas systems. Nat Rev Microbiol. 12:479–492. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wright AV, Nunez JK and Doudna JA: Biology and applications of CRISPR systems: Harnessing Nature's toolbox for genome engineering. Cell. 164:29–44. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shmakov S, Abudayyeh OO, Makarova KS, Wolf YI, Gootenberg JS, Semenova E, Minakhin L, Joung J, Konermann S, Severinov K, et al: Discovery and functional characterization of diverse class 2 CRISPR-cas systems. Mol Cell. 60:385–397. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fonfara I, Richter H, Bratovic M, Le Rhun A and Charpentier E: The CRISPR-associated DNA-cleaving enzyme Cpf1 also processes precursor CRISPR RNA. Nature. 532:517–521. 2016. View Article : Google Scholar : PubMed/NCBI | |
East-Seletsky A, O'Connell MR, Burstein D, Knott GJ and Doudna JA: RNA targeting by functionally orthogonal type VI-A CRISPR-cas enzymes. Mol Cell. 66:373–383. e3732017. View Article : Google Scholar : PubMed/NCBI | |
Li H: Structural principles of CRISPR RNA processing. Structure. 23:13–20. 2015. View Article : Google Scholar : PubMed/NCBI | |
Charpentier E, Richter H, van der Oost J and White MF: Biogenesis pathways of RNA guides in archaeal and bacterial CRISPR-Cas adaptive immunity. FEMS Microbiol Rev. 39:428–441. 2015. View Article : Google Scholar : PubMed/NCBI | |
Hochstrasser ML and Doudna JA: Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci. 40:58–66. 2015. View Article : Google Scholar : PubMed/NCBI | |
Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J and Charpentier E: CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471:602–607. 2011. View Article : Google Scholar : PubMed/NCBI | |
Fonfara I, Le Rhun A, Chylinski K, Makarova KS, Lécrivain AL, Bzdrenga J, Koonin EV and Charpentier E: Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems. Nucleic Acids Res. 42:2577–2590. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang W: Nucleases: Diversity of structure, function and mechanism. Q Rev Biophys. 44:1–93. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cordray MS and Richards-Kortum RR: Emerging nucleic acid-based tests for point-of-care detection of malaria. Am J Trop Med Hyg. 87:223–230. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rohrman BA, Leautaud V, Molyneux E and Richards-Kortum RR: A lateral flow assay for quantitative detection of amplified HIV-1 RNA. PLoS One. 7:e456112012. View Article : Google Scholar : PubMed/NCBI | |
Yan L, Zhou J, Zheng Y, Gamson AS, Roembke BT, Nakayama S and Sintim HO: Isothermal amplified detection of DNA and RNA. Mol Biosyst. 10:970–1003. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ortiz-Cartagena C, Fernandez-Garcia L, Blasco L, Pacios O, Bleriot I, López M, Cantón R and Tomás M: Reverse Transcription-loop-mediated isothermal Amplification-CRISPR-Cas13a technology as a promising diagnostic tool for SARS-CoV-2. Microbiol Spectr. 10:e02398222022. View Article : Google Scholar : PubMed/NCBI | |
Li SY, Cheng QX, Wang JM, Li XY, Zhang ZL, Gao S, Cao RB, Zhao GP and Wang J: CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4:202018. View Article : Google Scholar : PubMed/NCBI | |
Mustafa MI and Makhawi AM: SHERLOCK and DETECTR: CRISPR-Cas systems as potential rapid diagnostic tools for emerging infectious diseases. J Clin Microbiol. 59:e00745–20. 2021. View Article : Google Scholar : PubMed/NCBI | |
Harrington LB, Burstein D, Chen JS, Paez-Espino D, Ma E, Witte IP, Cofsky JC, Kyrpides NC, Banfield JF and Doudna JA: Programmed DNA destruction by miniature CRISPR-Cas14 enzymes. Science. 362:839–842. 2018. View Article : Google Scholar : PubMed/NCBI | |
Hillary VE and Ceasar SA: A review on the mechanism and applications of CRISPR/Cas9/Cas12/Cas13/Cas14 proteins utilized for genome engineering. Mol Biotechnol. 65:311–325. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li L, Li S, Wu N, Wu J, Wang G, Zhao G and Wang J: HOLMESv2: A CRISPR-Cas12b-assisted platform for nucleic acid detection and DNA methylation quantitation. ACS Synth Biol. 8:2228–2237. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li SY, Cheng QX, Liu JK, Nie XQ, Zhao GP and Wang J: CRISPR-Cas12a has both cis- and trans-cleavage activities on single-stranded DNA. Cell Res. 28:491–493. 2018. View Article : Google Scholar : PubMed/NCBI | |
Safari F, Afarid M, Rastegari B, Borhani-Haghighi A, Barekati-Mowahed M and Behzad-Behbahani A: CRISPR systems: Novel approaches for detection and combating COVID-19. Virus Res. 294:1982822021. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Guo L, Cui T, Wang XG, Xu K, Gao Q, Zhou Q and Li W: CDetection: CRISPR-Cas12b-based DNA detection with sub-attomolar sensitivity and single-base specificity. Genome Biol. 20:1322019. View Article : Google Scholar : PubMed/NCBI | |
Arizti-Sanz J, Bradley A, Zhang YB, Boehm CK, Freije CA, Grunberg ME, Kosoko-Thoroddsen TF, Welch NL, Pillai PP, Mantena S, et al: Simplified Cas13-based assays for the fast identification of SARS-CoV-2 and its variants. Nat Biomed Eng. 6:932–943. 2022. View Article : Google Scholar : PubMed/NCBI | |
Joung J, Ladha A, Saito M, Kim NG, Woolley AE, Segel M, Barretto RPJ, Ranu A, Macrae RK, Faure G, et al: Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. N Engl J Med. 383:1492–1494. 2020. View Article : Google Scholar : PubMed/NCBI | |
Soh JH, Balleza E, Abdul Rahim MN, Chan HM, Mohd Ali S, Chuah JKC, Edris S, Atef A, Bahieldin A, Ying JY and Sabir JSM: CRISPR-based systems for sensitive and rapid on-site COVID-19 diagnostics. Trends Biotechnol. 40:1346–1360. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ackerman CM, Myhrvold C, Thakku SG, Freije CA, Metsky HC, Yang DK, Ye SH, Boehm CK, Kosoko-Thoroddsen TF, Kehe J, et al: Massively multiplexed nucleic acid detection with Cas13. Nature. 582:277–282. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yu TC: Beginnings and development of nursing education in Republic of China. Hu Li Za Zhi. 24:39–42. 1977.(In Chinese). PubMed/NCBI | |
Wang M, Zhang R and Li J: CRISPR/cas systems redefine nucleic acid detection: Principles and methods. Biosens Bioelectron. 165:1124302020. View Article : Google Scholar : PubMed/NCBI | |
Emmadi R, Boonyaratanakornkit JB, Selvarangan R, Shyamala V, Zimmer BL, Williams L, Bryant B, Schutzbank T, Schoonmaker MM, Amos Wilson JA, et al: Molecular methods and platforms for infectious diseases testing a review of FDA-approved and cleared assays. J Mol Diagn. 13:583–604. 2011. View Article : Google Scholar : PubMed/NCBI | |
Song L, Shan D, Zhao M, Pink BA, Minnehan KA, York L, Gardel M, Sullivan S, Phillips AF, Hayman RB, et al: Direct detection of bacterial genomic DNA at sub-femtomolar concentrations using single molecule arrays. Anal Chem. 85:1932–1939. 2013. View Article : Google Scholar : PubMed/NCBI | |
Barletta JM, Edelman DC and Constantine NT: Lowering the detection limits of HIV-1 viral load using real-time immuno-PCR for HIV-1 p24 antigen. Am J Clin Pathol. 122:20–27. 2004. View Article : Google Scholar : PubMed/NCBI | |
Faye O, Faye O, Dupressoir A, Weidmann M, Ndiaye M and Alpha Sall A: One-step RT-PCR for detection of Zika virus. J Clin Virol. 43:96–101. 2008. View Article : Google Scholar : PubMed/NCBI | |
Faye O, Faye O, Diallo D, Diallo M, Weidmann M and Sall AA: Quantitative real-time PCR detection of Zika virus and evaluation with field-caught mosquitoes. Virol J. 10:3112013. View Article : Google Scholar : PubMed/NCBI | |
Waggoner JJ, Abeynayake J, Sahoo MK, Gresh L, Tellez Y, Gonzalez K, Ballesteros G, Guo FP, Balmaseda A, Karunaratne K, et al: Comparison of the FDA-approved CDC DENV-1-4 real-time reverse transcription-PCR with a laboratory-developed assay for dengue virus detection and serotyping. J Clin Microbiol. 51:3418–3420. 2013. View Article : Google Scholar : PubMed/NCBI | |
Myhrvold C, Freije CA, Gootenberg JS, Abudayyeh OO, Metsky HC, Durbin AF, Kellner MJ, Tan AL, Paul LM, Parham LA, et al: Field-deployable viral diagnostics using CRISPR-Cas13. Science. 360:444–448. 2018. View Article : Google Scholar : PubMed/NCBI | |
Javalkote VS, Kancharla N, Bhadra B, Shukla M, Soni B, Sapre A, Goodin M, Bandyopadhyay A and Dasgupta S: CRISPR-based assays for rapid detection of SARS-CoV-2. Methods. 203:594–603. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang Z, Fang J, Zhou M, Gong Z and Xiang T: CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms. Front Microbiol. 13:10113992022. View Article : Google Scholar : PubMed/NCBI | |
Shen F, Sun B, Kreutz JE, Davydova EK, Du W, Reddy PL, Joseph LJ and Ismagilov RF: Multiplexed quantification of nucleic acids with large dynamic range using multivolume digital RT-PCR on a rotational SlipChip tested with HIV and hepatitis C viral load. J Am Chem Soc. 133:17705–17712. 2011. View Article : Google Scholar : PubMed/NCBI | |
Freije CA, Myhrvold C, Boehm CK, Lin AE, Welch NL, Carter A, Metsky HC, Luo CY, Abudayyeh OO, Gootenberg JS, et al: Programmable inhibition and detection of RNA viruses using Cas13. Mol Cell. 76:826–837. e8112019. View Article : Google Scholar : PubMed/NCBI | |
Tang Y and Fu Y: Class 2 CRISPR/Cas: An expanding biotechnology toolbox for and beyond genome editing. Cell Biosci. 8:592018. View Article : Google Scholar : PubMed/NCBI | |
Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker IM, Makarova KS, Essletzbichler P, Volz SE, Joung J, van der Oost J, Regev A, et al: Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 163:759–771. 2015. View Article : Google Scholar : PubMed/NCBI | |
Swarts DC, van der Oost J and Jinek M: Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol Cell. 66:221–233.e4. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dong D, Ren K, Qiu X, Zheng J, Guo M, Guan X, Liu H, Li N, Zhang B, Yang D, et al: The crystal structure of Cpf1 in complex with CRISPR RNA. Nature. 532:522–526. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gao P, Yang H, Rajashankar KR, Huang Z and Patel DJ: Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition. Cell Res. 26:901–913. 2016. View Article : Google Scholar : PubMed/NCBI | |
Stella S, Alcon P and Montoya G: Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage. Nature. 546:559–563. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yamano T, Nishimasu H, Zetsche B, Hirano H, Slaymaker IM, Li Y, Fedorova I, Nakane T, Makarova KS, Koonin EV, et al: Crystal structure of Cpf1 in complex with Guide RNA and target DNA. Cell. 165:949–962. 2016. View Article : Google Scholar : PubMed/NCBI | |
Drame M, Tabue Teguo M, Proye E, Hequet F, Hentzien M, Kanagaratnam L and Godaert L: Should RT-PCR be considered a gold standard in the diagnosis of COVID-19? J Med Virol. 92:2312–2313. 2020. View Article : Google Scholar : PubMed/NCBI | |
Patchsung M, Jantarug K, Pattama A, Aphicho K, Suraritdechachai S, Meesawat P, Sappakhaw K, Leelahakorn N, Ruenkam T, Wongsatit T, et al: Clinical validation of a Cas13-based assay for the detection of SARS-CoV-2 RNA. Nat Biomed Eng. 4:1140–1149. 2020. View Article : Google Scholar : PubMed/NCBI | |
Teng F, Cui T, Feng G, Guo L, Xu K, Gao Q, Li T, Li J, Zhou Q and Li W: Repurposing CRISPR-Cas12b for mammalian genome engineering. Cell Discov. 4:632018. View Article : Google Scholar : PubMed/NCBI | |
Liu TY, Knott GJ, Smock DCJ, Desmarais JJ, Son S, Bhuiya A, Jakhanwal S, Prywes N, Agrawal S, Díaz de León Derby M, et al: Accelerated RNA detection using tandem CRISPR nucleases. Nat Chem Biol. 17:982–988. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekaran SS, Agrawal S, Fanton A, Jangid AR, Charrez B, Escajeda AM, Son S, Mcintosh R, Tran H, Bhuiya A, et al: Rapid detection of SARS-CoV-2 RNA in saliva via Cas13. Nat Biomed Eng. 6:944–956. 2022. View Article : Google Scholar : PubMed/NCBI | |
Arizti-Sanz J, Freije CA, Stanton AC, Petros BA, Boehm CK, Siddiqui S, Shaw BM, Adams G, Kosoko-Thoroddsen TF, Kemball ME, et al: Streamlined inactivation, amplification, and Cas13-based detection of SARS-CoV-2. Nat Commun. 11:59212020. View Article : Google Scholar : PubMed/NCBI | |
Qin P, Park M, Alfson KJ, Tamhankar M, Carrion R, Patterson JL, Griffiths A, He Q, Yildiz A, Mathies R and Du K: Rapid and fully microfluidic ebola virus detection with CRISPR-Cas13a. ACS Sens. 4:1048–1054. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wu Y, Liu SX, Wang F and Zeng MS: Room temperature detection of plasma Epstein-barr virus DNA with CRISPR-Cas13. Clin Chem. 65:591–592. 2019. View Article : Google Scholar : PubMed/NCBI | |
Normandin E, Solomon IH, Zamirpour S, Lemieux J, Freije CA, Mukerji SS, Tomkins-Tinch C, Park D, Sabeti PC and Piantadosi A: Powassan Virus neuropathology and genomic diversity in patients with fatal encephalitis. Open Forum Infect Dis. 7:ofaa3922020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Xu H, Liu C, Peng L, Khan H, Cui L, Huang R, Wu C, Shen S, Wang S, et al: CRISPR-Cas13a nanomachine based simple technology for avian Influenza A (H7N9) Virus On-Site detection. J Biomed Nanotechnol. 15:790–798. 2019. View Article : Google Scholar : PubMed/NCBI | |
Curti LA, Pereyra-Bonnet F, Repizo GD, Fay JV, Salvatierra K, Blariza MJ, Ibañez-Alegre D, Rinflerch AR, Miretti M and Gimenez CA: CRISPR-based platform for carbapenemases and emerging viruses detection using Cas12a (Cpf1) effector nuclease. Emerg Microbes Infect. 9:1140–1148. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barnes KG, Lachenauer AE, Nitido A, Siddiqui S, Gross R, Beitzel B, Siddle KJ, Freije CA, Dighero-Kemp B, Mehta SB, et al: Deployable CRISPR-Cas13a diagnostic tools to detect and report Ebola and Lassa virus cases in real-time. Nat Commun. 11:41312020. View Article : Google Scholar : PubMed/NCBI | |
Broughton JP, Deng X, Yu G, Fasching CL, Singh J, Streithorst J, Granados A, Sotomayor-Gonzalez A, Zorn K, Gopez A, et al: Rapid detection of 2019 Novel coronavirus SARS-CoV-2 using a CRISPR-based DETECTR lateral flow assay. medRxiv. Mar 27–2020.doi: 10.1101/2020.03.06.20032334. PubMed/NCBI | |
Chen Y, Shi Y, Chen Y, Yang Z, Wu H, Zhou Z, Li J, Ping J, He L, Shen H, et al: Contamination-free visual detection of SARS-CoV-2 with CRISPR/Cas12a: A promising method in the point-of-care detection. Biosens Bioelectron. 169:1126422020. View Article : Google Scholar : PubMed/NCBI | |
Ali Z, Aman R, Mahas A, Rao GS, Tehseen M, Marsic T, Salunke R, Subudhi AK, Hala SM, Hamdan SM, et al: iSCAN: An RT-LAMP-coupled CRISPR-Cas12 module for rapid, sensitive detection of SARS-CoV-2. Virus Res. 288:1981292020. View Article : Google Scholar : PubMed/NCBI | |
Guo L, Sun X, Wang X, Liang C, Jiang H, Gao Q, Dai M, Qu B, Fang S, Mao Y, et al: SARS-CoV-2 detection with CRISPR diagnostics. Cell Discov. 6:342020. View Article : Google Scholar : PubMed/NCBI | |
Fozouni P, Son S, Diaz de Leon Derby M, Knott GJ, Gray CN, D'Ambrosio MV, Zhao C, Switz NA, Kumar GR, Stephens SI, et al: Amplification-free detection of SARS-CoV-2 with CRISPR-Cas13a and mobile phone microscopy. Cell. 184:323–333.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hale CR, Zhao P, Olson S, Duff MO, Graveley BR, Wells L, Terns RM and Terns MP: RNA-guided RNA cleavage by a CRISPR RNA-Cas protein complex. Cell. 139:945–956. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Zhong M, Liu Y, Ma P, Dang L, Meng Q, Wan W, Ma X, Liu J, Yang G, et al: Rapid and sensitive detection of COVID-19 using CRISPR/Cas12a-based detection with naked eye readout, CRISPR/Cas12a-NER. Sci Bull (Beijing). 65:1436–1439. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu S, Li F, Chen Q, Wu J, Duan J, Lei X, Zhang Y, Zhao D, Bu Z and Yin H: Rapid detection of African swine fever virus using Cas12a-based portable paper diagnostics. Cell Discov. 6:182020. View Article : Google Scholar : PubMed/NCBI | |
Poole CB, Li Z, Alhassan A, Guelig D, Diesburg S, Tanner NA, Zhang Y, Evans TC Jr, LaBarre P, Wanji S, et al: Colorimetric tests for diagnosis of filarial infection and vector surveillance using non-instrumented nucleic acid loop-mediated isothermal amplification (NINA-LAMP). PLoS One. 12:e01690112017. View Article : Google Scholar : PubMed/NCBI | |
Yuan C, Tian T, Sun J, Hu M, Wang X, Xiong E, Cheng M, Bao Y, Lin W, Jiang J, et al: Universal and Naked-Eye Gene detection platform based on the clustered regularly interspaced short palindromic Repeats/Cas12a/13a system. Anal Chem. 92:4029–4037. 2020. View Article : Google Scholar : PubMed/NCBI | |
Barrangou R and Marraffini LA: CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity. Mol Cell. 54:234–244. 2014. View Article : Google Scholar : PubMed/NCBI | |
Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, et al: RNA targeting with CRISPR-Cas13. Nature. 550:280–284. 2017. View Article : Google Scholar : PubMed/NCBI | |
Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J and Zhang F: RNA editing with CRISPR-Cas13. Science. 358:1019–1027. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wessels HH, Mendez-Mancilla A, Guo X, Legut M, Daniloski Z and Sanjana NE: Massively parallel Cas13 screens reveal principles for guide RNA design. Nat Biotechnol. 38:722–727. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang S, Dong X, Li Q, Li M, Li J, Guo Y, Jin X, Zhou Y, Song H and Kou Z: CRISPR-Cas13a cleavage of dengue Virus NS3 gene efficiently inhibits viral replication. Mol Ther Nucleic Acids. 19:1460–1469. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yin L, Zhao F, Sun H, Wang Z, Huang Y, Zhu W, Xu F, Mei S, Liu X, Zhang D, et al: CRISPR-Cas13a inhibits HIV-1 infection. Mol Ther Nucleic Acids. 21:147–155. 2020. View Article : Google Scholar : PubMed/NCBI | |
Abbott TR, Dhamdhere G, Liu Y, Lin X, Goudy L, Zeng L, Chemparathy A, Chmura S, Heaton NS, Debs R, et al: Development of CRISPR as an antiviral strategy to combat SARS-CoV-2 and influenza. Cell. 181:865–876. e8122020. View Article : Google Scholar : PubMed/NCBI | |
Konermann S, Lotfy P, Brideau NJ, Oki J, Shokhirev MN and Hsu PD: Transcriptome Engineering with RNA-Targeting Type VI-D CRISPR Effectors. Cell. 173:665–676.e14. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, et al: A Novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 382:727–733. 2020. View Article : Google Scholar : PubMed/NCBI | |
Blanchard EL, Vanover D, Bawage SS, Tiwari PM, Rotolo L, Beyersdorf J, Peck HE, Bruno NC, Hincapie R, Michel F, et al: Treatment of influenza and SARS-CoV-2 infections via mRNA-encoded Cas13a in rodents. Nat Biotechnol. 39:717–726. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Liu X, Zhou J, Yang C, Wang G, Tan Y, Wu Y, Zhang S, Yi K and Kang C: The CRISPR-Cas13a Gene-editing system induces collateral cleavage of RNA in glioma cells. Adv Sci (Weinh). 6:19012992019. View Article : Google Scholar : PubMed/NCBI | |
Al-Shayeb B, Skopintsev P, Soczek KM, Stahl EC, Li Z, Groover E, Smock D, Eggers AR, Pausch P, Cress BF, et al: Diverse virus-encoded CRISPR-Cas systems include streamlined genome editors. Cell. 185:4574–4586.e16. 2022. View Article : Google Scholar : PubMed/NCBI | |
Guan J, Oromi-Bosch A, Mendoza SD, Karambelkar S, Berry JD and Bondy-Denomy J: Bacteriophage genome engineering with CRISPR-Cas13a. Nat Microbiol. 7:1956–1966. 2022. View Article : Google Scholar : PubMed/NCBI | |
Adler BA, Hessler T, Cress BF, Lahiri A, Mutalik VK, Barrangou R, Banfield J and Doudna JA: Broad-spectrum CRISPR-Cas13a enables efficient phage genome editing. Nat Microbiol. 7:1967–1979. 2022. View Article : Google Scholar : PubMed/NCBI |