1
|
Jeon YS, Jeong HY, Lee DK and Rhee YG:
Borderline glenoid bone defect in anterior shoulder instability:
Latarjet procedure versus bankart repair. Am J Sports Med.
46:2170–2176. 2018. View Article : Google Scholar : PubMed/NCBI
|
2
|
Inglis S, Schneider KH, Kanczler JM, Redl
H and Oreffo ROC: Harnessing human decellularized blood vessel
matrices and cellular construct implants to promote bone healing in
an ex vivo organotypic bone defect model. Adv Healthc Mater.
8:e18000882019. View Article : Google Scholar : PubMed/NCBI
|
3
|
Iordachescu A, Hulley P and Grover LM: A
novel method for the collection of nanoscopic vesicles from an
organotypic culture model. RSC Adv. 8:7622–7632. 2018. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gleeson JP, Plunkett NA and O'Brien FJ:
Addition of Hydroxyapatite Improves Stiffness, Interconnectivity
And Osteogenic Potential Of A Highly Porous Collagen-Based Scaffold
For Bone Tissue Regeneration. Eur Cell Mater. 20:218–230. 2010.
View Article : Google Scholar : PubMed/NCBI
|
5
|
Ghanaati S, Barbeck M, Booms P, Lorenz J,
Kirkpatrick CJ and Sader RA: Potential lack of ‘standardized’
processing techniques for production of allogeneic and xenogeneic
bone blocks for application in humans. Acta Biomater. 10:3557–3562.
2014. View Article : Google Scholar : PubMed/NCBI
|
6
|
Andrzejowski P, Masquelet A and Giannoudis
PV: Induced Membrane Technique (Masquelet) for bone defects in the
distal tibia, foot, and ankle: systematic review, case
presentations, tips, and techniques. Foot Ankle Clin. 25:537–586.
2020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Bouguennec N and Colombet P: Iterative
rupture of the patellar tendon: A case report of an original
technique for revision reconstruction using an adjustable loop and
an artificial ligament. Case Rep Orthop.
2018:61072872018.PubMed/NCBI
|
8
|
Henkel J, Woodruff MA, Epari DR, Steck R,
Glatt V, Dickinson IC, Choong PF, Schuetz MA and Hutmacher DW: Bone
regeneration based on tissue engineering conceptions-A 21st century
perspective. Bone Res. 1:216–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
9
|
Langer R and Vacanti JP: Tissue
engineering. Science. 260:920–926. 1993. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wu S, Liu X, Yeung KWK, Liu C and Yang X:
Biomimetic porous scaffolds for bone tissue engineering. Mater Sci
Eng R-Rep. 80:1–36. 2014. View Article : Google Scholar
|
11
|
Stiehler M, Lind M, Mygind T, Baatrup A,
Dolatshahi-Pirouz A, Li H, Foss M, Besenbacher F, Kassem M and
Bünger C: Morphology, proliferation, and osteogenic differentiation
of mesenchymal stem cells cultured on titanium, tantalum, and
chromium surfaces. J Biomed Mater Res A. 86:448–458. 2008.
View Article : Google Scholar : PubMed/NCBI
|
12
|
Levine BR, Sporer S, Poggie RA, Della
Valle CJ and Jacobs JJ: Experimental and clinical performance of
porous tantalum in orthopedic surgery. Biomaterials. 27:4671–4681.
2006. View Article : Google Scholar : PubMed/NCBI
|
13
|
Findlay DM, Welldon K, Atkins GJ, Howie
DW, Zannettino AC and Bobyn D: The proliferation and phenotypic
expression of human osteoblasts on tantalum metal. Biomaterials.
25:2215–2227. 2004. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhao D, Zhang Y, Wang W, Liu Y, Li Z, Wang
B and Yu X: Tantalum rod implantation and vascularized iliac
grafting for osteonecrosis of the femoral head. Orthopedics.
36:789–795. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Zhao D, Cui D, Wang B, Tian F, Guo L, Yang
L, Liu B and Yu X: Treatment of early stage osteonecrosis of the
femoral head with autologous implantation of bone marrow-derived
and cultured mesenchymal stem cells. Bone. 50:325–330. 2012.
View Article : Google Scholar : PubMed/NCBI
|
16
|
Herberts CA, Kwa MS and Hermsen HP: Risk
factors in the development of stem cell therapy. J Transl Med.
9:292011. View Article : Google Scholar : PubMed/NCBI
|
17
|
Amariglio N, Hirshberg A, Scheithauer BW,
Cohen Y, Loewenthal R, Trakhtenbrot L, Paz N, Koren-Michowitz M,
Waldman D, Leider-Trejo L, et al: Donor-derived brain tumor
following neural stem cell transplantation in an ataxia
telangiectasia patient. PLoS Med. 6:e10000292009. View Article : Google Scholar : PubMed/NCBI
|
18
|
Kansu E: Thrombosis in stem cell
transplantation. Hematology. 17 (Suppl 1):S159–S162. 2012.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Valadi H, Ekstrom K, Bossios A, Sjostrand
M, Lee JJ and Lotvall JO: Exosome-mediated transfer of mRNAs and
microRNAs is a novel mechanism of genetic exchange between cells.
Nat Cell Biol. 9:654–659. 2007. View
Article : Google Scholar : PubMed/NCBI
|
20
|
Braicu C, Tomuleasa C, Monroig P, Cucuianu
A, Berindan-Neagoe I and Calin GA: Exosomes as divine messengers:
Are they the Hermes of modern molecular oncology? Cell Death
Differ. 22:34–45. 2015. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li J, Liu K, Liu Y, Xu Y, Zhang F, Yang H,
Liu J, Pan T, Chen J, Wu M, et al: Exosomes mediate the
cell-to-cell transmission of IFN-α-induced antiviral activity. Nat
Immunol. 14:793–803. 2013. View
Article : Google Scholar : PubMed/NCBI
|
22
|
Qi X, Zhang J, Yuan H, Xu Z, Li Q, Niu X,
Hu B, Wang Y and Li X: Exosomes secreted by human-induced
pluripotent stem cell-derived mesenchymal stem cells repair
critical-sized bone defects through enhanced angiogenesis and
osteogenesis in osteoporotic rats. Int J Biol Sci. 12:836–849.
2016. View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhang J, Liu X, Li H, Chen C, Hu B, Niu X,
Li Q, Zhao B, Xie Z and Wang Y: Exosomes/tricalcium phosphate
combination scaffolds can enhance bone regeneration by activating
the PI3K/Akt signaling pathway. Stem Cell Res Ther. 7:1362016.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Zhang S, Chu WC, Lai RC, Lim SK, Hui JH
and Toh WS: Exosomes derived from human embryonic mesenchymal stem
cells promote osteochondral regeneration. Osteoarthritis Cartilage.
24:2135–2140. 2016. View Article : Google Scholar : PubMed/NCBI
|
25
|
Furuta T, Miyaki S, Ishitobi H, Ogura T,
Kato Y, Kamei N, Miyado K, Higashi Y and Ochi M: Mesenchymal stem
cell-derived exosomes promote fracture healing in a mouse model.
Stem Cells Transl Med. 5:1620–1630. 2016. View Article : Google Scholar : PubMed/NCBI
|
26
|
Guan S, Yu H, Yan G, Gao M, Sun W and
Zhang X: Characterization of urinary exosomes purified with size
exclusion chromatography and ultracentrifugation. J Proteome Res.
19:2217–2225. 2020. View Article : Google Scholar : PubMed/NCBI
|
27
|
Gao J, Zhang G, Xu K, Ma D, Ren L, Fan J,
Hou J, Han J and Zhang L: Bone marrow mesenchymal stem cells
improve bone erosion in collagen-induced arthritis by inhibiting
osteoclasia-related factors and differentiating into chondrocytes.
Stem Cell Res Ther. 11:1712020. View Article : Google Scholar : PubMed/NCBI
|
28
|
Zhang L, Jiao G, Ren S, Zhang X, Li C, Wu
W, Wang H, Liu H, Zhou H and Chen Y: Exosomes from bone marrow
mesenchymal stem cells enhance fracture healing through the
promotion of osteogenesis and angiogenesis in a rat model of
nonunion. Stem Cell Res Ther. 11:382020. View Article : Google Scholar : PubMed/NCBI
|
29
|
Faldini C, Traina F, Perna F, Borghi R,
Nanni M and Chehrassan M: Surgical treatment of aseptic forearm
nonunion with plate and opposite bone graft strut. Autograft or
allograft? Int Orthop. 39:1343–1349. 2015. View Article : Google Scholar : PubMed/NCBI
|
30
|
Qin Y, Sun R, Wu C, Wang L and Zhang C:
Exosome: A novel approach to stimulate bone regeneration through
regulation of osteogenesis and angiogenesis. Int J Mol Sci.
17:7122016. View Article : Google Scholar : PubMed/NCBI
|
31
|
Wang X, Shah FA, Vazirisani F, Johansson
A, Palmquist A, Omar O, Ekström K and Thomsen P: Exosomes influence
the behavior of human mesenchymal stem cells on titanium surfaces.
Biomaterials. 230:1195712020. View Article : Google Scholar : PubMed/NCBI
|
32
|
Liu H, Zhang Q, Wang S, Weng W, Jing Y and
Su J: Bacterial extracellular vesicles as bioactive nanocarriers
for drug delivery: Advances and perspectives. Bioact Mater.
14:169–181. 2021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang XQ, Omar O, Vazirisani F, Thomsen P
and Ekstrom K: Mesenchymal stem cell-derived exosomes have altered
microRNA profiles and induce osteogenic differentiation depending
on the stage of differentiation. PLoS One. 13:e01930592018.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Ma S, Zhang Y, Li S, Li A, Li Y and Pei D:
Engineering exosomes for bone defect repair. Front Bioeng
Biotechnol. 10:10913602022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Hu Y, Li X, Zhang Q, Gu Z, Luo Y, Guo J,
Wang X, Jing Y, Chen X and Su J: Exosome-guided bone targeted
delivery of Antagomir-188 as an anabolic therapy for bone loss.
Bioact Mater. 6:2905–2913. 2021. View Article : Google Scholar : PubMed/NCBI
|
36
|
Lin T, Zha Y, Zhang X, Chen J, Li Y, Wang
Z, Zhang S, Wang J and Li Z: Gene-activated engineered exosome
directs osteoblastic differentiation of progenitor cells and
induces vascularized osteogenesis in situ. Chem Eng J.
400:1259392020. View Article : Google Scholar
|
37
|
Swanson WB, Zhang Z, Xiu K, Gong T, Eberle
M, Wang Z and Ma PX: Scaffolds with controlled release of
pro-mineralization exosomes to promote craniofacial bone healing
without cell transplantation. Acta Biomater. 118:215–232. 2020.
View Article : Google Scholar : PubMed/NCBI
|
38
|
Ma L, Cheng S, Ji X, Zhou Y, Zhang Y, Li
Q, Tan C, Peng F, Zhang Y and Huang W: Immobilizing magnesium ions
on 3D printed porous tantalum scaffolds with polydopamine for
improved vascularization and osteogenesis. Mater Sci Eng C Mater
Biol Appl. 117:1113032020. View Article : Google Scholar : PubMed/NCBI
|
39
|
Shi Y, He R, Deng X, Shao Z, Deganello D,
Yan C and Xia Z: Three-dimensional biofabrication of an
aragonite-enriched self-hardening bone graft substitute and
assessment of its osteogenicity in vitro and in vivo. Biomater
Transl. 1:69–81. 2020.PubMed/NCBI
|
40
|
Jing X, Ding Q, Wu Q, Su W, Yu K, Su Y, Ye
B, Gao Q, Sun T and Guo X: Magnesium-based materials in
orthopaedics: Material properties and animal models. Biomater
Transl. 2:197–213. 2021.PubMed/NCBI
|
41
|
Liu B, Ma Z, Li J, Xie H, Wei X, Wang B,
Tian S, Yang J, Yang L, Cheng L, et al: Experimental study of a 3D
printed permanent implantable porous Ta-coated bone plate for
fracture fixation. Bioact Mater. 10:269–280. 2021. View Article : Google Scholar : PubMed/NCBI
|
42
|
Lu MM, Wu PS, Guo XJ, Yin LL, Cao HL and
Zou D: Osteoinductive effects of tantalum and titanium on bone
mesenchymal stromal cells and bone formation in ovariectomized
rats. Eur Rev Med Pharmacol Sci. 22:7087–7104. 2018.PubMed/NCBI
|
43
|
Wang H, Su K, Su L, Liang P, Ji P and Wang
C: Comparison of 3D-printed porous tantalum and titanium scaffolds
on osteointegration and osteogenesis. Mater Sci Eng C Mater Biol
Appl. 104:1099082019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lu M, Zhuang X, Tang K, Wu P, Guo X, Yin
L, Cao H and Zou D: Intrinsic surface effects of tantalum and
titanium on integrin α5β1/ERK1/2 pathway-mediated osteogenic
differentiation in rat bone mesenchymal stromal cells. Cell Physiol
Biochem. 51:589–609. 2018. View Article : Google Scholar : PubMed/NCBI
|
45
|
Dou X, Wei X, Liu G, Wang S, Lv Y, Li J,
Ma Z, Zheng G, Wang Y, Hu M, et al: Effect of porous tantalum on
promoting the osteogenic differentiation of bone marrow mesenchymal
stem cells in vitro through the MAPK/ERK signal pathway. J Orthop
Transl. 19:81–93. 2019.
|
46
|
Wei X, Liu B, Liu G, Yang F, Cao F, Dou X,
Yu W, Wang B, Zheng G, Cheng L, et al: Mesenchymal stem cell-loaded
porous tantalum integrated with biomimetic 3D collagen-based
scaffold to repair large osteochondral defects in goats. Stem Cell
Res Ther. 10:722019. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhao D, Liu B, Wang B, Yang L, Xie H,
Huang S, Zhang Y and Wei X: Autologous bone marrow mesenchymal stem
cells associated with tantalum rod implantation and vascularized
iliac grafting for the treatment of end-stage osteonecrosis of the
femoral head. Biomed Res Int. 2015:2405062015.PubMed/NCBI
|