1
|
Wang T, Cui S, Liu X, Han L, Duan X, Feng
S, Zhang S and Li G: LncTUG1 ameliorates renal tubular fibrosis in
experimental diabetic nephropathy through the
miR-145-5p/dual-specificity phosphatase 6 axis. Ren Fail.
45:21739502023. View Article : Google Scholar : PubMed/NCBI
|
2
|
Wang W, Sheng L, Chen Y, Li Z, Wu H, Ma J,
Zhang D, Chen X and Zhang S: Total coumarin derivates from
Hydrangea paniculata attenuate renal injuries in cationized-BSA
induced membranous nephropathy by inhibiting complement activation
and interleukin 10-mediated interstitial fibrosis. Phytomedicine.
96:1538862022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Webster AC, Nagler EV, Morton RL and
Masson P: Chronic kidney disease. Lancet. 389:1238–1252. 2017.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Zhang S, Yang J, Li H, Li Y, Liu Y, Zhang
D, Zhang F, Zhou W and Chen X: Skimmin, a coumarin, suppresses the
streptozotocin-induced diabetic nephropathy in wistar rats. Eur J
Pharmacol. 692:78–83. 2012. View Article : Google Scholar : PubMed/NCBI
|
5
|
Zhou D and Liu Y: Therapy for kidney
fibrosis: Is the Src kinase a potential target? Kidney Int.
89:12–14. 2016. View Article : Google Scholar : PubMed/NCBI
|
6
|
Li N, Lin G, Zhang H, Sun J, Gui M, Liu Y,
Li W, Liu J and Tang J: Src family kinases: A potential therapeutic
target for acute kidney injury. Biomolecules. 12:9842022.
View Article : Google Scholar : PubMed/NCBI
|
7
|
Wang J and Zhuang S: Src family kinases in
chronic kidney disease. Am J Physiol Renal Physiol. 313:F721–F728.
2017. View Article : Google Scholar : PubMed/NCBI
|
8
|
Roskoski R Jr: Src protein-tyrosine kinase
structure, mechanism, and small molecule inhibitors. Pharmacol Res.
94:9–25. 2015. View Article : Google Scholar : PubMed/NCBI
|
9
|
Yan Y, Ma L, Zhou X, Ponnusamy M, Tang J,
Zhuang MA, Tolbert E, Bayliss G, Bai J and Zhuang S: Src inhibition
blocks renal interstitial fibroblast activation and ameliorates
renal fibrosis. Kidney Int. 89:68–81. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Cheng X, Song Y and Wang Y: pNaKtide
ameliorates renal interstitial fibrosis through inhibition of
sodium-potassium adenosine triphosphatase-mediated signaling
pathways in unilateral ureteral obstruction mice. Nephrol Dial
Transplant. 34:242–252. 2019. View Article : Google Scholar : PubMed/NCBI
|
11
|
Li Z and Xie Z: The Na/K-ATPase/Src
complex and cardiotonic steroid-activated protein kinase cascades.
Pflugers Arch. 457:635–644. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Pratt RD, Brickman CR, Cottrill CL,
Shapiro JI and Liu J: The Na/K-ATPase signaling: From specific
ligands to general reactive oxygen species. Int J Mol Sci.
19:26002018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lai F, Madan N, Ye Q, Duan Q, Li Z, Wang
S, Si S and Xie Z: Identification of a mutant α1 Na/K-ATPase that
pumps but is defective in signal transduction. J Biol Chem.
288:13295–13304. 2013. View Article : Google Scholar : PubMed/NCBI
|
14
|
Yan Y, Shapiro AP, Haller S, Katragadda V,
Liu L, Tian J, Basrur V, Malhotra D, Xie ZJ, Abraham NG, et al:
Involvement of reactive oxygen species in a feed-forward mechanism
of Na/K-ATPase-mediated signaling transduction. J Biol Chem.
288:34249–34258. 2013. View Article : Google Scholar : PubMed/NCBI
|
15
|
Xie Z, Kometiani P, Liu J, Li J, Shapiro
JI and Askari A: Intracellular reactive oxygen species mediate the
linkage of Na+/K+-ATPase to hypertrophy and its marker genes in
cardiac myocytes. J Biol Chem. 274:19323–19328. 1999. View Article : Google Scholar : PubMed/NCBI
|
16
|
Liu L, Li J, Liu J, Yuan Z, Pierre SV, Qu
W, Zhao X and Xie Z: Involvement of Na+/K+-ATPase in hydrogen
peroxide-induced hypertrophy in cardiac myocytes. Free Radic Biol
Med. 41:1548–1556. 2006. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Ye Q, Liu C, Xie JX, Yan Y, Lai F,
Duan Q, Li X, Tian J and Xie Z: Involvement of Na/K-ATPase in
hydrogen peroxide-induced activation of the Src/ERK pathway in
LLC-PK1 cells. Free Radic Biol Med. 71:415–426. 2014. View Article : Google Scholar : PubMed/NCBI
|
18
|
Liu J, Tian J, Haas M, Shapiro JI, Askari
A and Xie Z: Ouabain interaction with cardiac Na+/K+-ATPase
initiates signal cascades independent of changes in intracellular
Na+ and Ca2+ concentrations. J Biol Chem. 275:27838–27844. 2000.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Bartlett DE, Miller RB, Thiesfeldt S,
Lakhani HV, Shapiro JI and Sodhi K: The role of Na/K-atpase
signaling in oxidative stress related to aging: Implications in
obesity and cardiovascular disease. Int J Mol Sci. 19:21392018.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Shah PT, Martin R, Yan Y, Shapiro JI and
Liu J: Carbonylation modification regulates Na/K-ATPase signaling
and salt sensitivity: A review and a hypothesis. Front Physiol.
7:2562016. View Article : Google Scholar : PubMed/NCBI
|
21
|
Sodhi K, Pratt R, Wang X, Lakhani HV,
Pillai SS, Zehra M, Wang J, Grover L, Henderson B, Denvir J, et al:
Role of adipocyte Na,K-ATPase oxidant amplification loop in
cognitive decline and neurodegeneration. iScience. 24:1032622021.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Liu J, Yan Y, Liu L, Xie Z, Malhotra D,
Joe B and Shapiro JI: Impairment of Na/K-ATPase signaling in renal
proximal tubule contributes to Dahl salt-sensitive hypertension. J
Biol Chem. 286:22806–22813. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Sodhi K, Wang X, Chaudhry MA, Lakhani HV,
Zehra M, Pratt R, Nawab A, Cottrill CL, Snoad B, Bai F, et al:
Central role for adipocyte Na,K-ATPase oxidant amplification loop
in the pathogenesis of experimental uremic cardiomyopathy. J Am Soc
Nephrol. 31:1746–1760. 2020. View Article : Google Scholar : PubMed/NCBI
|
24
|
Jha JC, Dai A, Garzarella J, Charlton A,
Urner S, Østergaard JA, Okabe J, Holterman CE, Skene A, Power DA,
et al: Independent of Renox, NOX5 promotes renal inflammation and
fibrosis in diabetes by activating ROS-sensitive pathways.
Diabetes. 71:1282–1298. 2022. View Article : Google Scholar : PubMed/NCBI
|
25
|
Alhasson F, Seth RK, Sarkar S, Kimono DA,
Albadrani MS, Dattaroy D, Chandrashekaran V, Scott GI, Raychoudhury
S, Nagarkatti M, et al: High circulatory leptin mediated
NOX-2-peroxynitrite-miR21 axis activate mesangial cells and
promotes renal inflammatory pathology in nonalcoholic fatty liver
disease. Redox Biol. 17:1–15. 2018. View Article : Google Scholar : PubMed/NCBI
|
26
|
Holterman CE, Read NC and Kennedy CRJ: Nox
and renal disease. Clin Sci (Lond). 128:465–481. 2015. View Article : Google Scholar : PubMed/NCBI
|
27
|
Eid AA, Gorin Y, Fagg BM, Maalouf R,
Barnes JL, Block K and Abboud HE: Mechanisms of podocyte injury in
diabetes: Role of cytochrome P450 and NADPH oxidases. Diabetes.
58:1201–1211. 2009. View Article : Google Scholar : PubMed/NCBI
|
28
|
Liu C, Song Y, Qu L, Tang J, Meng L and
Wang Y: Involvement of NOX in the regulation of renal tubular
expression of Na/K-ATPase in acute unilateral ureteral obstruction
rats. Nephron. 130:66–76. 2015. View Article : Google Scholar : PubMed/NCBI
|
29
|
Cheng X, Zheng X, Song Y, Qu L, Tang J,
Meng L and Wang Y: Apocynin attenuates renal fibrosis via
inhibition of NOXs-ROS-ERK-myofibroblast accumulation in UUO rats.
Free Radic Res. 50:840–852. 2016. View Article : Google Scholar : PubMed/NCBI
|
30
|
Liu M, Liu T, Shang P, Zhang Y, Liu L, Liu
T and Sun S: Acetyl-11-keto-β-boswellic acid ameliorates renal
interstitial fibrosis via Klotho/TGF-β/Smad signalling pathway. J
Cell Mol Med. 22:4997–5007. 2018. View Article : Google Scholar : PubMed/NCBI
|
31
|
Nogueira A, Pires MJ and Oliveira PA:
Pathophysiological mechanisms of renal fibrosis: A review of animal
models and therapeutic strategies. In Vivo. 31:1–22. 2017.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Tian J, Cai T, Yuan Z, Wang H, Liu L, Haas
M, Maksimova E, Huang XY and Xie ZJ: Binding of Src to
Na+/K+-ATPase forms a functional signaling complex. Mol Biol Cell.
17:317–326. 2006. View Article : Google Scholar : PubMed/NCBI
|
33
|
Cui X and Xie Z: Protein interaction and
Na/K-ATPase-mediated signal transduction. Molecules. 22:9902017.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Shinoda T, Ogawa H, Cornelius F and
Toyoshima C: Crystal structure of the sodium-potassium pump at 2.4
A resolution. Nature. 459:446–450. 2009. View Article : Google Scholar : PubMed/NCBI
|
35
|
Laursen M, Yatime L, Nissen P and Fedosova
NU: Crystal structure of the high-affinity Na+K+-ATPase-ouabain
complex with Mg2+ bound in the cation binding site. Proc Natl Acad
Sci USA. 110:10958–10963. 2013. View Article : Google Scholar : PubMed/NCBI
|
36
|
Xie JX, Li X and Xie Z: Regulation of
renal function and structure by the signaling Na/K-ATPase. IUBMB
Life. 65:991–998. 2013. View Article : Google Scholar : PubMed/NCBI
|
37
|
Yan Y, Shapiro AP, Mopidevi BR, Chaudhry
MA, Maxwell K, Haller ST, Drummond CA, Kennedy DJ, Tian J, Malhotra
D, et al: Protein carbonylation of an amino acid residue of the
Na/K-ATPase α1 subunit determines Na/K-ATPase signaling and sodium
transport in renal proximal tubular cells. J Am Heart Assoc.
5:e0036752016. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lv W, Booz GW, Fan F, Wang Y and Roman RJ:
Oxidative stress and renal fibrosis: Recent insights for the
development of novel therapeutic strategies. Front Physiol.
9:1052018. View Article : Google Scholar : PubMed/NCBI
|
39
|
Zhang Y, Li Z, Wu H, Wang J and Zhang S:
Esculetin alleviates murine lupus nephritis by inhibiting
complement activation and enhancing Nrf2 signaling pathway. J
Ethnopharmacol. 288:1150042022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Demirci-Çekiç S, Özkan G, Avan AN, Uzunboy
S, Çapanoğlu E and Apak R: Biomarkers of oxidative stress and
antioxidant defense. J Pharm Biomed Anal. 209:1144772022.
View Article : Google Scholar : PubMed/NCBI
|
41
|
Bedard K and Krause KH: The NOX family of
ROS-generating NADPH oxidases: Physiology and pathophysiology.
Physiol Rev. 87:245–313. 2007. View Article : Google Scholar : PubMed/NCBI
|
42
|
Gill PS and Wilcox CS: NADPH oxidases in
the kidney. Antioxid Redox Signal. 8:1597–1607. 2006. View Article : Google Scholar : PubMed/NCBI
|
43
|
Aranda-Rivera AK, Cruz-Gregorio A,
Aparicio-Trejo OE, Ortega-Lozano AJ and Pedraza-Chaverri J: Redox
signaling pathways in unilateral ureteral obstruction (UUO)-induced
renal fibrosis. Free Radic Biol Med. 172:65–81. 2021. View Article : Google Scholar : PubMed/NCBI
|
44
|
Lee SR, An EJ, Kim J and Bae YS: Function
of NADPH oxidases in diabetic nephropathy and development of Nox
inhibitors. Biomol Ther (Seoul). 28:25–33. 2020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Shin HS, Yu M, Kim M, Choi HS and Kang DH:
Renoprotective effect of red ginseng in gentamicin-induced acute
kidney injury. Lab Invest. 94:1147–1160. 2014. View Article : Google Scholar : PubMed/NCBI
|
46
|
Yoo JY, Cha DR, Kim B, An EJ, Lee SR, Cha
JJ, Kang YS, Ghee JY, Han JY and Bae YS: LPS-induced acute kidney
injury is mediated by Nox4-SH3YL1. Cell Rep. 33:1082452020.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Liu CC, Karimi Galougahi K, Weisbrod RM,
Hansen T, Ravaie R, Nunez A, Liu YB, Fry N, Garcia A, Hamilton EJ,
et al: Oxidative inhibition of the vascular Na+-K+ pump via NADPH
oxidase-dependent β1-subunit glutathionylation: implications for
angiotensin II-induced vascular dysfunction. Free Radic Biol Med.
65:563–572. 2013. View Article : Google Scholar : PubMed/NCBI
|
48
|
Weaver JR and Taylor-Fishwick DA:
Regulation of NOX-1 expression in beta cells: A positive feedback
loop involving the Src-kinase signaling pathway. Mol Cell
Endocrinol. 369:35–41. 2013. View Article : Google Scholar : PubMed/NCBI
|
49
|
Camargo LL, Montezano AC, Hussain M, Wang
Y, Zou Z, Rios FJ, Neves KB, Alves-Lopes R, Awan FR, Guzik TJ, et
al: Central role of c-Src in NOX5-mediated redox signalling in
vascular smooth muscle cells in human hypertension. Cardiovasc Res.
118:1359–1373. 2022. View Article : Google Scholar : PubMed/NCBI
|
50
|
Li Q, Zhang Y, Marden JJ, Banfi B and
Engelhardt JF: Endosomal NADPH oxidase regulates c-Src activation
following hypoxia/reoxygenation injury. Biochem J. 411:531–541.
2008. View Article : Google Scholar : PubMed/NCBI
|
51
|
Yan X, Xun M, Dou X, Wu L, Han Y and Zheng
J: Regulation of Na+-K+-ATPase effected high
glucose-induced myocardial cell injury through c-Src dependent
NADPH oxidase/ROS pathway. Exp Cell Res. 357:243–251. 2017.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Yan Y, Haller S, Shapiro A, Malhotra N,
Tian J, Xie Z, Malhotra D, Shapiro JI and Liu J: Ouabain-stimulated
trafficking regulation of the Na/K-ATPase and NHE3 in renal
proximal tubule cells. Mol Cell Biochem. 367:175–183. 2012.
View Article : Google Scholar : PubMed/NCBI
|
53
|
Clempus RE, Sorescu D, Dikalova AE,
Pounkova L, Jo P, Sorescu GP, Schmidt HH, Lassègue B and Griendling
KK: Nox4 is required for maintenance of the differentiated vascular
smooth muscle cell phenotype. Arterioscler Thromb Vasc Biol.
27:42–48. 2007. View Article : Google Scholar : PubMed/NCBI
|
54
|
Kozieł R, Pircher H, Kratochwil M, Lener
B, Hermann M, Dencher NA and Jansen-Dürr P: Mitochondrial
respiratory chain complex I is inactivated by NADPH oxidase Nox4.
Biochem J. 452:231–239. 2013. View Article : Google Scholar : PubMed/NCBI
|
55
|
Fukai T and Ushio-Fukai M: Cross-talk
between NADPH oxidase and mitochondria: Role in ROS signaling and
angiogenesis. Cells. 9:18492020. View Article : Google Scholar : PubMed/NCBI
|