MicroRNA‑378: An important player in cardiovascular diseases (Review)
- Authors:
- Huan Wang
- Jingjing Shi
- Jiuchong Wang
- Yuanhui Hu
-
Affiliations: Department of Cardiovascular, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P.R. China - Published online on: July 25, 2023 https://doi.org/10.3892/mmr.2023.13059
- Article Number: 172
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Triposkiadis F, Xanthopoulos A and Butler J: Cardiovascular aging and heart failure: JACC review topic of the week. J Am Coll Cardiol. 74:804–813. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American heart association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Hennersdorf MG and Strauer BE: Arterial hypertension and cardiac arrhythmias. J Hypertens. 19:167–177. 2001. View Article : Google Scholar : PubMed/NCBI |
|
Vakili BA, Okin PM and Devereux RB: Prognostic implications of left ventricular hypertrophy. Am Heart J. 141:334–341. 2001. View Article : Google Scholar : PubMed/NCBI |
|
Aimo A, Panichella G, Barison A, Maffei S, Cameli M, Coiro S, D'Ascenzi F, Di Mario C, Liga R, Marcucci R, et al: Sex-related differences in ventricular remodeling after myocardial infarction. Int J Cardiol. 339:62–69. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Cheng M, Yang J, Zhao X, Zhang E, Zeng Q, Yu Y, Yang L, Wu B, Yi G, Mao X, et al: Circulating myocardial microRNAs from infarcted hearts are carried in exosomes and mobilise bone marrow progenitor cells. Nat Commun. 10:9592019. View Article : Google Scholar : PubMed/NCBI |
|
Zhou Y, Xia Z, Cheng Z, Xu G, Yang X, Liu S and Zhu Y: Inducible microRNA-590-5p inhibits host antiviral response by targeting the soluble interleukin-6 (IL6) receptor. J Biol Chem. 293:18168–18179. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Zhang L, Wang YH and Wang L: MiRNA-8073 targets ZnT1 to inhibit malignant progression of ovarian cancer. Eur Rev Med Pharmacol Sci. 23:6062–6069. 2019.PubMed/NCBI |
|
Mei JW, Yang ZY, Xiang HG, Bao R, Ye YY, Ren T, Wang XF and Shu YJ: MicroRNA-1275 inhibits cell migration and invasion in gastric cancer by regulating vimentin and E-cadherin via JAZF1. BMC Cancer. 19:7402019. View Article : Google Scholar : PubMed/NCBI |
|
Zhao B, Lu Y, Cao X, Zhu W, Kong L, Ji H, Zhang F, Lin X, Guan Q, Ou K, et al: MiRNA-124 inhibits the proliferation, migration and invasion of cancer cell in hepatocellular carcinoma by downregulating lncRNA-UCA1. Onco Targets Ther. 12:4509–4516. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Nagy O, Barath S and Ujfalusi A: The role of microRNAs in congenital heart disease. EJIFCC. 30:165–178. 2019.PubMed/NCBI |
|
Fisher JN, Terao M, Fratelli M, Kurosaki M, Paroni G, Zanetti A, Gianni M, Bolis M, Lupi M, Tsykin A, et al: MicroRNA networks regulated by all-trans retinoic acid and Lapatinib control the growth, survival and motility of breast cancer cells. Oncotarget. 6:13176–13200. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Taylor DD and Gercel-Taylor C: MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecol Oncol. 110:13–21. 2008. View Article : Google Scholar : PubMed/NCBI |
|
Huang N, Wang J, Xie W, Lyu Q, Wu J, He J, Qiu W, Xu N and Zhang Y: MiR-378a-3p enhances adipogenesis by targeting mitogen-activated protein kinase 1. Biochem Biophys Res Commun. 457:37–42. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Ikeda K, Horieinoue K, Ueno T, Suzuki T, Sato W, Shigekawa T, Osaki A, Saeki T, Berezikov E, Mano H and Inoue S: miR-378a-3p modulates tamoxifen sensitivity in breast cancer MCF-7 cells through targeting GOLT1A. Sci Rep. 5:131702015. View Article : Google Scholar : PubMed/NCBI |
|
Chen LT, Xu SD, Xu H, Zhang JF, Ning JF and Wang SF: MicroRNA-378 is associated with non-small cell lung cancer brain metastasis by promoting cell migration, invasion and tumor angiogenesis. Med Oncol. 29:1673–1680. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Welten SM, Goossens EA, Quax PH and Nossent AY: The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc Res. 110:6–22. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Knezevic I, Patel A, Sundaresan NR, Gupta MP, Solaro RJ, Nagalingam RS and Gupta M: A novel cardiomyocyte-enriched microRNA, miR-378, targets insulin-like growth factor 1 receptor: Implications in postnatal cardiac remodeling and cell survival. J Biol Chem. 287:12913–12926. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Porrello ER, Johnson BA, Aurora AB, Simpson E, Nam YJ, Matkovich SJ, Dorn GW II, van Rooij E and Olson EN: MiR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ Res. 109:670–679. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Jia G, Whaley-Connell A and Sowers JR: Diabetic cardiomyopathy: A hyperglycaemia- and insulin-resistance-induced heart disease. Diabetologia. 61:21–28. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Bugger H and Abel ED: Molecular mechanisms of diabetic cardiomyopathy. Diabetologia. 57:660–671. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Zhou X, Tao Y, Chen Y, Xu W, Qian Z and Lu X: Serum chemerin as a novel prognostic indicator in chronic heart failure. J Am Heart Assoc. 8:e0120912019. View Article : Google Scholar : PubMed/NCBI |
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P and Thomas D: Electrical ventricular remodeling in dilated cardiomyopathy. Cells. 10:27672021. View Article : Google Scholar : PubMed/NCBI |
|
Mohananey D, Mewhort H, Shekhar S, Mohananey A, Chaudhary R, Gaglianello N and Ramakrishna H: Heart failure trial update-analysis of recent data. J Cardiothorac Vasc Anesth. 35:2792–2800. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Ceriello A: Hypothesis: The ‘metabolic memory’, the new challenge of diabetes. Diabetes Res Clin Pract. 86 (Suppl 1):S2–S6. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Paneni F, Volpe M, Lüscher TF and Cosentino F: SIRT1, p66(Shc), and Set7/9 in vascular hyperglycemic memory: Bringing all the strands together. Diabetes. 62:1800–1807. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Castagno D, Baird-Gunning J, Jhund PS, Biondi-Zoccai G, MacDonald MR, Petrie MC, Gaita F and McMurray JJ: Intensive glycemic control has no impact on the risk of heart failure in type 2 diabetic patients: Evidence from a 37,229 patient meta-analysis. Am Heart J. 162:938–948.e2. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Costantino S, Paneni F, Lüscher TF and Cosentino F: MicroRNA profiling unveils hyperglycaemic memory in the diabetic heart. Eur Heart J. 37:572–576. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Maher TM, Corte TJ, Fischer A, Kreuter M, Lederer DJ, Molina-Molina M, Axmann J, Kirchgaessler KU, Samara K, Gilberg F and Cottin V: Pirfenidone in patients with unclassifiable progressive fibrosing interstitial lung disease: A double-blind, randomised, placebo-controlled, phase 2 trial. Lancet Resp Med. 8:147–157. 2020. View Article : Google Scholar |
|
Yang BF, Lu YJ and Wang ZG: MicroRNAs and apoptosis: Implications in the molecular therapy of human disease. Clin Exp Pharmacol Physiol. 36:951–960. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Tijsen AJ, van der Made I, van den Hoogenhof MM, Wijnen WJ, van Deel ED, de Groot NE, Alekseev S, Fluiter K, Schroen B, Goumans MJ, et al: The microRNA-15 family inhibits the TGFβ-pathway in the heart. Cardiovasc Res. 104:61–71. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Li R, Geng HH, Xiao J, Qin XT, Wang F, Xing JH, Xia YF, Mao Y, Liang JW and Ji XP: miR-7a/b attenuates post-myocardial infarction remodeling and protects H9c2 cardiomyoblast against hypoxia-induced apoptosis involving Sp1 and PARP-1. Sci Rep. 6:290822016. View Article : Google Scholar : PubMed/NCBI |
|
Durr AJ, Hathaway QA, Kunovac A, Taylor AD, Pinti MV, Rizwan S, Shepherd DL, Cook CC, Fink GK and Hollander JM: Manipulation of the miR-378a/mt-ATP6 regulatory axis rescues ATP synthase in the diabetic heart and offers a novel role for lncRNA Kcnq1ot1. Am J Physiol Cell Physiol. 322:C482–C495. 2022. View Article : Google Scholar : PubMed/NCBI |
|
Kalyanaraman B: Teaching the basics of the mechanism of doxorubicin-induced cardiotoxicity: Have we been barking up the wrong tree? Redox Biol. 29:1013942020. View Article : Google Scholar : PubMed/NCBI |
|
Xu T, Liu N, Shao Y, Huang Y and Zhu D: MiR-218 regulated cardiomyocyte differentiation and migration in mouse embryonic stem cells by targeting PDGFRα. J Cell Biochem. 120:4355–4365. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Tong Z, Jiang B, Wu Y, Liu Y, Li Y, Gao M, Jiang Y, Lv Q and Xiao X: MiR-21 protected cardiomyocytes against doxorubicin-induced apoptosis by targeting BTG2. Int J Mol Sci. 16:14511–14525. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Xin W, Li X, Lu X, Niu K and Cai J: Involvement of endoplasmic reticulum stress-associated apoptosis in a heart failure model induced by chronic myocardial ischemia. Int J Mol Med. 27:503–509. 2011.PubMed/NCBI |
|
Yang Y, Zhang H, Li X, Yang T and Jiang Q: Effects of PPARα/PGC-1α on the energy metabolism remodeling and apoptosis in the doxorubicin induced mice cardiomyocytes in vitro. Int J Clin Exp Pathol. 8:12216–12224. 2015.PubMed/NCBI |
|
Cappetta D, Rossi F, Piegari E, Quaini F, Berrino L, Urbanek K and De Angelis A: Doxorubicin targets multiple players: A new view of an old problem. Pharmacol Res. 127:4–14. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Zhu JN, Fu YH, Hu ZQ, Li WY, Tang CM, Fei HW, Yang H, Lin QX, Gou DM, Wu SL and Shan ZX: Activation of miR-34a-5p/Sirt1/p66shc pathway contributes to doxorubicin-induced cardiotoxicity. Sci Rep. 7:118792017. View Article : Google Scholar : PubMed/NCBI |
|
Zhao L, Qi Y, Xu L, Tao X, Han X, Yin L and Peng J: MicroRNA-140-5p aggravates doxorubicin-induced cardiotoxicity by promoting myocardial oxidative stress via targeting Nrf2 and Sirt2. Redox Biol. 15:284–296. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Chen Y, Xu Y, Deng Z, Wang Y, Zheng Y, Jiang W and Jiang L: MicroRNA expression profiling involved in doxorubicin-induced cardiotoxicity using high-throughput deep-sequencing analysis. Oncol Lett. 22:5602021. View Article : Google Scholar : PubMed/NCBI |
|
Wang Y, Zhang Q, Wei C, Zhao L, Guo X, Cui X, Shao L, Long J, Gu J and Zhao M: MiR-378 modulates energy imbalance and apoptosis of mitochondria induced by doxorubicin. Am J Transl Res. 10:3600–3609. 2018.PubMed/NCBI |
|
Wang Y, Cui X, Wang Y, Fu Y, Guo X, Long J, Wei C and Zhao M: Protective effect of miR378* on doxorubicin-induced cardiomyocyte injury via calumenin. J Cell Physiol. 233:6344–6351. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Sahoo SK and Kim DH: Characterization of calumenin in mouse heart. BMB Rep. 43:158–163. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Jiang BH, Rue E, Wang GL and Semenza GL: Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem. 271:17771–17778. 1996. View Article : Google Scholar : PubMed/NCBI |
|
Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012. View Article : Google Scholar : PubMed/NCBI |
|
Nallamshetty S, Chan SY and Loscalzo J: Hypoxia: A master regulator of microRNA biogenesis and activity. Free Radic Biol Med. 64:20–30. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Greijer AE and van de Wall E: The role of hypoxia inducible factor 1 (HIF-1) in hypoxia induced apoptosis. J Clin Pathol. 57:1009–1014. 2004. View Article : Google Scholar : PubMed/NCBI |
|
Azzouzi HE, Leptidis S, Doevendans PA and De Windt LJ: HypoxamiRs: Regulators of cardiac hypoxia and energy metabolism. Trends Endocrinol Metab. 26:502–508. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Li B, Dasgupta C, Huang L, Meng X and Zhang L: MiRNA-210 induces microglial activation and regulates microglia-mediated neuroinflammation in neonatal hypoxic-ischemic encephalopathy. Cell Mol Immunoly. 17:976–991. 2020. View Article : Google Scholar |
|
Li R, Bao L, Hu W, Liang H and Dang X: Expression of miR-210 mediated by adeno-associated virus performed neuroprotective effects on a rat model of acute spinal cord injury. Tissue Cell. 57:22–33. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Camps C, Saini HK, Mole DR, Choudhry H, Reczko M, Guerra-Assunção JA, Tian YM, Buffa FM, Harris AL, Hatzigeorgiou AG, et al: Integrated analysis of microRNA and mRNA expression and association with HIF binding reveals the complexity of microRNA expression regulation under hypoxia. Mol Cancer. 13:282014. View Article : Google Scholar : PubMed/NCBI |
|
Zhang J, Ma J, Long K, Qiu W, Wang Y, Hu Z, Liu C, Luo Y, Jiang A, Jin L, et al: Overexpression of exosomal cardioprotective miRNAs mitigates hypoxia-induced H9c2 cells apoptosis. Int J Mol Sci. 18:7112017. View Article : Google Scholar : PubMed/NCBI |
|
Krown KA, Page MT, Nguyen C, Zechner D, Gutierrez V, Comstock KL, Glembotski CC, Quintana PJ and Sabbadini RA: Tumor necrosis factor alpha-induced apoptosis in cardiac myocytes. Involvement of the sphingolipid signaling cascade in cardiac cell death. J Clin Investig. 98:2854–2865. 1996. View Article : Google Scholar : PubMed/NCBI |
|
Chang L and Karin M: Mammalian MAP kinase signaling cascades. Nature. 410:37–40. 2001. View Article : Google Scholar : PubMed/NCBI |
|
Guo M, Shi JH, Wang PL and Shi DZ: Angiogenic growth factors for coronary artery disease: Current status and prospects. J Cardiovasc Pharmacol Ther. 23:130–141. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Kir D, Schnettler E, Modi S and Ramakrishnan S: Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis. 21:699–710. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Liberis A, Stanulov G, Ali EC, Hassan A, Pagalos A and Kontomanolis EN: Pre-eclampsia and the vascular endothelial growth factor: A new aspect. Clin Exp Obstet Gynecol. 43:9–13. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Ferrara N and Alitalo K: Clinical applications of angiogenic growth factors and their inhibitors. Nat Med. 5:1359–1364. 1999. View Article : Google Scholar : PubMed/NCBI |
|
Ylä-Herttuala S, Rissanen TT, Vajanto I and Hartikainen J: Vascular endothelial growth factors: Biology and current status of clinical applications in cardiovascular medicine. J Am Coll Cardiol. 49:1015–1026. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Fish JE and Srivastava D: MicroRNAs: Opening a new vein in angiogenesis research. Sci Signal. 2:pe12009. View Article : Google Scholar : PubMed/NCBI |
|
Zhang H, Hao J, Sun X, Zhang Y and Wei Q: Circulating pro-angiogenic micro-ribonucleic acid in patients with coronary heart disease. Interact Cardiovasc Thorac Surg. 27:336–342. 2018.PubMed/NCBI |
|
Xing Y, Hou J, Guo T, Zheng S, Zhou C, Huang H, Chen Y, Sun K, Zhong T, Wang J, et al: microRNA-378 promotes mesenchymal stem cell survival and vascularization under hypoxic-ischemic conditions in vitro. Stem Cell Res Ther. 5:1302014. View Article : Google Scholar : PubMed/NCBI |
|
Scheubel RJ, Holtz J, Friedrich I, Borgermann J, Kahrstedt S, Navarrete Santos A, Silber RE and Simm A: Paracrine effects of CD34 progenitor cells on angiogenic endothelial sprouting. Int J Cardiol. 139:134–141. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Lee DY, Deng Z, Wang CH and Yang BB: MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA. 104:20350–20355. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Templin C, Volkmann J, Emmert MY, Mocharla P, Müller M, Kraenkel N, Ghadri JR, Meyer M, Styp-Rekowska B, Briand S, et al: Increased proangiogenic activity of mobilized CD34+ progenitor cells of patients with acute ST-segment-elevation myocardial infarction: Role of differential MicroRNA-378 expression. Arterioscler Thromb Vasc Biol. 37:341–349. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Naaijkens BA, van Dijk A, Meinster E, Kramer K, Kamp O, Krijnen PAJ, Niessen HWM and Juffermans LJM: Wistar rats from different suppliers have a different response in an acute myocardial infarction model. Res Vet Sci. 96:377–379. 2014. View Article : Google Scholar : PubMed/NCBI |
|
Rajtik T, Carnicka S, Szobi A, Giricz Z, O-Uchi J, Hassova V, Svec P, Ferdinandy P, Ravingerova T and Adameova A: Data on necrotic and apoptotic cell death in acute myocardial ischemia/reperfusion injury: The effects of CaMKII and angiotensin AT1 receptor inhibition. Data Brief. 7:730–734. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Zhou R, Jia Y, Wang Y, Li Z, Qi J and Yang Y: Elevating miR-378 strengthens the isoflurane-mediated effects on myocardial ischemia-reperfusion injury in mice via suppression of MAPK1. Am J Transl Res. 13:2350–2364. 2021.PubMed/NCBI |
|
Zhang J, Chen F, Ma W and Zhang P: Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene. 731:1443242020. View Article : Google Scholar : PubMed/NCBI |
|
Dai R, Liu Y, Zhou Y, Xiong X, Zhou W, Li W, Zhou W and Chen M: Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J Clin Lab Anal. 1:e230132020.PubMed/NCBI |
|
Li H, Gao F, Wang X, Wu J, Lu K, Liu M, Li R, Ding L and Wang R: Circulating microRNA-378 levels serve as a novel biomarker for assessing the severity of coronary stenosis in patients with coronary artery disease. Biosci Rep. 39:BSR201820162019. View Article : Google Scholar : PubMed/NCBI |
|
Shen J, Chang C, Ma J and Feng Q: Potential of circulating proangiogenic MicroRNAs for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology. 146:400–408. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Lorenzen JM, Schauerte C, Hübner A, Kölling M, Martino F, Scherf K, Batkai S, Zimmer K, Foinquinos A, Kaucsar T, et al: Osteopontin is indispensible for AP1-mediated angiotensin II-related miR-21 transcription during cardiac fibrosis. Eur Heart J. 36:2184–2196. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Rosenberg M, Zugck C, Nelles M, Juenger C, Frank D, Remppis A, Giannitsis E, Katus HA and Frey N: Osteopontin, a new prognostic biomarker in patients with chronic heart failure. Circ Heart Fail. 1:43–49. 2008. View Article : Google Scholar : PubMed/NCBI |
|
Kwee LC, Neely ML, Grass E, Gregory SG, Roe MT, Ohman EM, Fox KAA, White HD, Armstrong PW, Bowsman LM, et al: Associations of osteopontin and NT-proBNP with circulating miRNA levels in acute coronary syndrome. Physiol Genomics. 51:506–515. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Yuan J, Liu H, Gao W, Zhang L, Ye Y, Yuan L, Ding Z, Wu J, Kang L, Zhang X, et al: MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics. 8:2565–2582. 2018. View Article : Google Scholar : PubMed/NCBI |
|
Xu T, Zhou Q, Che L, Das S, Wang L, Jiang J, Li G, Xu J, Yao J, Wang H, et al: Circulating miR-21, miR-378, and miR-940 increase in response to an acute exhaustive exercise in chronic heart failure patients. Oncotarget. 7:12414–12425. 2016. View Article : Google Scholar : PubMed/NCBI |
|
Wang S, Long CL, Chen J, Cui WY, Zhang YF, Zhang H and Wang H: Pharmacological evidence: A new therapeutic approach to the treatment of chronic heart failure through SUR2B/Kir6.1 channel in endothelial cells. Acta Pharmacol Sin. 38:41–55. 2017. View Article : Google Scholar : PubMed/NCBI |
|
Liu C, Lai Y, Pei J, Huang H, Zhan J, Ying S and Shen Y: Clinical and genetic analysis of KATP variants with heart failure risk in patients with decreased serum ApoA-I levels. J Clin Endocrinol Metab. 106:2264–2278. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Schiattarella GG and Hill J A: Inhibition of hypertrophy is a good therapeutic strategy in ventricular pressure overload. Circulation. 131:1435–1447. 2015. View Article : Google Scholar : PubMed/NCBI |
|
Bernardo BC, Weeks KL, Pretorius L and McMullen JR: Molecular distinction between physiological and pathological cardiac hypertrophy: Experimental findings and therapeutic strategies. Pharmacol Ther. 128:191–227. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Ganesan J, Ramanujam D, Sassi Y, Ahles A, Jentzsch C, Werfel S, Leierseder S, Loyer X, Giacca M, Zentilin L, et al: MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation. 127:2097–2106. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Chen YH, Zhong LF, Hong X, Zhu QL, Wang SJ, Han JB, Huang WJ and Ye BZ: Integrated analysis of circRNA-miRNA-mRNA ceRNA network in cardiac hypertrophy. Front Genet. 13:7816762022. View Article : Google Scholar : PubMed/NCBI |
|
Barut Z, Cabbar AT, Yilmaz SG, Akdeniz FT, Simsek MA, Capar B, Degertekin M, Dalan AB, Yerebakan H and Isbir T: Investigation of circulating miRNA-133, miRNA-26, and miRNA-378 as candidate biomarkers for left ventricular hypertrophy. In Vivo. 35:1605–1610. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Katz AM: Cardiomyopathy of overload. A major determinant of prognosis in congestive heart failure. N Engl J Med. 322:100–110. 1990. View Article : Google Scholar : PubMed/NCBI |
|
Borer JS, Truter S, Herrold EM, Falcone DJ, Pena M, Carter JN, Dumlao TF, Lee JA and Supino PG: Myocardial fibrosis in chronic aortic regurgitation: Molecular and cellular responses to volume overload. Circulation. 105:1837–1842. 2002. View Article : Google Scholar : PubMed/NCBI |
|
Creemers EE and Pinto YM: Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res. 89:265–272. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Bishop JE and Lindahl G: Regulation of cardiovascular collagen synthesis by mechanical load. Cardiovasc Res. 42:27–44. 1999. View Article : Google Scholar : PubMed/NCBI |
|
Divakaran V and Mann DL: The emerging role of microRNAs in cardiac remodeling and heart failure. Circ Res. 103:1072–1083. 2008. View Article : Google Scholar : PubMed/NCBI |
|
Tatsuguchi M, Seok HY, Callis TE, Thomson JM, Chen JF, Newman M, Rojas M, Hammond SM and Wang DZ: Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol. 42:1137–1141. 2007. View Article : Google Scholar : PubMed/NCBI |
|
Moghiman T, Barghchi B, Esmaeili SA, Shabestari MM, Tabaee SS and Momtazi-Borojeni AA: Therapeutic angiogenesis with exosomal microRNAs: An effectual approach for the treatment of myocardial ischemia. Heart Fail Rev. 26:205–213. 2021. View Article : Google Scholar : PubMed/NCBI |
|
Sun F, Zhuang Y, Zhu H, Wu H, Li D, Zhan L, Yang W, Yuan Y, Xie Y, Yang S, et al: LncRNA PCFL promotes cardiac fibrosis via miR-378/GRB2 pathway following myocardial infarction. J Mol Cell Cardiol. 133:188–198. 2019. View Article : Google Scholar : PubMed/NCBI |
|
Zou Y, Li J, Ma H, Jiang H, Yuan J, Gong H, Liang Y, Guan A, Wu J, Li L, et al: Heat shock transcription factor 1 protects heart after pressure overload through promoting myocardial angiogenesis in male mice. J Mol Cell Cardiol. 51:821–829. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Lung B, Baron G, Butchart EG, Delahaye F, Gohlke-Bärwolf C, Levang OW, Tornos P, Vanoverschelde JL, Vermeer F, Boersma E, et al: A prospective survey of patients with valvular heart disease in Europe: The Euro heart survey on valvular heart disease. Eur Heart J. 24:1231–2143. 2003. View Article : Google Scholar : PubMed/NCBI |
|
Kupari M, Turto H and Lommi J: Left ventricular hypertrophy in aortic valve stenosis: Preventive or promotive of systolic dysfunction and heart failure? Eur Heart J. 26:1790–1796. 2005. View Article : Google Scholar : PubMed/NCBI |
|
Cramariuc D, Gerdts E, Davidsen ES, Segadal L and Matre K: Myocardial deformation in aortic valve stenosis: Relation to left ventricular geometry. Heart. 96:106–112. 2010. View Article : Google Scholar : PubMed/NCBI |
|
Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E and de Simone G: Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart. 97:301–307. 2011. View Article : Google Scholar : PubMed/NCBI |
|
Mureddu GF, Cioffi G, Stefenelli C, Boccanelli A and de Simone G: Compensatory or inappropriate left ventricular mass in different models of left ventricular pressure overload: Comparison between patients with aortic stenosis and arterial hypertension. J Hypertens. 27:642–649. 2009. View Article : Google Scholar : PubMed/NCBI |
|
Nagalingam RS, Sundaresan NR, Gupta MP, Geenen DL, Solaro RJ and Gupta M: A cardiac-enriched microRNA, miR-378, blocks cardiac hypertrophy by targeting Ras signaling. J Biol Chem. 288:11216–11232. 2013. View Article : Google Scholar : PubMed/NCBI |
|
Chen Z, Li C, Xu Y, Li Y, Yang H and Rao L: Circulating level of miR-378 predicts left ventricular hypertrophy in patients with aortic stenosis. PLoS One. 9:e1057022014. View Article : Google Scholar : PubMed/NCBI |