1
|
Sung H, Ferlay J, Siegel RL, Laversanne M,
Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020:
GLOBOCAN estimates of incidence and mortality worldwide for 36
cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Guo S and Deng CX: Effect of stromal cells
in tumor microenvironment on metastasis initiation. Int J Biol Sci.
14:2083–2093. 2018. View Article : Google Scholar : PubMed/NCBI
|
3
|
Simmons A, Burrage PM, Nicolau DV Jr,
Lakhani SR and Burrage K: Environmental factors in breast cancer
invasion: A mathematical modelling review. Pathology. 49:172–180.
2017. View Article : Google Scholar : PubMed/NCBI
|
4
|
Terceiro LEL, Edechi CA, Ikeogu NM, Nickel
BE, Hombach-Klonisch S, Sharif T, Leygue E and Myal Y: The breast
tumor microenvironment: A key player in metastatic spread. Cancers
(Basel). 13:47982021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Güç E and Pollard JW: Redefining
macrophage and neutrophil biology in the metastatic cascade.
Immunity. 54:885–902. 2021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Si J, Guo R, Lu X, Han C, Xue L, Xing D
and Chen C: Decision aids on breast conserving surgery for early
stage breast cancer patients: A systematic review. BMC Med Inform
Decis Mak. 20:2752020. View Article : Google Scholar : PubMed/NCBI
|
7
|
Giaquinto AN, Sung H, Miller KD, Kramer
JL, Newman LA, Minihan A, Jemal A and Siegel RL: Breast cancer
statistics, 2022. CA Cancer J Clin. 72:524–541. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Agresti R, Triulzi T, Sasso M, Ghirelli C,
Aiello P, Rybinska I, Campiglio M, Sfondrini L, Tagliabue E and
Bianchi F: Wound healing fluid reflects the inflammatory nature and
aggressiveness of breast tumors. Cells. 8:1812019. View Article : Google Scholar : PubMed/NCBI
|
9
|
Kim R: Effects of surgery and anesthetic
choice on immunosuppression and cancer recurrence. J Transl Med.
16:82018. View Article : Google Scholar : PubMed/NCBI
|
10
|
Feng K, Meng X, Liu J, Xing Z, Zhang M and
Wang X, Feng Q and Wang X: Update on intraoperative radiotherapy
for early-stage breast cancer. Am J Cancer Res. 10:2032–2042.
2020.PubMed/NCBI
|
11
|
Stoll A, van Oepen A and Friebe M:
Intraoperative delivery of cell-killing boost radiation-a review of
current and future methods. Minim Invasive Ther Allied Technol.
25:176–187. 2016. View Article : Google Scholar : PubMed/NCBI
|
12
|
Vaidya JS, Bulsara M, Baum M, Wenz F,
Massarut S, Pigorsch S, Alvarado M, Douek M, Saunders C, Flyger HL,
et al: Long term survival and local control outcomes from single
dose targeted intraoperative radiotherapy during lumpectomy
(TARGIT-IORT) for early breast cancer: TARGIT-A randomised clinical
trial. BMJ. 370:m28362020. View Article : Google Scholar : PubMed/NCBI
|
13
|
Eisavi M, Rezapour A, Alipour V, Mirzaei
HR and Arabloo J: Cost-effectiveness analysis of intraoperative
radiation therapy versus external beam radiation therapy for the
adjuvant treatment of early breast cancer: A systematic review. Med
J Islam Repub Iran. 34:1672020.PubMed/NCBI
|
14
|
Piotrowski I, Kulcenty K, Murawa D and
Suchorska W: Surgical wound fluids from patients treated with
intraoperative radiotherapy induce radiobiological response in
breast cancer cells. Med Oncol. 36:142018. View Article : Google Scholar : PubMed/NCBI
|
15
|
Lee E, Lee EA, Kong E, Chon H,
Llaiqui-Condori M, Park CH, Park BY, Kang NR, Yoo JS, Lee HS, et
al: An agonistic anti-Tie2 antibody suppresses the normal-to-tumor
vascular transition in the glioblastoma invasion zone. Exp Mol Med.
55:470–484. 2023. View Article : Google Scholar : PubMed/NCBI
|
16
|
Baharlou R, Tajik N, Habibi-Anbouhi M,
Shokrgozar MA, Zarnani AH, Shahhosseini F and Behdani M: Generation
and characterization of an anti-delta like ligand-4 nanobody to
induce non-productive angiogenesis. Anal Biochem. 544:34–41. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Nafissi N, Mohammadlou M, Akbari ME,
Mahdavi SR, Sheikh M, Borji M, Babaee E and Baharlou R: The impact
of intraoperative radiotherapy on breast cancer: Focus on the
levels of angiogenic factors. World J Surg Oncol. 20:1912022.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Belletti B, Vaidya JS, D'Andrea S,
Entschladen F, Roncadin M, Lovat F, Berton S, Perin T, Candiani E,
Reccanello S, et al: Targeted intraoperative radiotherapy impairs
the stimulation of breast cancer cell proliferation and invasion
caused by surgical wounding. Clin Cancer Res. 14:1325–1332. 2008.
View Article : Google Scholar : PubMed/NCBI
|
19
|
Kulcenty KI, Piotrowski I, Zaleska K,
Murawa D and Suchorska WM: Wound fluids collected from patients
after IORT treatment activates extrinsic apoptotic pathway in MCF7
breast cancer cell line. Ginekol Pol. 89:175–182. 2018. View Article : Google Scholar : PubMed/NCBI
|
20
|
Végran F, Boidot R, Michiels C, Sonveaux P
and Feron O: Lactate influx through the endothelial cell
monocarboxylate transporter MCT1 supports an NF-κB/IL-8 pathway
that drives tumor angiogenesis. Cancer Res. 71:2550–2560. 2011.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Kulcenty K, Piotrowski I, Wróblewska JP,
Wasiewicz J and Suchorska AWM: The composition of surgical wound
fluids from breast cancer patients is affected by intraoperative
radiotherapy treatment and depends on the molecular subtype of
breast cancer. Cancers (Basel). 12:112019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Kuonen F, Laurent J, Secondini C, Lorusso
G, Stehle JC, Rausch T, Faes-Van't Hull E, Bieler G, Alghisi GC,
Schwendener R, et al: Inhibition of the Kit ligand/c-Kit axis
attenuates metastasis in a mouse model mimicking local breast
cancer relapse after radiotherapy. Clin Cancer Res. 18:4365–4374.
2012. View Article : Google Scholar : PubMed/NCBI
|
23
|
Abdollahi A, Griggs DW, Zieher H, Roth A,
Lipson KE, Saffrich R, Gröne HJ, Hallahan DE, Reisfeld RA, Debus J,
et al: Inhibition of alpha(v)beta3 integrin survival signaling
enhances antiangiogenic and antitumor effects of radiotherapy. Clin
Cancer Res. 11:6270–6279. 2005. View Article : Google Scholar : PubMed/NCBI
|
24
|
Goedegebuure RSA, de Klerk LK, Bass AJ,
Derks S and Thijssen VLJL: Combining radiotherapy with
anti-angiogenic therapy and immunotherapy; a therapeutic triad for
cancer? Front Immunol. 9:31072019. View Article : Google Scholar : PubMed/NCBI
|
25
|
Orecchia R, Veronesi U, Maisonneuve P,
Galimberti VE, Lazzari R, Veronesi P, Jereczek-Fossa BA, Cattani F,
Sangalli C, Luini A, et al: Intraoperative irradiation for early
breast cancer (ELIOT): Long-term recurrence and survival outcomes
from a single-centre, randomised, phase 3 equivalence trial. Lancet
Oncol. 22:597–608. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Harris EER and Small W Jr: Intraoperative
radiotherapy for breast cancer. Front Oncol. 7:3172017. View Article : Google Scholar : PubMed/NCBI
|
27
|
Dhawan A, Scott JG, Harris AL and Buffa
FM: Pan-cancer characterisation of microRNA across cancer hallmarks
reveals microRNA-mediated downregulation of tumour suppressors. Nat
Commun. 9:52282018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mueller AK, Lindner K, Hummel R, Haier J,
Watson DI and Hussey DJ: MicroRNAs and their impact on radiotherapy
for cancer. Radiat Res. 185:668–677. 2016. View Article : Google Scholar : PubMed/NCBI
|
29
|
Metheetrairut C and Slack FJ: MicroRNAs in
the ionizing radiation response and in radiotherapy. Curr Opin
Genet Dev. 23:12–19. 2013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Zaleska K, Przybyla A, Kulcenty K,
Wichtowski M, Mackiewicz A, Suchorska W and Murawa D: Wound fluids
affect miR-21, miR-155 and miR-221 expression in breast cancer cell
lines, and this effect is partially abrogated by intraoperative
radiation therapy treatment. Oncol Lett. 14:4029–4036. 2017.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Jeffries J, Zhou W, Hsu AY and Deng Q:
miRNA-223 at the crossroads of inflammation and cancer. Cancer
Lett. 451:136–141. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Fabris L, Berton S, Citron F, D'Andrea S,
Segatto I, Nicoloso MS, Massarut S, Armenia J, Zafarana G, Rossi S,
et al: Radiotherapy-induced miR-223 prevents relapse of breast
cancer by targeting the EGF pathway. Oncogene. 35:4914–4926. 2016.
View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang H, Tan Z, Hu H, Liu H, Wu T, Zheng C,
Wang X, Luo Z, Wang J, Liu S, et al: microRNA-21 promotes breast
cancer proliferation and metastasis by targeting LZTFL1. BMC
Cancer. 19:7382019. View Article : Google Scholar : PubMed/NCBI
|
34
|
Badr M, Said H, Louka ML, Elghazaly HA,
Gaballah A and Atef Abd El Mageed M: MicroRNA-21 as a predictor and
prognostic factor for trastuzumab therapy in human epidermal growth
factor receptor 2-positive metastatic breast cancer. J Cell
Biochem. 120:3459–3466. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Di Martino MT, Arbitrio M, Caracciolo D,
Cordua A, Cuomo O, Grillone K, Riillo C, Caridà G, Scionti F,
Labanca C, et al: miR-221/222 as biomarkers and targets for
therapeutic intervention on cancer and other diseases: A systematic
review. Mol Ther Nucleic Acids. 27:1191–1224. 2022. View Article : Google Scholar : PubMed/NCBI
|
36
|
Wang J, Wang Q, Guan Y, Sun Y, Wang X,
Lively K, Wang Y, Luo M, Kim JA, Murphy EA, et al: Breast cancer
cell-derived microRNA-155 suppresses tumor progression via
enhancing immune cell recruitment and antitumor function. J Clin
Invest. 132:e1572482022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Khalighfard S, Alizadeh AM, Irani S and
Omranipour R: Plasma miR-21, miR-155, miR-10b, and Let-7a as the
potential biomarkers for the monitoring of breast cancer patients.
Sci Rep. 8:179812018. View Article : Google Scholar : PubMed/NCBI
|
38
|
Qu H, Zhu F, Dong H, Hu X and Han M:
Corrigendum: Upregulation of CCT-3 induces breast cancer cell
proliferation through miR-223 competition and Wnt/b-catenin
signaling pathway activation. Front Oncol. 12:9173782022.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Park M, Kim D, Ko S, Kim A, Mo K and Yoon
H: Breast cancer metastasis: Mechanisms and therapeutic
implications. Int J Mol Sci. 23:68062022. View Article : Google Scholar : PubMed/NCBI
|
40
|
Kulcenty K, Piotrowski I, Zaleska K,
Wichtowski M, Wróblewska J, Murawa D and Suchorska WM: Wound fluids
collected postoperatively from patients with breast cancer induce
epithelial to mesenchymal transition but intraoperative
radiotherapy impairs this effect by activating the
radiation-induced bystander effect. Sci Rep. 9:78912019. View Article : Google Scholar : PubMed/NCBI
|
41
|
Zhao C, Wu M, Zeng N, Xiong M, Hu W, Lv W,
Yi Y, Zhang Q and Wu Y: Cancer-associated adipocytes: Emerging
supporters in breast cancer. J Exp Clin Cancer Res. 39:1562020.
View Article : Google Scholar : PubMed/NCBI
|
42
|
Iwase T, Wang X, Shrimanker TV, Kolonin MG
and Ueno NT: Body composition and breast cancer risk and treatment:
Mechanisms and impact. Breast Cancer Res Treat. 186:273–283. 2021.
View Article : Google Scholar : PubMed/NCBI
|
43
|
Bunnell BA, Martin EC, Matossian MD, Brock
CK, Nguyen K, Collins-Burow B and Burow ME: The effect of obesity
on adipose-derived stromal cells and adipose tissue and their
impact on cancer. Cancer Metastasis Rev. 41:549–573. 2022.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Eckel-Mahan K, Ribas Latre A and Kolonin
MG: Adipose stromal cell expansion and exhaustion: Mechanisms and
consequences. Cells. 9:8632020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Uhlig S, Wuhrer A, Berlit S, Tuschy B,
Sutterlin M and Bieback K: Intraoperative radiotherapy for breast
cancer treatment efficiently targets the tumor bed preventing
breast adipose stromal cell outgrowth. Strahlenther Onkol.
196:398–404. 2020. View Article : Google Scholar : PubMed/NCBI
|
46
|
Wuhrer A, Uhlig S, Tuschy B, Berlit S,
Sperk E, Bieback K and Sütterlin M: Wound fluid from breast cancer
patients undergoing intraoperative radiotherapy exhibits an altered
cytokine profile and impairs mesenchymal stromal cell function.
Cancers (Basel). 13:21402021. View Article : Google Scholar : PubMed/NCBI
|
47
|
Bhat K, Sarkissyan M, Wu Y and Vadgama JV:
GROα overexpression drives cell migration and invasion in triple
negative breast cancer cells. Oncol Rep. 38:21–30. 2017. View Article : Google Scholar : PubMed/NCBI
|
48
|
Slattery K, Woods E, Zaiatz-Bittencourt V,
Marks S, Chew S, Conroy M, Goggin C, MacEochagain C, Kennedy J,
Lucas S, et al: TGFβ drives NK cell metabolic dysfunction in human
metastatic breast cancer. J Immunother Cancer. 9:e0020442021.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Pan L, Fu TM, Zhao W, Zhao L, Chen W, Qiu
C, Liu W, Liu Z, Piai A, Fu Q, et al: Higher-order clustering of
the transmembrane anchor of DR5 drives signaling. Cell.
176:1477–1489.e14. 2019. View Article : Google Scholar : PubMed/NCBI
|
50
|
Wang T, Fahrmann JF, Lee H, Li YJ,
Tripathi SC, Yue C, Zhang C, Lifshitz V, Song J, Yuan Y, et al:
JAK/STAT3-regulated fatty acid β-oxidation is critical for breast
cancer stem cell self-renewal and chemoresistance. Cell Metab.
27:136–150.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
51
|
Valeta-Magara A, Gadi A, Volta V, Walters
B, Arju R, Giashuddin S, Zhong H and Schneider RJ: Inflammatory
breast cancer promotes development of M2 tumor-associated
macrophages and cancer mesenchymal cells through a complex
chemokine network. Cancer Res. 79:3360–3371. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Deng F, Weng Y, Li X, Wang T, Fan M and
Shi Q: Overexpression of IL-8 promotes cell migration via PI3K-Akt
signaling pathway and EMT in triple-negative breast cancer. Pathol
Res Pract. 223:1528242021. View Article : Google Scholar : PubMed/NCBI
|
53
|
Araujo AM, Abaurrea A, Azcoaga P,
López-Velazco JI, Manzano S, Rodriguez J, Rezola R, Egia-Mendikute
L, Valdés-Mora F, Flores JM, et al: Stromal oncostatin M cytokine
promotes breast cancer progression by reprogramming the tumor
microenvironment. J Clin Invest. 132:e1486672022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Junk DJ, Bryson BL, Smigiel JM,
Parameswaran N, Bartel CA and Jackson MW: Oncostatin M promotes
cancer cell plasticity through cooperative STAT3-SMAD3 signaling.
Oncogene. 36:4001–4013. 2017. View Article : Google Scholar : PubMed/NCBI
|
55
|
Tulotta C and Ottewell P: The role of
IL-1B in breast cancer bone metastasis. Endocr Relat Cancer.
25:R421–R434. 2018. View Article : Google Scholar : PubMed/NCBI
|
56
|
Castaño Z, San Juan BP, Spiegel A, Pant A,
DeCristo MJ, Laszewski T, Ubellacker JM, Janssen SR, Dongre A,
Reinhardt F, et al: IL-1β inflammatory response driven by primary
breast cancer prevents metastasis-initiating cell colonization. Nat
Cell Biol. 20:1084–1097. 2018. View Article : Google Scholar : PubMed/NCBI
|
57
|
Wersal C, Keller A, Weiss C, Giordano FA,
Abo-Madyan Y, Tuschy B, Sütterlin M, Wenz F and Sperk E: Long-term
changes in blood counts after intraoperative radiotherapy for
breast cancer-single center experience and review of the
literature. Transl Cancer Res. 8:1882–1903. 2019. View Article : Google Scholar : PubMed/NCBI
|
58
|
Meng G, Wuest M, Tang X, Dufour J, Zhao Y,
Curtis JM, McMullen TPW, Murray D, Wuest F and Brindley DN:
Repeated fractions of X-radiation to the breast fat pads of mice
augment activation of the autotaxin-lysophosphatidate-inflammatory
cycle. Cancers (Basel). 11:18162019. View Article : Google Scholar : PubMed/NCBI
|
59
|
Krall JA, Reinhardt F, Mercury OA,
Pattabiraman DR, Brooks MW, Dougan M, Lambert AW, Bierie B, Ploegh
HL, Dougan SK and Weinberg RA: The systemic response to surgery
triggers the outgrowth of distant immune-controlled tumors in mouse
models of dormancy. Sci Transl Med. 10:eaan34642018. View Article : Google Scholar : PubMed/NCBI
|
60
|
Pan L, Wan M, Zheng W, Wu R, Tang W, Zhang
X, Yang T and Ye C: Intrabeam radiation inhibits proliferation,
migration, and invasiveness and promotes apoptosis of MCF-7 breast
cancer cells. Technol Cancer Res Treat. 18:15330338198407062019.
View Article : Google Scholar : PubMed/NCBI
|
61
|
Tang H, Cai L, He X, Niu Z and Huang H, Hu
W, Bian H and Huang H: Radiation-induced bystander effect and its
clinical implications. Front Oncol. 13:11244122023. View Article : Google Scholar : PubMed/NCBI
|
62
|
Al-Abedi R, Tuncay Cagatay S, Mayah A,
Brooks SA and Kadhim M: Ionising radiation promotes invasive
potential of breast cancer cells: The role of exosomes in the
process. Int J Mol Sci. 22:115702021. View Article : Google Scholar : PubMed/NCBI
|
63
|
Feghhi M, Rezaie J, Mostafanezhad K and
Jabbari N: Bystander effects induced by electron beam-irradiated
MCF-7 cells: A potential mechanism of therapy resistance. Breast
Cancer Res Treat. 187:657–671. 2021. View Article : Google Scholar : PubMed/NCBI
|
64
|
Chen S, Zhao Y, Han W, Chiu SK, Zhu L, Wu
L and Yu KN: Rescue effects in radiobiology: Unirradiated bystander
cells assist irradiated cells through intercellular signal
feedback. Mutat Res. 706:59–64. 2011. View Article : Google Scholar : PubMed/NCBI
|
65
|
Amaravadi RK and Thompson CB: The roles of
therapy-induced autophagy and necrosis in cancer treatment. Clin
Cancer Res. 13:7271–7279. 2007. View Article : Google Scholar : PubMed/NCBI
|
66
|
Lu Z, Luo RZ, Lu Y, Zhang X, Yu Q, Khare
S, Kondo S, Kondo Y, Yu Y, Mills GB, et al: The tumor suppressor
gene ARHI regulates autophagy and tumor dormancy in human ovarian
cancer cells. J Clin Invest. 118:3917–3929. 2008.PubMed/NCBI
|
67
|
Wang X, Zhang J, Fu J, Wang J, Ye S, Liu W
and Shao C: Role of ROS-mediated autophagy in radiation-induced
bystander effect of hepatoma cells. Int J Radiat Biol. 91:452–458.
2015. View Article : Google Scholar : PubMed/NCBI
|
68
|
Kulcenty K, Piotrowski I, Rucinski M,
Wroblewska JP, Jopek K, Murawa D and Suchorska WM: Surgical wound
fluids from patients with breast cancer reveal similarities in the
biological response induced by intraoperative radiation therapy and
the radiation-induced bystander effect-transcriptomic approach. Int
J Mol Sci. 21:11592020. View Article : Google Scholar : PubMed/NCBI
|
69
|
Vaupel P and Multhoff G: Revisiting the
Warburg effect: Historical dogma versus current understanding. J
Physiol. 599:1745–1757. 2021. View Article : Google Scholar : PubMed/NCBI
|
70
|
Vaupel P, Schmidberger H and Mayer A: The
Warburg effect: Essential part of metabolic reprogramming and
central contributor to cancer progression. Int J Radiat Biol.
95:912–919. 2019. View Article : Google Scholar : PubMed/NCBI
|
71
|
Estrella V, Chen T, Lloyd M, Wojtkowiak J,
Cornnell HH, Ibrahim-Hashim A, Bailey K, Balagurunathan Y, Rothberg
JM, Sloane BF, et al: Acidity generated by the tumor
microenvironment drives local invasion. Cancer Res. 73:1524–1535.
2013. View Article : Google Scholar : PubMed/NCBI
|
72
|
Wenz F: Keynote address at the american
society of breast surgeons 18th annual meeting: Current and future
application of intraoperative radiotherapy (IORT) in the curative
and palliative treatment of breast cancer. Ann Surg Oncol.
24:2811–2817. 2017. View Article : Google Scholar : PubMed/NCBI
|
73
|
Omosule M, De Silva-Minor S and Coombs N:
Case report: Intraoperative radiotherapy as the new standard of
care for breast cancer patients with disabling health conditions or
impairments. Front Oncol. 13:11566192023. View Article : Google Scholar : PubMed/NCBI
|
74
|
Hochhertz F, Hass P, Röllich B, Ochel HJ
and Gawish A: A single-institution retrospective analysis of
intraoperative radiation boost during breast-conservation treatment
for breast cancer. J Cancer Res Clin Oncol. 149:5743–5749. 2023.
View Article : Google Scholar : PubMed/NCBI
|