1
|
DiSabato DJ, Quan N and Godbout JP:
Neuroinflammation: The devil is in the details. J Neurochem. 139
(Suppl 2):S136–S153. 2016. View Article : Google Scholar : PubMed/NCBI
|
2
|
Konsman JP: Cytokines in the brain and
neuroinflammation: We didn't starve the fire! Pharmaceuticals
(Basel). 15:1402022. View Article : Google Scholar : PubMed/NCBI
|
3
|
Yong HYF, Rawji KS, Ghorbani S, Xue M and
Yong VW: The benefits of neuroinflammation for the repair of the
injured central nervous system. Cell Mol Immunol. 16:540–546. 2019.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Leng F and Edison P: Neuroinflammation and
microglial activation in Alzheimer disease: Where do we go from
here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Chakraborty B, Mukerjee N, Maitra S,
Zehravi M, Mukherjee D, Ghosh A, Massoud EES and Rahman MH:
Therapeutic potential of different natural products for the
treatment of Alzheimer's disease. Oxid Med Cell Longev.
2022:68738742022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Glass CK, Saijo K, Winner B, Marchetto MC
and Fred H: Mechanisms underlying inflammation in
neurodegeneration. Cell. 140:918–934. 2010. View Article : Google Scholar : PubMed/NCBI
|
7
|
Kwon HS and Koh SH: Neuroinflammation in
neurodegenerative disorders: The roles of microglia and astrocytes.
Transl Neurodegener. 9:422020. View Article : Google Scholar : PubMed/NCBI
|
8
|
Fiebich BL, Batista CRA, Saliba SW, Yousif
NM and de Oliveira ACP: Role of microglia TLRs in
neurodegeneration. Front Cell Neurosci. 12:3292018. View Article : Google Scholar : PubMed/NCBI
|
9
|
Xu L, He D and Bai Y: Microglia-mediated
inflammation and neurodegenerative disease. Mol Neurobiol.
53:6709–6715. 2016. View Article : Google Scholar : PubMed/NCBI
|
10
|
Deng M, Yan W, Gu Z, Li Y, Chen L and He
B: Anti-neuroinflammatory potential of natural products in the
treatment of Alzheimer's disease. Molecules. 28:14862023.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Guzman-Martinez L, Maccioni RB, Andrade V,
Navarrete LP, Pastor MG and Ramos-Escobar N: Neuroinflammation as a
common feature of neurodegenerative disorders. Front Pharmacol.
10:10082019. View Article : Google Scholar : PubMed/NCBI
|
12
|
Terstappen GC, Meyer AH, Bell RD and Zhang
W: Strategies for delivering therapeutics across the blood-brain
barrier. Nat Rev Drug Discov. 20:362–383. 2021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Lu F, Wang D, Li RL, He LY, Ai L and Wu
CJ: Current strategies and technologies for finding drug targets of
active components from traditional Chinese medicine. Front Biosci
(Landmark Ed). 26:572–589. 2021. View
Article : Google Scholar : PubMed/NCBI
|
14
|
Pan T, Cai B, Wang K, Wang S, Zhou S, Yu
X, Xu B and Chen L: Neferine enhances insulin sensitivity in
insulin resistant rats. J Ethnopharmacol. 124:98–102. 2009.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Xu L, Zhang X, Li Y, Lu S, Lu S, Li J,
Wang Y, Tian X, Wei JJ, Shao C and Liu Z: Neferine induces
autophagy of human ovarian cancer cells via p38 MAPK/JNK
activation. Tumor Biol. 37:8721–8729. 2016. View Article : Google Scholar : PubMed/NCBI
|
16
|
Jun MY, Karki R, Paudel KR, Sharma BR,
Adhikari D and Kim DW: Alkaloid rich fraction from Nelumbo
nucifera targets VSMC proliferation and migration to suppress
restenosis in balloon-injured rat carotid artery. Atherosclerosis.
248:179–189. 2016. View Article : Google Scholar : PubMed/NCBI
|
17
|
Wang Y, Wang S, Wang R, Li S and Yuan Y:
Neferine exerts antioxidant and anti-inflammatory effects on carbon
tetrachloride-induced liver fibrosis by inhibiting the MAPK and
NF-κB/IκBα pathways. Evid Based Complement Alternat Med.
2021:41360192021.PubMed/NCBI
|
18
|
Li H, Gao L, Min J, Yang Y and Zhang R:
Neferine suppresses autophagy-induced inflammation, oxidative
stress and adipocyte differentiation in Graves' orbitopathy. J Cell
Mol Med. 25:1949–1957. 2021. View Article : Google Scholar : PubMed/NCBI
|
19
|
Yin S, Ran Q, Yang J, Zhao Y and Li C:
Nootropic effect of neferine on aluminium chloride-induced
Alzheimer's disease in experimental models. J Biochem Mol Toxicol.
34:e224292020. View Article : Google Scholar : PubMed/NCBI
|
20
|
Lin TY, Hung CY, Chiu KM, Lee MY, Lu CW
and Wang SJ: Neferine, an alkaloid from lotus seed embryos, exerts
antiseizure and neuroprotective effects in a kainic acid-induced
seizure model in rats. Int J Mol Sci. 23:41302022. View Article : Google Scholar : PubMed/NCBI
|
21
|
Wang SH, He H, Chen L, Zhang W, Zhang XJ
and Chen JZ: Protective effects of salidroside in the
MPTP/MPP(+)-induced model of Parkinson's disease through
ROS-NO-related mitochondrion pathway. Mol Neurobiol. 51:718–728.
2015. View Article : Google Scholar : PubMed/NCBI
|
22
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
23
|
Zhong Z, Chen W, Gao H, Che N, Xu M, Yang
L, Zhang Y and Ye M: Fecal microbiota transplantation exerts a
protective role in MPTP-induced parkinson's disease via the
TLR4/PI3K/AKT/NF-κB pathway stimulated by α-synuclein. Neurochem
Res. 46:3050–3058. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Hiramatsu G, Uta D, Mihara K, Andoh T and
Kume T: Inhibitory effect of panaxytriol on BV-2 microglial cell
activation. J Pharmacol Sci. 145:273–278. 2021. View Article : Google Scholar : PubMed/NCBI
|
25
|
Shin HM, Kim MH, Kim BH, Jung SH, Kim YS,
Park HJ, Hong JT, Min KR and Kim Y: Inhibitory action of novel
aromatic diamine compound on lipopolysaccharide-induced nuclear
translocation of NF-kappaB without affecting IkappaB degradation.
FEBS Lett. 571:50–54. 2004. View Article : Google Scholar : PubMed/NCBI
|
26
|
Verri M, Pastoris O, Dossena M, Aquilani
R, Guerriero F, Cuzzoni G, Venturini L, Ricevuti G and Bongiorno
AI: Mitochondrial alterations, oxidative stress and
neuroinflammation in Alzheimer's disease. Int J Immunopathol
Pharmacol. 25:345–353. 2012. View Article : Google Scholar : PubMed/NCBI
|
27
|
Lull ME and Block ML: Microglial
activation and chronic neurodegeneration. Neurotherapeutics.
7:354–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
28
|
Chiu KM, Hung YL, Wang SJ, Tsai YJ, Wu NL,
Liang CW, Chang DC and Hung CF: Anti-allergic and anti-inflammatory
effects of neferine on RBL-2H3 cells. Int J Mol Sci. 22:109942021.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Zhu JJ, Yu BY, Huang XK, He MZ, Chen BW,
Chen TT, Fang HY, Chen SQ, Fu XQ, Li PJ, et al: Neferine protects
against hypoxic-ischemic brain damage in neonatal rats by
suppressing NLRP3-mediated inflammasome activation. Oxid Med Cell
Longev. 2021:66549542021. View Article : Google Scholar : PubMed/NCBI
|
30
|
Wu XF, Li C, Yang G, Wang YZ, Peng Y, Zhu
DD, Sui AR, Wu Q, Li QF, Wang B, et al: Scorpion venom
heat-resistant peptide attenuates microglia activation and
neuroinflammation. Front Pharmacol. 12:7047152021. View Article : Google Scholar : PubMed/NCBI
|
31
|
Yu J, Zhu H, Taheri S, Mondy W, Bonilha L,
Magwood GS, Lackland D, Adams RJ and Kindy MS: Serum amyloid
A-mediated inflammasome activation of microglial cells in cerebral
ischemia. J Neurosci. 39:9465–9476. 2019. View Article : Google Scholar : PubMed/NCBI
|
32
|
Li D, Xu J, Qin Y, Cai N, Cheng Y and Wang
H: Roflupram, a novel phosphodiesterase 4 inhibitor, inhibits
lipopolysaccharide-induced neuroinflammatory responses through
activation of the AMPK/Sirt1 pathway. Int Immunopharmacol.
90:1071762021. View Article : Google Scholar : PubMed/NCBI
|
33
|
Xie J, Chen MH, Ying CP and Chen MY:
Neferine induces p38 MAPK/JNK1/2 activation to modulate melanoma
proliferation, apoptosis, and oxidative stress. Ann Transl Med.
8:16432020. View Article : Google Scholar : PubMed/NCBI
|
34
|
Chen S, Chu B, Chen Y, Cheng X, Guo D,
Chen L, Wang J, Li Z, Hong Z and Hong D: Neferine suppresses
osteoclast differentiation through suppressing NF-κB signal pathway
but not MAPKs and promote osteogenesis. J Cell Physiol.
234:22960–22971. 2019. View Article : Google Scholar : PubMed/NCBI
|
35
|
Ni B, Huang X, Xi Y, Mao Z, Chu X, Zhang
R, Ma X and You H: Neferine inhibits expression of inflammatory
mediators and matrix degrading enzymes in IL-1β-treated rat
chondrocytes via suppressing MAPK and NF-κB signaling pathways.
Inflammation. 43:1209–1221. 2020. View Article : Google Scholar : PubMed/NCBI
|