1
|
Toi PL, Anothaisintawee T, Chaikledkaew U,
Briones JR, Reutrakul S and Thakkinstian A: Preventive role of diet
interventions and dietary factors in type 2 diabetes mellitus: An
umbrella review. Nutrients. 12:27222020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Iatcu CO, Steen A and Covasa M: Gut
microbiota and complications of type-2 diabetes. Nutrients.
14:1662021. View Article : Google Scholar : PubMed/NCBI
|
3
|
KDOQI clinical practice guideline for
diabetes and CKD: 2012 update. Am J Kidney Dis. 60:850–886. 2012.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Jia Y, Guan M, Zheng Z, Zhang Q, Tang C,
Xu W, Xiao Z, Wang L and Xue Y: miRNAs in urine extracellular
vesicles as predictors of early-Stage diabetic nephropathy. J
Diabetes Res. 2016:79327652016. View Article : Google Scholar : PubMed/NCBI
|
5
|
Ma R, Wang Y, Xu Y, Wang R, Wang X, Yu N,
Li M and Zhou Y: Tacrolimus protects podocytes from apoptosis via
downregulation of TRPC6 in diabetic nephropathy. J Diabetes Res.
2021:88321142021. View Article : Google Scholar : PubMed/NCBI
|
6
|
Adeshara KA, Diwan AG and Tupe RS:
Diabetes and complications: Cellular signaling pathways, current
understanding and targeted therapies. Curr Drug Targets.
17:1309–1328. 2016. View Article : Google Scholar : PubMed/NCBI
|
7
|
Gregg EW, Sattar N and Ali MK: The
changing face of diabetes complications. Lancet Diabetes
Endocrinol. 4:537–547. 2016. View Article : Google Scholar : PubMed/NCBI
|
8
|
Ali MK, Pearson-Stuttard J, Selvin E and
Gregg EW: Interpreting global trends in type 2 diabetes
complications and mortality. Diabetologia. 65:3–13. 2022.
View Article : Google Scholar : PubMed/NCBI
|
9
|
Caro JJ, Ward AJ and O'Brien JA: Lifetime
costs of complications resulting from type 2 diabetes in the U.S.
Diabetes Care. 25:476–481. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Rayego-Mateos S, Rodrigues-Diez RR,
Fernandez-Fernandez B, Mora-Fernández C, Marchant V, Donate-Correa
J, Navarro-González JF, Ortiz A and Ruiz-Ortega M: Targeting
inflammation to treat diabetic kidney disease: The road to 2030.
Kidney Int. 103:282–296. 2023. View Article : Google Scholar : PubMed/NCBI
|
11
|
Karunasagara S, Hong GL, Park SR, Lee NH,
Jung DY, Kim TW and Jung JY: Korean red ginseng attenuates
hyperglycemia-induced renal inflammation and fibrosis via
accelerated autophagy and protects against diabetic kidney disease.
J Ethnopharmacol. 254:1126932020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Gong Z, Zhao S, Zhou J, Wang L, Du X, Li
H, Chen Y, Cai W and Wu J: Curcumin alleviates DSS-induced colitis
via inhibiting NLRP3 inflammsome activation and IL-1β production.
Mol Immunol. 104:11–19. 2018. View Article : Google Scholar : PubMed/NCBI
|
13
|
Sharma BR and Kanneganti TD: NLRP3
inflammasome in cancer and metabolic diseases. Nat Immunol.
22:550–559. 2021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Hutton HL, Ooi JD, Holdsworth SR and
Kitching AR: The NLRP3 inflammasome in kidney disease and
autoimmunity. Nephrology (Carlton). 21:736–744. 2016. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wu M, Han W, Song S, Du Y, Liu C, Chen N,
Wu H, Shi Y and Duan H: NLRP3 deficiency ameliorates renal
inflammation and fibrosis in diabetic mice. Mol Cell Endocrinol.
478:115–125. 2018. View Article : Google Scholar : PubMed/NCBI
|
16
|
Kim Y, Lim JH, Kim MY, Kim EN, Yoon HE,
Shin SJ, Choi BS, Kim YS, Chang YS and Park CW: The adiponectin
receptor agonist adiporon ameliorates diabetic nephropathy in a
model of type 2 diabetes. J Am Soc Nephrol. 29:1108–1127. 2018.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Dietrich A and Gudermann T: TRPC6. Handb
Exp Pharmacol. 125–141. 2007.doi: 10.1007/978-3-540-34891-7_7.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Kong L, Sun R, Zhou H, Huang D, Xing W, Wu
B, Li H, Hu W, Song S and Xu Y: Trpc6 knockout improves behavioral
dysfunction and reduces Aβ production by inhibiting CN-NFAT1
signaling in T2DM mice. Exp Neurol. 363:1143502023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Staruschenko A, Spires D and Palygin O:
Role of TRPC6 in progression of diabetic kidney disease. Curr
Hypertens Rep. 21:482019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Eder P: Cardiac remodeling and disease:
SOCE and TRPC signaling in cardiac pathology. Adv Exp Med Biol.
993:505–521. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Ma R, Chaudhari S and Li W: Canonical
transient receptor potential 6 channel: A new target of reactive
oxygen species in renal physiology and pathology. Antioxid Redox
Signal. 25:732–748. 2016. View Article : Google Scholar : PubMed/NCBI
|
22
|
Lin BL, Matera D, Doerner JF, Zheng N, Del
Camino D, Mishra S, Bian H, Zeveleva S, Zhen X, Blair NT, et al: In
vivo selective inhibition of TRPC6 by antagonist BI 749327
ameliorates fibrosis and dysfunction in cardiac and renal disease.
Proc Natl Acad Sci USA. 116:10156–10161. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Nie B, Liu C, Bai X, Chen X, Wu S, Zhang
S, Huang Z, Xie M, Xu T, Xin W, et al: AKAP150 involved in
paclitaxel-induced neuropathic pain via inhibiting CN/NFAT2 pathway
and downregulating IL-4. Brain Behav Immun. 68:158–168. 2018.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Rusnak F and Mertz P: Calcineurin: Form
and function. Physiol Rev. 80:1483–1521. 2000. View Article : Google Scholar : PubMed/NCBI
|
25
|
Rao A, Luo C and Hogan PG: Transcription
factors of the NFAT family: Regulation and function. Annu Rev
Immunol. 15:707–747. 1997. View Article : Google Scholar : PubMed/NCBI
|
26
|
Mognol GP, Carneiro FR, Robbs BK, Faget DV
and Viola JP: Cell cycle and apoptosis regulation by NFAT
transcription factors: New roles for an old player. Cell Death Dis.
7:e21992016. View Article : Google Scholar : PubMed/NCBI
|
27
|
Ling H, Zhu Z, Yang J, He J, Yang S, Wu D,
Feng S and Liao D: Dihydromyricetin improves type 2
diabetes-induced cognitive impairment via suppressing oxidative
stress and enhancing brain-derived neurotrophic factor-mediated
neuroprotection in mice. Acta Biochim Biophys Sin (Shanghai).
50:298–306. 2018. View Article : Google Scholar : PubMed/NCBI
|
28
|
Wick MR: The hematoxylin and eosin stain
in anatomic pathology-An often-neglected focus of quality assurance
in the laboratory. Semin Diagn Pathol. 36:303–311. 2019. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yang L, Guo J, Yu N, Song H, Niu J and Gu
Y: Tocilizumab mimotope alleviates kidney injury and fibrosis by
inhibiting IL-6 signaling and ferroptosis in UUO model. Life Sci.
261:1184872020. View Article : Google Scholar : PubMed/NCBI
|
30
|
Lefkowitch JH: Special stains in
diagnostic liver pathology. Semin Diagn Pathol. 23:190–198. 2006.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Qiao S, Liu R, Lv C, Miao Y, Yue M, Tao Y,
Wei Z, Xia Y and Dai Y: Bergenin impedes the generation of
extracellular matrix in glomerular mesangial cells and ameliorates
diabetic nephropathy in mice by inhibiting oxidative stress via the
mTOR/β-TrcP/Nrf2 pathway. Free Radic Biol Med. 145:118–135. 2019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Han WK, Bailly V, Abichandani R, Thadhani
R and Bonventre JV: Kidney Injury Molecule-1 (KIM-1): A novel
biomarker for human renal proximal tubule injury. Kidney Int.
62:237–244. 2002. View Article : Google Scholar : PubMed/NCBI
|
33
|
Glastras SJ, Chen H, Teh R, McGrath RT,
Chen J, Pollock CA, Wong MG and Saad S: Mouse models of diabetes,
obesity and related kidney disease. PLoS One. 11:e01621312016.
View Article : Google Scholar : PubMed/NCBI
|
34
|
Jha JC, Banal C, Chow BS, Cooper ME and
Jandeleit-Dahm K: Diabetes and kidney disease: Role of oxidative
stress. Antioxid Redox Signal. 25:657–684. 2016. View Article : Google Scholar : PubMed/NCBI
|
35
|
Gong W, Luo C, Peng F, Xiao J, Zeng Y, Yin
B, Chen X, Li S, He X, Liu Y, et al: Brahma-related gene-1 promotes
tubular senescence and renal fibrosis through
Wnt/β-catenin/autophagy axis. Clin Sci (Lond). 135:1873–1895. 2021.
View Article : Google Scholar : PubMed/NCBI
|
36
|
Yan Q, Sui W, Xie S, Chen H, Xie S, Zou G,
Guo J and Zou H: Expression and role of integrin-linked kinase and
collagen IV in human renal allografts with interstitial fibrosis
and tubular atrophy. Transpl Immunol. 23:1–5. 2010. View Article : Google Scholar : PubMed/NCBI
|
37
|
Kharroubi AT and Darwish HM: Diabetes
mellitus: The epidemic of the century. World J Diabetes. 6:850–867.
2015. View Article : Google Scholar : PubMed/NCBI
|
38
|
Chen XC, Li ZH, Yang C, Tang JX, Lan HY
and Liu HF: Lysosome depletion-triggered autophagy impairment in
progressive kidney injury. Kidney Dis (Basel). 7:254–267. 2021.
View Article : Google Scholar : PubMed/NCBI
|
39
|
Duan JY, Lin X, Xu F, Shan SK, Guo B, Li
FX, Wang Y, Zheng MH, Xu QS, Lei LM, et al: Ferroptosis and its
potential role in metabolic diseases: A curse or revitalization?
Front Cell Dev Biol. 9:7017882021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Al Mamun A, Ara Mimi A, Wu Y, Zaeem M,
Abdul Aziz M, Aktar Suchi S, Alyafeai E, Munir F and Xiao J:
Pyroptosis in diabetic nephropathy. Clin Chim Acta. 523:131–143.
2021. View Article : Google Scholar : PubMed/NCBI
|
41
|
Sifuentes-Franco S, Padilla-Tejeda DE,
Carrillo-Ibarra S and Miranda-Díaz AG: Oxidative stress, apoptosis,
and mitochondrial function in diabetic nephropathy. Int J
Endocrinol. 2018:18758702018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Samsu N: Diabetic Nephropathy: Challenges
in pathogenesis, diagnosis, and treatment. Biomed Res Int.
2021:14974492021. View Article : Google Scholar : PubMed/NCBI
|
43
|
Luo Y, Lu Z, Waaga-Gasser AM, Yang H, Liu
J, Wu J, Lu J, Liu X and Zhang L: Modulation of calcium homeostasis
may be associated with susceptibility to renal cell carcinoma in
diabetic nephropathy rats. Cancer Manag Res. 12:9679–9689. 2020.
View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang Q, Tian X, Wang Y, Wang Y, Li J, Zhao
T and Li P: Role of transient receptor potential canonical channel
6 (TRPC6) in diabetic kidney disease by regulating podocyte actin
cytoskeleton rearrangement. J Diabetes Res. 2020:68973902020.
View Article : Google Scholar : PubMed/NCBI
|
45
|
Yu J, Li C, Ma L, Zhai B, Xu A and Shao D:
Transient receptor potential canonical 6 knockdown ameliorated
diabetic kidney disease by inhibiting nuclear factor of activated T
cells 2 expression in glomerular mesangial cells. Ren Fail.
44:1780–1790. 2022. View Article : Google Scholar : PubMed/NCBI
|
46
|
Zimmet P, Shi Z, El-Osta A and Ji L:
Epidemic T2DM, early development and epigenetics: Implications of
the Chinese Famine. Nat Rev Endocrinol. 14:738–746. 2018.
View Article : Google Scholar : PubMed/NCBI
|
47
|
Vaidya VS, Ozer JS, Dieterle F, Collings
FB, Ramirez V, Troth S, Muniappa N, Thudium D, Gerhold D, Holder
DJ, et al: Kidney injury molecule-1 outperforms traditional
biomarkers of kidney injury in preclinical biomarker qualification
studies. Nat Biotechnol. 28:478–485. 2010. View Article : Google Scholar : PubMed/NCBI
|
48
|
Adeva-Andany MM, Adeva-Contreras L,
Fernández-Fernández C, Carneiro-Freire N and Domínguez-Montero A:
Histological Manifestations of diabetic kidney disease and its
relationship with insulin resistance. Curr Diabetes Rev.
19:e2803222027052023. View Article : Google Scholar : PubMed/NCBI
|
49
|
Lee BY, Han JA, Im JS, Morrone A, Johung
K, Goodwin EC, Kleijer WJ, DiMaio D and Hwang ES:
Senescence-associated beta-galactosidase is lysosomal
beta-galactosidase. Aging Cell. 5:187–195. 2006. View Article : Google Scholar : PubMed/NCBI
|
50
|
Bellary S, Kyrou I, Brown JE and Bailey
CJ: Type 2 diabetes mellitus in older adults: Clinical
considerations and management. Nat Rev Endocrinol. 17:534–548.
2021. View Article : Google Scholar : PubMed/NCBI
|
51
|
Bülow RD and Boor P: Extracellular matrix
in kidney fibrosis: More than just a scaffold. J Histochem
Cytochem. 67:643–661. 2019. View Article : Google Scholar : PubMed/NCBI
|
52
|
Yuan Q, Tan RJ and Liu Y: Myofibroblast in
kidney fibrosis: Origin, activation, and regulation. Adv Exp Med
Biol. 1165:253–283. 2019. View Article : Google Scholar : PubMed/NCBI
|
53
|
Chen PS, Li YP and Ni HF: Morphology and
evaluation of renal fibrosis. Adv Exp Med Biol. 1165:17–36. 2019.
View Article : Google Scholar : PubMed/NCBI
|
54
|
Song MK, Lee JH, Ryoo IG, Lee SH, Ku SK
and Kwak MK: Bardoxolone ameliorates TGF-β1-associated renal
fibrosis through Nrf2/Smad7 elevation. Free Radic Biol Med.
138:33–42. 2019. View Article : Google Scholar : PubMed/NCBI
|
55
|
Fukasawa H, Yamamoto T, Suzuki H, Togawa
A, Ohashi N, Fujigaki Y, Uchida C, Aoki M, Hosono M, Kitagawa M and
Hishida A: Treatment with anti-TGF-beta antibody ameliorates
chronic progressive nephritis by inhibiting Smad/TGF-beta
signaling. Kidney Int. 65:63–74. 2004. View Article : Google Scholar : PubMed/NCBI
|
56
|
Ka SM, Huang XR, Lan HY, Tsai PY, Yang SM,
Shui HA and Chen A: Smad7 gene therapy ameliorates an autoimmune
crescentic glomerulonephritis in mice. J Am Soc Nephrol.
18:1777–1788. 2007. View Article : Google Scholar : PubMed/NCBI
|
57
|
Ka SM, Yeh YC, Huang XR, Chao TK, Hung YJ,
Yu CP, Lin TJ, Wu CC, Lan HY and Chen A: Kidney-targeting Smad7
gene transfer inhibits renal TGF-β/MAD homologue (SMAD) and nuclear
factor κB (NF-κB) signalling pathways, and improves diabetic
nephropathy in mice. Diabetologia. 55:509–519. 2012. View Article : Google Scholar : PubMed/NCBI
|
58
|
Szabó C: Nitric oxide, intracellular
calcium overload, and cytotoxicity. Shock. 6:25–26. 1996.
View Article : Google Scholar : PubMed/NCBI
|
59
|
Han Y, Su Y, Han M, Liu Y, Shi Q, Li X,
Wang P and Li W and Li W: Ginsenoside Rg1 attenuates glomerular
fibrosis by inhibiting CD36/TRPC6/NFAT2 signaling in type 2
diabetes mellitus mice. J Ethnopharmacol. 302:1159232023.
View Article : Google Scholar : PubMed/NCBI
|
60
|
Seo K, Rainer PP, Shalkey Hahn V, Lee DI,
Jo SH, Andersen A, Liu T, Xu X, Willette RN, Lepore JJ, et al:
Combined TRPC3 and TRPC6 blockade by selective small-molecule or
genetic deletion inhibits pathological cardiac hypertrophy. Proc
Natl Acad Sci USA. 111:1551–1556. 2014. View Article : Google Scholar : PubMed/NCBI
|
61
|
Reiser J, Polu KR, Möller CC, Kenlan P,
Altintas MM, Wei C, Faul C, Herbert S, Villegas I, Avila-Casado C,
et al: TRPC6 is a glomerular slit diaphragm-associated channel
required for normal renal function. Nat Genet. 37:739–744. 2005.
View Article : Google Scholar : PubMed/NCBI
|
62
|
Hofmann T, Obukhov AG, Schaefer M,
Harteneck C, Gudermann T and Schultz G: Direct activation of human
TRPC6 and TRPC3 channels by diacylglycerol. Nature. 397:259–263.
1999. View Article : Google Scholar : PubMed/NCBI
|
63
|
Kobayashi M, Mutharasan RK, Feng J,
Roberts MF and Lomasney JW: Identification of hydrophobic
interactions between proteins and lipids: Free fatty acids activate
phospholipase C delta1 via allosterism. Biochemistry. 43:7522–7533.
2004. View Article : Google Scholar : PubMed/NCBI
|
64
|
Makarewich CA, Zhang H, Davis J, Correll
RN, Trappanese DM, Hoffman NE, Troupes CD, Berretta RM, Kubo H,
Madesh M, et al: Transient receptor potential channels contribute
to pathological structural and functional remodeling after
myocardial infarction. Circ Res. 115:567–580. 2014. View Article : Google Scholar : PubMed/NCBI
|
65
|
Koitabashi N, Aiba T, Hesketh GG, Rowell
J, Zhang M, Takimoto E, Tomaselli GF and Kass DA: Cyclic
GMP/PKG-dependent inhibition of TRPC6 channel activity and
expression negatively regulates cardiomyocyte NFAT activation Novel
mechanism of cardiac stress modulation by PDE5 inhibition. J Mol
Cell Cardiol. 48:713–724. 2010. View Article : Google Scholar : PubMed/NCBI
|
66
|
Chung HS, Kim GE, Holewinski RJ,
Venkatraman V, Zhu G, Bedja D, Kass DA and Van Eyk JE: Transient
receptor potential channel 6 regulates abnormal cardiac
S-nitrosylation in Duchenne muscular dystrophy. Proc Natl Acad Sci
USA. 114:E10763–E10771. 2017. View Article : Google Scholar : PubMed/NCBI
|
67
|
Wang L, Jirka G, Rosenberg PB, Buckley AF,
Gomez JA, Fields TA, Winn MP and Spurney RF: Gq signaling causes
glomerular injury by activating TRPC6. J Clin Invest.
125:1913–1926. 2015. View Article : Google Scholar : PubMed/NCBI
|
68
|
Su Y, Chen Q, Ju Y and Li W and Li W:
Palmitate induces human glomerular mesangial cells fibrosis through
CD36-mediated transient receptor potential canonical channel
6/nuclear factor of activated T cell 2 activation. Biochim Biophys
Acta Mol Cell Biol Lipids. 1865:1587932020. View Article : Google Scholar : PubMed/NCBI
|
69
|
Bian Y, Shi C, Song S, Mu L, Wu M, Qiu D,
Dong J, Zhang W, Yuan C, Wang D, et al: Sestrin2 attenuates renal
damage by regulating Hippo pathway in diabetic nephropathy. Cell
Tissue Res. 390:93–112. 2022. View Article : Google Scholar : PubMed/NCBI
|
70
|
Mena MP, Papiewska-Pajak I, Przygodzka P,
Kozaczuk A, Boncela J and Cierniewski CS: NFAT2 regulates COX-2
expression and modulates the integrin repertoire in endothelial
cells at the crossroads of angiogenesis and inflammation. Exp Cell
Res. 324:124–136. 2014. View Article : Google Scholar : PubMed/NCBI
|
71
|
Zhang D, Ji P, Sun R, Zhou H, Huang L,
Kong L and Li W and Li W: Ginsenoside Rg1 attenuates LPS-induced
chronic renal injury by inhibiting NOX4-NLRP3 signaling in mice.
Biomed Pharmacother. 150:1129362022. View Article : Google Scholar : PubMed/NCBI
|
72
|
Shahzad K, Fatima S, Khawaja H, Elwakiel
A, Gadi I, Ambreen S, Zimmermann S, Mertens PR, Biemann R and
Isermann B: Podocyte-specific Nlrp3 inflammasome activation
promotes diabetic kidney disease. Kidney Int. 102:766–779. 2022.
View Article : Google Scholar : PubMed/NCBI
|
73
|
Li S, Zheng L, Zhang J, Liu X and Wu Z:
Inhibition of ferroptosis by up-regulating Nrf2 delayed the
progression of diabetic nephropathy. Free Radic Biol Med.
162:435–449. 2021. View Article : Google Scholar : PubMed/NCBI
|