Macrophages polarization in renal inflammation and fibrosis animal models (Review)
- Authors:
- Ji Zeng
- Yuan Zhang
- Cheng Huang
-
Affiliations: Department of Pharmacy, Ma'anshan City Hospital of Traditional Chinese Medicine, Ma'anshan, Anhui 243000, P.R. China, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, P.R. China - Published online on: December 20, 2023 https://doi.org/10.3892/mmr.2023.13152
- Article Number: 29
-
Copyright: © Zeng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bommer J: Prevalence and socio-economic aspects of chronic kidney disease. Nephrol Dial Transpl. 11:8–12. 2002. View Article : Google Scholar | |
Decleves AE and Sharma K: Novel targets of antifibrotic and anti-inflammatory treatment in CKD. Nat Rev Nephrol. 10:257–267. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lv W, Booz GW, Wang Y, Fan F and Roman RJ: Inflammation and renal fibrosis: Recent developments on key signaling molecules as potential therapeutic targets. Eur J Pharmacol. 820:65–76. 2018. View Article : Google Scholar : PubMed/NCBI | |
Viehmann SF, Bohner AMC, Kurts C and Brahler S: The multifaceted role of the renal mononuclear phagocyte system. Cell Immunol. 330:97–104. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nelson PJ, Rees AJ, Griffin MD, Hughes J, Kurts C and Duffield J: The renal mononuclear phagocytic system. J Am Soc Nephrol. 23:194–203. 2012. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Wang Y, Wang XM, Lu J, Lee VW, Ye Q, Nguyen H, Zheng G, Zhao Y, Alexander SI, et al: Renal F4/80+ CD11c+ mononuclear phagocytes display phenotypic and functional characteristics of macrophages in health and in adriamycin nephropathy. J Am Soc Nephrol. 26:349–363. 2015. View Article : Google Scholar : PubMed/NCBI | |
Tang PM, Nikolic-Paterson DJ and Lan HY: Macrophages: Versatile players in renal inflammation and fibrosis. Nat Rev Nephrol. 15:144–158. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Harris DC: Macrophages in renal disease. J Am Soc Nephrol. 22:21–27. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pan B, Liu G, Jiang Z and Zheng D: Regulation of renal fibrosis by macrophage polarization. Cell Physiol Biochem. 35:1062–1069. 2015. View Article : Google Scholar : PubMed/NCBI | |
Locati M, Curtale G and Mantovani A: Diversity, mechanisms, and significance of macrophage plasticity. Annu Rev Pathol. 15:123–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Viola A, Munari F, Sanchez-Rodriguez R, Scolaro T and Castegna A: The metabolic signature of macrophage responses. Front Immunol. 10:14622019. View Article : Google Scholar : PubMed/NCBI | |
Kim Y, Nurakhayev S, Nurkesh A, Zharkinbekov Z and Saparov A: Macrophage polarization in cardiac tissue repair following myocardial infarction. Int J Mol Sci. 22:27152021. View Article : Google Scholar : PubMed/NCBI | |
Qiu P, Liu Y and Zhang J: Review: The role and mechanisms of macrophage autophagy in sepsis. Inflammation. 42:6–19. 2018. View Article : Google Scholar | |
Kadomoto S, Izumi K and Mizokami A: Macrophage polarity and disease control. Int J Mol Sci. 23:1442021. View Article : Google Scholar : PubMed/NCBI | |
Li C, Xu MM, Wang K, Adler AJ, Vella AT and Zhou B: Macrophage polarization and meta-inflammation. Transl Res. 191:29–44. 2018. View Article : Google Scholar : PubMed/NCBI | |
Bashir S, Sharma Y, Elahi A and Khan F: Macrophage polarization: The link between inflammation and related diseases. Inflamm Res. 65:1–11. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wu Q, Sun S, Wei L, Liu M, Liu H, Liu T, Zhou Y, Jia Q, Wang D, Yang Z, et al: Twist1 regulates macrophage plasticity to promote renal fibrosis through galectin-3. Cell Mol Life Sci. 79:1372022. View Article : Google Scholar : PubMed/NCBI | |
Ko GJ, Boo CS, Jo SK, Cho WY and Kim HK: Macrophages contribute to the development of renal fibrosis following ischaemia/reperfusion-induced acute kidney injury. Nephrol Dial Transplant. 23:842–852. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fogo AB: Progression and potential regression of glomerulosclerosis. Kidney Int. 59:804–819. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rodrignez-Pena A, Prieto M, Duwel A, Rivas JV, Eleno N, Pérez-Barriocanal F, Arévalo M, Smith JD, Vary CP, Bernabeu C and López-Novoa JM: Up-regulation of endoglin, a TGF-beta-binding protein, in rats with experimental renal fibrosis induced by renal mass reduction. Nwphrol Dial Transplant. 16 (Suppl 1):34–39. 2001. View Article : Google Scholar | |
Tan X, Li Y and Liu Y: Therapeutic role and potential mechanisms of active Vitamin D in renal interstitial fibrosis. J Steroid Biochem Mol Biol. 103:491–496. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lopez-Novoa JM, Martinez-Salgado C, Rodriguez-Pena AB and Lopez-Hernandez FJ: Common pathophysiological mechanisms of chronic kidney disease: Therapeutic perspectives. Pharmacol Ther. 128:61–81. 2010. View Article : Google Scholar : PubMed/NCBI | |
Chevalier RL, Forbes MS and Thornhill BA: Ureteral obstruction as a model of renal interstitial fibrosis and obstructive nephropathy. Kidney Int. 75:1145–1152. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grande MT, Perez-Barriocanal F and Lopez-Novoa JM: Role of inflammation in tubulo-interstitial damage associated to obstructive nephropathy. J Inflamm (Lond). 7:192010. View Article : Google Scholar : PubMed/NCBI | |
Wang PH, Cenedeze MA, Campanholle G, Malheiros DM, Torres HA, Pesquero JB, Pacheco-Silva A and Camara NO: Deletion of bradykinin B1 receptor reduces renal fibrosis. Int Immunopharmacol. 9:653–657. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nishida M and Hamaoka K: Macrophage phenotype and renal fibrosis in obstructive nephropathy. Nephron Exp Nephrol. 110:e31–e36. 2008. View Article : Google Scholar : PubMed/NCBI | |
Duffield JS, Ware CF, Ryffel B and Savill J: Suppression by apoptotic cells defines tumor necrosis factor-mediated induction of glomerular mesangial cell apoptosis by activated macrophages. Am J Pathol. 159:1397–1404. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kipari T and Hughes J: Macrophage-mediated renal cell death. Kidney Int. 61:760–761. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lange-Sperandio B, Cachat F, Thornhill BA and Chevalier RL: Selectins mediate macrophage infiltration in obstructive nephropathy in newborn mice. Kidney Int. 61:516–524. 2002. View Article : Google Scholar : PubMed/NCBI | |
Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY and Henson PM: Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. J Clin Investigation. 101:890–898. 1998. View Article : Google Scholar : PubMed/NCBI | |
Song E, Ouyang N, Horbelt M, Antus B, Wang M and Exton MS: Influence of alternatively and classically activated macrophages on fibrogenic activities of human fibroblasts. Cell Immunol. 204:19–28. 2000. View Article : Google Scholar : PubMed/NCBI | |
Wang D, Xiong M, Chen C, Du L, Liu Z, Shi Y, Zhang M, Gong J, Song X, Xiang R, et al: Legumain, an asparaginyl endopeptidase, mediates the effect of M2 macrophages on attenuating renal interstitial fibrosis in obstructive nephropathy. Kidney Int. 94:91–101. 2018. View Article : Google Scholar : PubMed/NCBI | |
Nishida M, Okumura Y, Fujimoto S, Shiraishi I, Itoi T and Hamaoka K: Adoptive transfer of macrophages ameliorates renal fibrosis in mice. Biochem Biophys Res Commun. 332:11–16. 2005. View Article : Google Scholar : PubMed/NCBI | |
Steiger S, Kumar SV, Honarpisheh M, Lorenz G, Gunthner R, Romoli S, Grobmayr R, Susanti HE, Potempa J, Koziel J, et al: Immunomodulatory molecule IRAK-M balances macrophage polarization and determines macrophage responses during renal fibrosis. J Immunol. 199:1440–1452. 2017. View Article : Google Scholar : PubMed/NCBI | |
Figueiredo KA, Rossi G and Cox ME: Relaxin promotes clustering, migration, and activation states of mononuclear myelocytic cells. Ann N Y Acad Sci. 1160:353–360. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lan HY: Role of macrophage migration inhibition factor in kidney disease. Nephron Exp Nephrol. 109:e79–e83. 2008. View Article : Google Scholar : PubMed/NCBI | |
Li MO and Flavell RA: Contextual regulation of inflammation: A duet by transforming growth factor-beta and interleukin-10. Immunity. 28:468–476. 2008. View Article : Google Scholar : PubMed/NCBI | |
Tregear GW, Bathgate RA, Hossain MA, Lin F, Zhang S, Shabanpoor F, Scott DJ, Ma S, Gundlach AL, Samuel CS and Wade JD: Structure and activity in the relaxin family of peptides. Ann N Y Acad Sci. 1160:5–10. 2009. View Article : Google Scholar : PubMed/NCBI | |
Samuel CS, Hewitson TD, Unemori EN and Tang ML: Drugs of the future: The hormone relaxin. Cell Mol Life Sci. 64:1539–1557. 2007. View Article : Google Scholar : PubMed/NCBI | |
Samuel CS and Hewitson TD: Relaxin and the progression of kidney disease. Curr Opin Nephrol Hypertens. 18:9–14. 2009. View Article : Google Scholar : PubMed/NCBI | |
Chen L, Sha ML, Li D, Zhu YP, Wang XJ, Jiang CY, Xia SJ and Shao Y: Relaxin abrogates renal interstitial fibrosis by regulating macrophage polarization via inhibition of Toll-like receptor 4 signaling. Oncotarget. 8:21044–21053. 2017. View Article : Google Scholar : PubMed/NCBI | |
Anders HJ and Ryu M: Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int. 80:915–925. 2011. View Article : Google Scholar : PubMed/NCBI | |
Bohlson SS, O'Conner SD, Hulsebus HJ, Ho MM and Fraser DA: Complement, c1q, and c1q-related molecules regulate macrophage polarization. Front Immunol. 5:4022014. View Article : Google Scholar : PubMed/NCBI | |
Cui J, Wu X, Song Y, Chen Y and Wan J: Complement C3 exacerbates renal interstitial fibrosis by facilitating the M1 macrophage phenotype in a mouse model of unilateral ureteral obstruction. Am J Physiol Renal Physiol. 317:F1171–F1182. 2019. View Article : Google Scholar : PubMed/NCBI | |
Brown NJ: Contribution of aldosterone to cardiovascular and renal inflammation and fibrosis. Nat Rev Nephrol. 9:459–469. 2013. View Article : Google Scholar : PubMed/NCBI | |
Blasi ER, Rocha R, Rudolph AE, Blomme EA, Polly ML and McMahon EG: Aldosterone/salt induces renal inflammation and fibrosis in hypertensive rats. Kidney Int. 63:1791–1800. 2003. View Article : Google Scholar : PubMed/NCBI | |
Kang YS, Ko GJ, Lee MH, Song HK, Han SY, Han KH, Kim HK, Han JY and Cha DR: Effect of eplerenone, enalapril and their combination treatment on diabetic nephropathy in type II diabetic rats. Nephrology Dialysis Transplantation. 24:73–84. 2008. View Article : Google Scholar | |
Yuan X, Wang X, Li Y, Li X, Zhang S and Hao L: Aldosterone promotes renal interstitial fibrosis via the AIF-1/AKT/mTOR signaling pathway. Mol Med Rep. 20:4033–4044. 2019.PubMed/NCBI | |
Nakamura T, Girerd S, Jaisser F and Barrera-Chimal J: Nonepithelial mineralocorticoid receptor activation as a determinant of kidney disease. Kidney Int Suppl (2011). 12:12–18. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fiebeler A, Nussberger J, Shagdarsuren E, Rong S, Hilfenhaus G, Al-Saadi N, Dechend R, Wellner M, Meiners S, Maser-Gluth C, et al: Aldosterone synthase inhibitor ameliorates angiotensin II-induced organ damage. Circulation. 111:3087–3094. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lea WB, Kwak ES, Luther JM, Fowler SM, Wang Z, Ma J, Fogo AB and Brown NJ: Aldosterone antagonism or synthase inhibition reduces end-organ damage induced by treatment with angiotensin and high salt. Kidney Int. 75:936–944. 2009. View Article : Google Scholar : PubMed/NCBI | |
Luther JM, Luo P, Wang Z, Cohen SE, Kim HS, Fogo AB and Brown NJ: Aldosterone deficiency and mineralocorticoid receptor antagonism prevent angiotensin II-induced cardiac, renal, and vascular injury. Kidney Int. 82:643–651. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ma J, Weisberg A, Griffin JP, Vaughan DE, Fogo AB and Brown NJ: Plasminogen activator inhibitor-1 deficiency protects against aldosterone-induced glomerular injury. Kidney Int. 69:1064–1072. 2006. View Article : Google Scholar : PubMed/NCBI | |
Huang W, Xu C, Kahng KW, Noble NA, Border WA and Huang Y: Aldosterone and TGF-β1synergistically increase PAI-1 and decrease matrix degradation in rat renal mesangial and fibroblast cells. Am J Physiol Renal Physiol. 294:F1287–F1295. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sillen M and Declerck PJ: Targeting PAI-1 in cardiovascular disease: Structural insights Into PAI-1 functionality and inhibition. Front Cardiovasc Med. 7:6224732020. View Article : Google Scholar : PubMed/NCBI | |
Leroy V, De Seigneux S, Agassiz V, Hasler U, Rafestin-Oblin ME, Vinciguerra M, Martin PY and Féraille E: Aldosterone activates NF-kappaB in the collecting duct. J Am Soc Nephrol. 20:131–144. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Fessler MB, Qu P, Heymann J and Kopp JB: Macrophage polarization in innate immune responses contributing to pathogenesis of chronic kidney disease. BMC Nephrol. 21:2702020. View Article : Google Scholar : PubMed/NCBI | |
Patel V, Joharapurkar A and Jain M: Role of mineralocorticoid receptor antagonists in kidney diseases. Drug Dev Res. 82:341–363. 2021. View Article : Google Scholar : PubMed/NCBI | |
Martin-Fernandez B, Rubio-Navarro A, Cortegano I, Ballesteros S, Alia M, Cannata-Ortiz P, Olivares-Alvaro E, Egido J, de Andres B, Gaspar ML, et al: Aldosterone induces renal fibrosis and inflammatory M1-macrophage subtype via mineralocorticoid receptor in rats. PLoS One. 11:e01459462016. View Article : Google Scholar : PubMed/NCBI | |
Malik S, Suchal K, Gamad N, Dinda AK, Arya DS and Bhatia J: Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis. Eur J Pharmacol. 748:54–60. 2015. View Article : Google Scholar : PubMed/NCBI | |
Sindhu G, Nishanthi E and Sharmila R: Nephroprotective effect of vanillic acid against cisplatin induced nephrotoxicity in wistar rats: A biochemical and molecular study. Environ Toxicol Pharmacol. 39:392–404. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ozkok A and Edelstein CL: Pathophysiology of cisplatin-induced acute kidney injury. Biomed Res Int. 2014:9678262014. View Article : Google Scholar : PubMed/NCBI | |
Jaiman S, Sharma AK, Singh K and Khanna D: Signalling mechanisms involved in renal pathological changes during cisplatin-induced nephropathy. Eur J Clin Pharmacol. 69:1863–1874. 2013. View Article : Google Scholar : PubMed/NCBI | |
Huen SC and Cantley LG: Macrophages in renal injury and repair. Annu Rev Physiol. 79:449–469. 2017. View Article : Google Scholar : PubMed/NCBI | |
Yuasa T, Juniantito V, Ichikawa C, Yano R, Izawa T, Kuwamura M and Yamate J: Thy-1 expression, a possible marker of early myofibroblast development, in renal tubulointerstitial fibrosis induced in rats by cisplatin. Exp Toxicol Pathol. 65:651–659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Terada N, Karim MR, Izawa T, Kuwamura M and Yamate J: Expression of beta-catenin in regenerating renal tubules of cisplatin-induced kidney failure in rats. Clin Exp Nephrol. 22:1240–1250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Huen S, Nishio H, Nishio S, Lee HK, Choi BS, Ruhrberg C and Cantley LG: Distinct macrophage phenotypes contribute to kidney injury and repair. J Am Soc Nephrol. 22:317–326. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sears SM, Vega AA, Kurlawala Z, Oropilla GB, Krueger A, Shah PP, Doll MA, Miller R, Beverly LJ and Siskind LJ: F4/80hi resident macrophages contribute to cisplatin-induced renal fibrosis. Kidney. 360:3818–833. 2022. | |
Yu CC, Chien CT and Chang TC: M2 macrophage polarization modulates epithelial-mesenchymal transition in cisplatin-induced tubulointerstitial fibrosis. Biomedicine (Taipei). 6:52016. View Article : Google Scholar : PubMed/NCBI | |
Kim SH, Yu MA, Ryu ES, Jang YH and Kang DH: Indoxyl sulfate-induced epithelial-to-mesenchymal transition and apoptosis of renal tubular cells as novel mechanisms of progression of renal disease. Lab Invest. 92:488–498. 2012. View Article : Google Scholar : PubMed/NCBI | |
Benedetti G, Fokkelman M, Yan K, Fredriksson L, Herpers B, Meerman J, van de Water B and de Graauw M: The nuclear factor κB family member RelB facilitates apoptosis of renal epithelial cells caused by cisplatin/tumor necrosis factor α synergy by suppressing an epithelial to mesenchymal transition-like phenotypic switch. Mol Pharmacol. 84:128–138. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto E, Izawa T, Juniantito V, Kuwamura M, Sugiura K, Takeuchi T and Yamate J: Involvement of endogenous prostaglandin E2 in tubular epithelial regeneration through inhibition of apoptosis and epithelial-mesenchymal transition in cisplatin-induced rat renal lesions. Histol Histopathol. 25:995–1007. 2010.PubMed/NCBI | |
Meng XM, Nikolic-Paterson DJ and Lan HY: Inflammatory processes in renal fibrosis. Nat Rev Nephrol. 10:493–503. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lech M and Anders HJ: Macrophages and fibrosis: How resident and infiltrating mononuclear phagocytes orchestrate all phases of tissue injury and repair. Biochim Biophys Acta. 1832:989–997. 2013. View Article : Google Scholar : PubMed/NCBI | |
Nikolic-Paterson DJ, Wang S and Lan HY: Macrophages promote renal fibrosis through direct and indirect mechanisms. Kidney Int Suppl (2011). 4:34–38. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sica A and Mantovani A: Macrophage plasticity and polarization: In vivo veritas. J Clin Invest. 122:787–795. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wijesundera KK, Izawa T, Murakami H, Tennakoon AH, Golbar HM, Kato-Ichikawa C, Tanaka M, Kuwamura M and Yamate J: M1- and M2-macrophage polarization in thioacetamide (TAA)-induced rat liver lesions; a possible analysis for hepato-pathology. Histol Histopathol. 29:497–511. 2014.PubMed/NCBI | |
Nakagawa M, Karim MR, Izawa T, Kuwamura M and Yamate J: Immunophenotypical characterization of M1/M2 macrophages and lymphocytes in cisplatin-induced rat progressive renal fibrosis. Cells. 10:2572021. View Article : Google Scholar : PubMed/NCBI | |
Lee VW and Harris DC: Adriamycin nephropathy: A model of focal segmental glomerulosclerosis. Nephrology (Carlton). 16:30–38. 2011. View Article : Google Scholar : PubMed/NCBI | |
Nogueira A, Pires MJ and Oliveira PA: Pathophysiological mechanisms of renal fibrosis: A review of animal models and therapeutic strategies. In Vivo. 31:1–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Pippin JW, Brinkkoetter PT, Cormack-Aboud FC, Durvasula RV, Hauser PV, Kowalewska J, Krofft RD, Logar CM, Marshall CB, Ohse T, et al: Inducible rodent models of acquired podocyte diseases. Am J Physiol Renal Physiol. 296:F213–F229. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Wang YP, Zheng G, Lee VW, Ouyang L, Chang DH, Mahajan D, Coombs J, Wang YM, Alexander SI and Harris DC: Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int. 72:290–299. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fujimura R, Watanabe H, Nishida K, Fujiwara Y, Koga T, Bi J, Imafuku T, Kobayashi K, Komori H, Miyahisa M, et al: α1-Acid glycoprotein attenuates adriamycin-induced nephropathy via CD163 expressing macrophage induction. Kidney. 360(1): 343–353. 2020. View Article : Google Scholar | |
Lu J, Cao Q, Zheng D, Sun Y, Wang C, Yu X, Wang Y, Lee VW, Zheng G, Tan TK, et al: Discrete functions of M2a and M2c macrophage subsets determine their relative efficacy in treating chronic kidney disease. Kidney Int. 84:745–755. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Wang Y, Zheng D, Sun Y, Wang Y, Lee VWS, Zheng G, Tan TK, Ince J, Alexander SI and Harris DC: IL-10/TGF-beta-modified macrophages induce regulatory T cells and protect against adriamycin nephrosis. J Am Soc Nephrol. 21:933–942. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Wang Y, Zheng D, Sun Y, Wang C, Wang XM, Lee VWS, Wang Y, Zheng G, Tan TK, et al: Failed renoprotection by alternatively activated bone marrow macrophages is due to a proliferation-dependent phenotype switch in vivo. Kidney Int. 85:794–806. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang JY and Wang WP: B7-H4, a promising target for immunotherapy. Cell Immunol. 347:1040082020. View Article : Google Scholar : PubMed/NCBI | |
Umemura N, Saio M, Suwa T, Kitoh Y, Bai J, Nonaka K, Ouyang GF, Okada M, Balazs M, Adany R, et al: Tumor-infiltrating myeloid-derived suppressor cells are pleiotropic-inflamed monocytes/macrophages that bear M1- and M2-type characteristics. J Leukoc Biol. 83:1136–1144. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Meng XM, Ng YY, Ma FY, Zhou S, Zhang Y, Yang C, Huang XR, Xiao J, Wang YY, et al: TGF-β/Smad3 signalling regulates the transition of bone marrow-derived macrophages into myofibroblasts during tissue fibrosis. Oncotarget. 7:8809–8822. 2016. View Article : Google Scholar : PubMed/NCBI | |
Tavakoli Dargani Z and Singla DK: Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol. 317:H460–H471. 2019. View Article : Google Scholar : PubMed/NCBI | |
Johnson TA and Singla DK: PTEN inhibitor VO-OHpic attenuates inflammatory M1 macrophages and cardiac remodeling in doxorubicin-induced cardiomyopathy. Am J Physiol Heart Circ Physiol. 315:H1236–H1249. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Liu Y, Liu H and Tang WH: Exosomes: Biogenesis, biologic function and clinical potential. Cell Biosci. 9:192019. View Article : Google Scholar : PubMed/NCBI | |
Jella KK, Nasti TH, Li Z, Malla SR, Buchwald ZS and Khan MK: Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines (Basel). 6:E692018. View Article : Google Scholar | |
Deng S, Zhou X, Ge Z, Song Y, Wang H, Liu X and Zhang D: Exosomes from adipose-derived mesenchymal stem cells ameliorate cardiac damage after myocardial infarction by activating S1P/SK1/S1PR1 signaling and promoting macrophage M2 polarization. Int J Biochem Cell Biol. 114:1055642019. View Article : Google Scholar : PubMed/NCBI | |
Cai J, Qiao B, Gao N, Lin N and He W: Oral squamous cell carcinoma-derived exosomes promote M2 subtype macrophage polarization mediated by exosome-enclosed miR-29a-3p. Am J Physiol Cell Physiol. 316:C731–C740. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bardi GT, Smith MA and Hood JL: Melanoma exosomes promote mixed M1 and M2 macrophage polarization. Cytokine. 105:63–72. 2018. View Article : Google Scholar : PubMed/NCBI | |
Singla D, Johnson T and Tavakoli Dargani Z: Exosome treatment enhances Anti-Inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells. 8:12242019. View Article : Google Scholar : PubMed/NCBI | |
Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, Seabra MC, Round JL, Ward DM and O'Connell RM: Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat Commun. 6:73212015. View Article : Google Scholar : PubMed/NCBI | |
Lorenzen JM, Kaucsar T, Schauerte C, Schmitt R, Rong S, Hübner A, Scherf K, Fiedler J, Martino F, Kumarswamy R, et al: MicroRNA-24 antagonism prevents renal ischemia reperfusion injury. J Am Soc Nephrol. 25:2717–2729. 2014. View Article : Google Scholar : PubMed/NCBI | |
Trionfini P and Benigni A: MicroRNAs as master regulators of glomerular function in health and disease. J Am Soc Nephrol. 28:1686–1696. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv LL, Feng Y, Wu M, Wang B, Li ZL, Zhong X, Wu WJ, Chen J, Ni HF, Tang TT, et al: Exosomal miRNA-19b-3p of tubular epithelial cells promotes M1 macrophage activation in kidney injury. Cell Death Differ. 27:210–226. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mulay SR, Linkermann A and Anders HJ: Necroinflammation in Kidney disease. J Am Soc Nephrol. 27:27–39. 2016. View Article : Google Scholar : PubMed/NCBI | |
O'Neal JB, Shaw AD and Billings FT: Acute kidney injury following cardiac surgery: Current understanding and future directions. Crit Care. 20:1872016. View Article : Google Scholar : PubMed/NCBI | |
Kim MG, Kim SC, Ko YS, Lee HY, Jo SK and Cho W: The role of M2 macrophages in the progression of chronic kidney disease following acute kidney injury. PLoS One. 10:e01439612015. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Lin SC, Chen G, He L, Hu Z, Chan L, Trial J, Entman ML and Wang Y: Adiponectin promotes monocyte-to-fibroblast transition in renal fibrosis. J Am Soc Nephrol. 24:1644–1659. 2013. View Article : Google Scholar : PubMed/NCBI | |
Negishi H, Ohba Y, Yanai H, Takaoka A, Honma K, Yui K, Matsuyama T, Taniguchi T and Honda K: Negative regulation of Toll-like-receptor signaling by IRF-4. Proc Natl Acad Sci USA. 102:15989–15994. 2005. View Article : Google Scholar : PubMed/NCBI | |
Lassen S, Lech M, Rommele C, Mittruecker HW, Mak TW and Anders HJ: Ischemia reperfusion induces IFN regulatory factor 4 in renal dendritic cells, which suppresses postischemic inflammation and prevents acute renal failure. J Immunol. 185:1976–1983. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lorenz G, Moschovaki-Filippidou F, Wurf V, Metzger P, Steiger S, Batz F, Carbajo-Lozoya J, Koziel J, Schnurr M, Cohen CD, et al: IFN regulatory Factor 4 controls post-ischemic inflammation and prevents chronic kidney disease. Front Immunol. 10:21622019. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Xu F, Zhang T, Huang J, Guan Q, Wang H and Huang Q: Inhibition of IL-18 reduces renal fibrosis after ischemia-reperfusion. Biomed Pharmacother. 106:879–889. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang YY, Jiang H, Pan J, Huang XR, Wang YC, Huang HF, To KF, Nikolic-Paterson DJ, Lan HY and Chen JH: Macrophage-to-Myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. J Am Soc Nephrol. 28:2053–2067. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stephanou A, Brar BK, Scarabelli TM, Jonassen AK, Yellon DM, Marber MS, Knight RA and Latchman DS: Ischemia-induced STAT-1 expression and activation play a critical role in cardiomyocyte apoptosis. J Biol Chem. 275:10002–10008. 2000. View Article : Google Scholar : PubMed/NCBI | |
McCormick J, Suleman N, Scarabelli TM, Knight RA, Latchman DS and Stephanou A: STAT1 deficiency in the heart protects against myocardial infarction by enhancing autophagy. J Cell Mol Med. 16:386–393. 2012. View Article : Google Scholar : PubMed/NCBI | |
Braga TT, Correa-Costa M, Guise YF, Castoldi A, de Oliveira CD, Hyane MI, Cenedeze MA, Teixeira SA, Muscara MN, Perez KR, et al: MyD88 signaling pathway is involved in renal fibrosis by favoring a TH2 immune response and activating alternative M2 macrophages. Mol Med. 18:1231–1239. 2012. View Article : Google Scholar : PubMed/NCBI | |
Buchacher T, Ohradanova-Repic A, Stockinger H, Fischer MB and Weber V: M2 polarization of human macrophages favors survival of the intracellular pathogen chlamydia pneumoniae. PLoS One. 10:e01435932015. View Article : Google Scholar : PubMed/NCBI | |
Lech M, Gröbmayr R, Ryu M, Lorenz G, Hartter I, Mulay SR, Susanti HE, Kobayashi KS, Flavell RA and Anders HJ: Macrophage phenotype controls long-term AKI outcomes-kidney regeneration versus atrophy. J Am Soc Nephrol. 25:292–304. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kemmner S, Bachmann Q, Steiger S, Lorenz G, Honarpisheh M, Foresto-Neto O, Wang S, Carbajo-Lozoya J, Alt V, Schulte C, et al: STAT1 regulates macrophage number and phenotype and prevents renal fibrosis after ischemia-reperfusion injury. Am J Physiol Renal Physiol. 316:F277–F291. 2019. View Article : Google Scholar : PubMed/NCBI | |
Dotor J, Lopez-Vazquez AB, Lasarte JJ, Sarobe P, Garcia-Granero M, Riezu-Boj JI, Martinez A, Feijoo E, Lopez-Sagaseta J, Hermida J, et al: Identification of peptide inhibitors of transforming growth factor beta 1 using a phage-displayed peptide library. Cytokine. 39:106–115. 2007. View Article : Google Scholar : PubMed/NCBI | |
Diaz-Valdes N, Basagoiti M, Dotor J, Aranda F, Monreal I, Riezu-Boj JI, Borras-Cuesta F, Sarobe P and Feijoo E: Induction of monocyte chemoattractant protein-1 and interleukin-10 by TGFbeta1 in melanoma enhances tumor infiltration and immunosuppression. Cancer Res. 71:812–821. 2011. View Article : Google Scholar : PubMed/NCBI | |
Qiu SS, Dotor J and Hontanilla B: Effect of P144® (Anti-TGF-β) in an ‘In Vivo’ human hypertrophic scar model in nude mice. PLoS One. 10:e01444892015. View Article : Google Scholar : PubMed/NCBI | |
Baltanás A, Miguel-Carrasco JL, San José G, Cebrián C, Moreno MU, Dotor J, Borrás-Cuesta F, López B, González A, Díez J, et al: A synthetic peptide from transforming growth Factor-β1 type III receptor inhibits NADPH oxidase and prevents oxidative stress in the kidney of spontaneously hypertensive rats. Antioxid Redox Signal. 19:1607–1618. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhang J, Yuan S, Wang C, Chang J, Tong Y, Liu R, Sang T, Li L, Li J, et al: TGF-β1 peptide-based inhibitor P144 ameliorates renal fibrosis after ischemia-reperfusion injury by modulating alternatively activated macrophages. Cell Prolif. 55:e132992022. View Article : Google Scholar : PubMed/NCBI | |
Cao Q, Wang Y and Harris DCH: Macrophage heterogeneity, phenotypes, and roles in renal fibrosis. Kidney Int Suppl (2011). 4:16–19. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang F, Fan L, Zhang H, Huang WJ, Sun D, Pan BB, Wan X and Cao CC: Deficiency of IKK α in macrophages mitigates fibrosis progression in the kidney after renal ischemia-reperfusion injury. J Immunol Res. 2021:55210512021. View Article : Google Scholar : PubMed/NCBI | |
Saito H, Tanaka T, Tanaka S, Higashijima Y, Yamaguchi J, Sugahara M, Ito M, Uchida L, Hasegawa S, Wakashima T, et al: Persistent expression of neutrophil gelatinase-associated lipocalin and M2 macrophage markers and chronic fibrosis after acute kidney injury. Physiol Rep. 6:e137072018. View Article : Google Scholar : PubMed/NCBI | |
Sepe V, Libetta C, Gregorini M and Rampino T: The innate immune system in human kidney inflammaging. J Nephrol. 35:381–395. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Yan HR, Wang B and Liu BC: Macrophage heterogeneity in kidney injury and fibrosis. Front Immunol. 12:6817482021. View Article : Google Scholar : PubMed/NCBI | |
Muraille E, Leo O and Moser M: TH1/TH2 paradigm extended: Macrophage polarization as an unappreciated pathogen-driven escape mechanism? Front Immunol. 5:6032014. View Article : Google Scholar : PubMed/NCBI | |
Henderson NC, Mackinnon AC, Farnworth SL, Kipari T, Haslett C, Iredale JP, Liu F-T, Hughes J and Sethi T: Galectin-3 expression and secretion links macrophages to the promotion of renal fibrosis. Am J Pathol. 172:288–298. 2008. View Article : Google Scholar : PubMed/NCBI | |
Meng XM, Wang S, Huang XR, Yang C, Xiao J, Zhang Y, To KF, Nikolic-Paterson DJ and Lan HY: Inflammatory macrophages can transdifferentiate into myofibroblasts during renal fibrosis. Cell Death Dis. 7:e24952016. View Article : Google Scholar : PubMed/NCBI | |
Weis N, Weigert A, von Knethen A and Brüne B: Heme oxygenase-1 contributes to an alternative macrophage activation profile induced by apoptotic cell supernatants. Mol Biol Cell. 20:1280–1288. 2009. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Nakamura K, Kageyama S, Lawal AO, Gong KW, Bhetraratana M, Fujii T, Sulaiman D, Hirao H, Bolisetty S, et al: Myeloid HO-1 modulates macrophage polarization and protects against ischemia-reperfusion injury. JCI Insight. 3:1205962018. View Article : Google Scholar : PubMed/NCBI | |
Naito Y, Takagi T and Higashimura Y: Heme oxygenase-1 and anti-inflammatory M2 macrophages. Arch Biochem Biophysics. 564:83–88. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ribeiro A, Dobosz E, Krill M, Kohler P, Wadowska M, Steiger S, Schmaderer C, Koziel J and Lech M: Macrophage-specific MCPIP1/Regnase-1 attenuates kidney ischemia-reperfusion injury by shaping the local inflammatory response and tissue regeneration. Cells. 11:3972022. View Article : Google Scholar : PubMed/NCBI | |
Satoh T, Takeuchi O, Vandenbon A, Yasuda K, Tanaka Y, Kumagai Y, Miyake T, Matsushita K, Okazaki T, Saitoh T, et al: The Jmjd3-Irf4 axis regulates M2 macrophage polarization and host responses against helminth infection. Nat Immunol. 11:936–944. 2010. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Xiang Y, Li H, Chen A and Dong Z: Inflammation in kidney repair: Mechanism and therapeutic potential. Pharmacol Ther. 237:1082402022. View Article : Google Scholar : PubMed/NCBI | |
Bonventre JV and Zuk A: Ischemic acute renal failure: An inflammatory disease? Kidney Int. 66:480–485. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ferenbach DA and Bonventre JV: Mechanisms of maladaptive repair after AKI leading to accelerated kidney ageing and CKD. Nat Rev Nephrol. 11:264–276. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiao B, An C, Tran M, Du H, Wang P, Zhou D and Wang Y: Pharmacological inhibition of STAT6 ameliorates myeloid fibroblast activation and alternative macrophage polarization in renal fibrosis. Front Immunol. 12:7350142021. View Article : Google Scholar : PubMed/NCBI | |
Liang H, Zhang Z, Yan J and Wang Y, Hu Z, Mitch WE and Wang Y: The IL-4 receptor α has a critical role in bone marrow-derived fibroblast activation and renal fibrosis. Kidney Int. 92:1433–1443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lehtonen A, Veckman V, Nikula T, Lahesmaa R, Kinnunen L, Matikainen S and Julkunen I: Differential expression of IFN regulatory factor 4 gene in human monocyte-derived dendritic cells and macrophages. J Immunol. 175:6570–6579. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hsu AT, Lupancu TJ, Lee M-C, Fleetwood AJ, Cook AD, Hamilton JA and Achuthan A: Epigenetic and transcriptional regulation of IL4-induced CCL17 production in human monocytes and murine macrophages. J Biol Chemistry. 293:11415–11423. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamamoto M, Kato T, Hotta C, Nishiyama A, Kurotaki D, Yoshinari M, Takami M, Ichino M, Nakazawa M, Matsuyama T, et al: Shared and distinct functions of the transcription factors IRF4 and IRF8 in myeloid cell development. PLoS One. 6:e258122011. View Article : Google Scholar : PubMed/NCBI | |
Sasaki K, Terker AS, Pan Y, Li Z, Cao S, Wang Y, Niu A, Wang S, Fan X, Zhang MZ, et al: Deletion of myeloid interferon regulatory factor 4 (Irf4) in mouse model protects against kidney fibrosis after ischemic injury by decreased macrophage recruitment and activation. J Am Soc Nephrol. 32:1037–1052. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chen M, Wen X, Gao Y, Liu B, Zhong C, Nie J and Liang H: IRF-4 deficiency reduces inflammation and kidney fibrosis after folic acid-induced acute kidney injury. Int Immunopharmacol. 100:1081422021. View Article : Google Scholar : PubMed/NCBI | |
Nelson MC and O'Connell RM: MicroRNAs: At the interface of metabolic pathways and inflammatory responses by macrophages. Front Immunol. 11:17972020. View Article : Google Scholar : PubMed/NCBI | |
Niu X and Schulert GS: Functional regulation of macrophage phenotypes by MicroRNAs in inflammatory arthritis. Front Immunol. 10:22172019. View Article : Google Scholar : PubMed/NCBI | |
Luan J, Fu J, Wang D, Jiao C, Cui X, Chen C, Liu D, Zhang Y, Wang Y, Yuen PST, et al: miR-150-based RNA interference attenuates tubulointerstitial fibrosis through the SOCS1/JAK/STAT pathway in vivo and in vitro. Mol Ther Nucleic Acids. 22:871–884. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, et al: LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol. 13:9130072022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Ding XY, Xiang DM, Xu J, Huang XL, Hou FF and Zhou QG: Enhanced M1 and Impaired M2 macrophage polarization and reduced mitochondrial biogenesis via inhibition of AMP kinase in chronic kidney disease. Cell Physiol Biochem. 36:358–372. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wen Y, Lu X, Ren J, Privratsky JR, Yang B, Rudemiller NP, Zhang J, Griffiths R, Jain MK, Nedospasov SA, et al: KLF4 in macrophages attenuates TNF α-mediated kidney injury and fibrosis. J Am Soc Nephrol. 30:1925–1938. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Nie J, Liang H, Liang Z, Huang J, Yu W and Wen S: Pharmacological inhibition of SETD7 by PFI-2 attenuates renal fibrosis following folic acid and obstruction injury. Eur J Pharmacol. 901:1740972021. View Article : Google Scholar : PubMed/NCBI | |
Debelle FD, Vanherweghem JL and Nortier JL: Aristolochic acid nephropathy: A worldwide problem. Kidney Int. 74:158–169. 2008. View Article : Google Scholar : PubMed/NCBI | |
Baudoux T, Jadot I, Declèves A-E, Antoine M-H, Colet J-M, Botton O, De Prez E, Pozdzik A, Husson C, Caron N and Nortier JL: Experimental aristolochic acid nephropathy: A relevant model to study AKI-to-CKD transition. Front Med (Lausanne). 9:8228702022. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Ren J, Gui Y, Wei W, Shu B, Lu Q, Xue X, Sun X, He W, Yang J and Dai C: Wnt/β-catenin-promoted macrophage alternative activation contributes to kidney fibrosis. J Am Soc Nephrol. 29:182–193. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Jia P, Ren T, Zou Z, Xu S, Zhang Y, Shi Y, Bao S, Li Y, Fang Y and Ding X: MicroRNA-382 promotes M2-like macrophage via the SIRP-α/STAT3 signaling pathway in aristolochic acid-induced renal fibrosis. Front Immunol. 13:8649842022. View Article : Google Scholar : PubMed/NCBI | |
Martinez FO, Helming L, Milde R, Varin A, Melgert BN, Draijer C, Thomas B, Fabbri M, Crawshaw A, Ho LP, et al: Genetic programs expressed in resting and IL-4 alternatively activated mouse and human macrophages: Similarities and differences. Blood. 121:e57–69. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chalayer E, Gramont B, Zekre F, Goguyer-Deschaumes R, Waeckel L, Grange L, Paul S, Chung AW and Killian M: Fc receptors gone wrong: A comprehensive review of their roles in autoimmune and inflammatory diseases. Autoimmun Rev. 21:1030162022. View Article : Google Scholar : PubMed/NCBI | |
Yadav N and Chandra H: Modulation of alveolar macrophage innate response in proinflammatory-, pro-oxidant-, and infection-models by mint extract and chemical constituents: Role of MAPKs. Immunobiology. 223:49–56. 2018. View Article : Google Scholar : PubMed/NCBI | |
Formentini L, Santacatterina F, Nunez de Arenas C, Stamatakis K, Lopez-Martinez D, Logan A, Fresno M, Smits R, Murphy MP and Cuezva JM: Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep. 19:1202–1213. 2017. View Article : Google Scholar : PubMed/NCBI | |
Phaniendra A, Jestadi DB and Periyasamy L: Free radicals: Properties, sources, targets, and their implication in various diseases. Indian J Clin Biochem. 30:11–26. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Choksi S, Chen K, Pobezinskaya Y, Linnoila I and Liu ZG: ROS play a critical role in the differentiation of alternatively activated macrophages and the occurrence of tumor-associated macrophages. Cell Res. 23:898–914. 2013. View Article : Google Scholar : PubMed/NCBI | |
Lebeau C, Debelle FD, Arlt VM, Pozdzik A, De Prez EG, Phillips DH, Deschodt-Lanckman MM, Vanherweghem JL and Nortier JL: Early proximal tubule injury in experimental aristolochic acid nephropathy: Functional and histological studies. Nephrol Dial Transplant. 20:2321–2332. 2005. View Article : Google Scholar : PubMed/NCBI | |
Seok JK, Lee SH, Kim MJ and Lee YM: MicroRNA-382 induced by HIF-1α is an angiogenic miR targeting the tumor suppressor phosphatase and tensin homolog. Nucleic Acids Res. 42:8062–8072. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Xue N, Zhao S, Shi Y, Ding X and Fang Y: Upregulation of miR-382 contributes to renal fibrosis secondary to aristolochic acid-induced kidney injury via PTEN signaling pathway. Cell Death Dis. 11:6202020. View Article : Google Scholar : PubMed/NCBI | |
Pan YF, Tan YX, Wang M, Zhang J, Zhang B, Yang C, Ding ZW, Dong LW and Wang HY: Signal regulatory protein alpha is associated with tumor-polarized macrophages phenotype switch and plays a pivotal role in tumor progression. Hepatology. 58:680–691. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sanz AB, Sanchez-Nino MD, Ramos AM, Moreno JA, Santamaria B, Ruiz-Ortega M, Egido J and Ortiz A: NF-kappaB in renal inflammation. J Am Soc Nephrol. 21:1254–1262. 2010. View Article : Google Scholar : PubMed/NCBI |