Essential contribution of the JAK/STAT pathway to carcinogenesis, lytic infection of herpesviruses and pathogenesis of COVID‑19 (Review)
- Authors:
- Wenkai Li
- Yunjing Zhuang
- Song-Jun Shao
- Pankaj Trivedi
- Biying Zheng
- Guo-Liang Huang
- Zhiwei He
- Xiangning Zhang
-
Affiliations: Department of Pathophysiology, School of Basic Medical Science, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China, Department of Clinical Microbiology, School of Medical Technology, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China, Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China, Department of Experimental Medicine, La Sapienza University of Rome, Rome I‑00158, Italy, Chinese‑American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China - Published online on: January 15, 2024 https://doi.org/10.3892/mmr.2024.13163
- Article Number: 39
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Malemud CJ: The role of the JAK/STAT signal pathway in rheumatoid arthritis. Ther Adv Musculoskelet Dis. 10:117–127. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ihle JN: The STAT family in cytokine signaling. Curr Opin Cell Biol. 13:211–217. 2001. View Article : Google Scholar : PubMed/NCBI | |
Levy DE and Darnell JE Jr: Stats: Transcriptional control and biological impact. Nat Rev Mol Cell Biol. 3:651–662. 2002. View Article : Google Scholar : PubMed/NCBI | |
Darnell JE Jr: STATs and gene regulation. Science. 277:1630–1635. 1997. View Article : Google Scholar : PubMed/NCBI | |
Simoncic PD, Lee-Loy A, Barber DL, Tremblay ML and McGlade CJ: The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr Biol. 12:446–453. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Gao Z, Jiang F, Yan H, Yang B, He Q, Luo P, Xu Z and Yang X: JAK-STAT signaling as an ARDS therapeutic target: Status and future trends. Biochem Pharmacol. 208:1153822023. View Article : Google Scholar : PubMed/NCBI | |
Chen CW, Chang YH, Tsi CJ and Lin WW: Inhibition of IFN-gamma-mediated inducible nitric oxide synthase induction by the peroxisome proliferator-activated receptor gamma agonist, 15-deoxy-delta 12,14-prostaglandin J2, involves inhibition of the upstream Janus kinase/STAT1 signaling pathway. J Immunol. 171:979–988. 2003. View Article : Google Scholar : PubMed/NCBI | |
Wiede F, Shields BJ, Chew SH, Kyparissoudis K, van Vliet C, Galic S, Tremblay ML, Russell SM, Godfrey DI and Tiganis T: T cell protein tyrosine phosphatase attenuates T cell signaling to maintain tolerance in mice. J Clin Invest. 121:4758–4774. 2011. View Article : Google Scholar : PubMed/NCBI | |
ten Hoeve J, de Jesus Ibarra-Sanchez M, Fu Y, Zhu W, Tremblay M, David M and Shuai K: Identification of a nuclear Stat1 protein tyrosine phosphatase. Mol Cell Biol. 22:5662–5668. 2002. View Article : Google Scholar : PubMed/NCBI | |
Shuai K and Liu B: Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 3:900–911. 2003. View Article : Google Scholar : PubMed/NCBI | |
Shuai K: Modulation of STAT signaling by STAT-interacting proteins. Oncogene. 19:2638–2644. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yan Z, Gibson SA, Buckley JA, Qin H and Benveniste EN: Role of the JAK/STAT signaling pathway in regulation of innate immunity in neuroinflammatory diseases. Clin Immunol. 189:4–13. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Pardoll D and Jove R: STATs in cancer inflammation and immunity: A leading role for STAT3. Nat Rev Cancer. 9:798–809. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koebel CM, Vermi W, Swann JB, Zerafa N, Rodig SJ, Old LJ, Smyth MJ and Schreiber RD: Adaptive immunity maintains occult cancer in an equilibrium state. Nature. 450:903–907. 2007. View Article : Google Scholar : PubMed/NCBI | |
Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pagès C, Tosolini M, Camus M, Berger A, Wind P, et al: Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 313:1960–1964. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dunn GP, Koebel CM and Schreiber RD: Interferons, immunity and cancer immunoediting. Nat Rev Immunol. 6:836–848. 2006. View Article : Google Scholar : PubMed/NCBI | |
Chen H, Lee JM, Zong Y, Borowitz M, Ng MH, Ambinder RF and Hayward SD: Linkage between STAT regulation and Epstein-Barr virus gene expression in tumors. J Virol. 75:2929–2937. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Lv DW and Li R: Cell receptor activation and chemical induction trigger caspase-mediated cleavage of PIAS1 to facilitate epstein-barr virus reactivation. Cell Rep. 21:3445–3457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang JT, Doong SL, Teng SC, Lee CP, Tsai CH and Chen MR: Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. J Virol. 83:1856–1869. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Guo W, Long C, Zhou H, Wang H and Sun X: The split Renilla luciferase complementation assay is useful for identifying the interaction of Epstein-Barr virus protein kinase BGLF4 and a heat shock protein Hsp90. Acta Virol. 60:62–70. 2016. View Article : Google Scholar : PubMed/NCBI | |
Li R, Wang L, Liao G, Guzzo CM, Matunis MJ, Zhu H and Hayward SD: SUMO binding by the Epstein-Barr virus protein kinase BGLF4 is crucial for BGLF4 function. J Virol. 86:5412–5421. 2012. View Article : Google Scholar : PubMed/NCBI | |
Fuld S, Cunningham C, Klucher K, Davison AJ and Blackbourn DJ: Inhibition of interferon signaling by the Kaposi's sarcoma-associated herpesvirus full-length viral interferon regulatory factor 2 protein. J Virol. 80:3092–3097. 2006. View Article : Google Scholar : PubMed/NCBI | |
Aurer I, Butturini A and Gale RP: BCR-ABL rearrangements in children with Philadelphia chromosome-positive chronic myelogenous leukemia. Blood. 78:2407–2410. 1991. View Article : Google Scholar : PubMed/NCBI | |
Dan S, Naito M and Tsuruo T: Selective induction of apoptosis in Philadelphia chromosome-positive chronic myelogenous leukemia cells by an inhibitor of BCR-ABL tyrosine kinase, CGP 57148. Cell Death Differ. 5:710–715. 1998. View Article : Google Scholar : PubMed/NCBI | |
Miller G, El-Guindy A, Countryman J, Ye J and Gradoville L: Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res. 97:81–109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, et al: Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet. 395:507–513. 2020. View Article : Google Scholar : PubMed/NCBI | |
Luo W, Li YX, Jiang LJ, Chen Q, Wang T and Ye DW: Targeting JAK-STAT signaling to control cytokine release Syndrome in COVID-19. Trends Pharmacol Sci. 41:531–543. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Cao Z, Xie X, Zhang X, Chen JY, Wang H, Menachery VD, Rajsbaum R and Shi PY: Evasion of type I interferon by SARS-CoV-2. Cell Rep. 33:1082342020. View Article : Google Scholar : PubMed/NCBI | |
Yuen CK, Lam JY, Wong WM, Mak LF, Wan X, Chu H, Cai JP, Jin DY, To KK, Chan JF, et al: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists. Emerg Microbes Infect. 9:1418–1428. 2020. View Article : Google Scholar : PubMed/NCBI | |
Miorin L, Kehrer T, Sanchez-Aparicio MT, Zhang K, Cohen P, Patel RS, Cupic A, Makio T, Mei M, Moreno E, et al: SARS-CoV-2 Orf6 hijacks Nup98 to block STAT nuclear import and antagonize interferon signaling. Proc Natl Acad Sci USA. 117:28344–28354. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen DY, Khan N, Close BJ, Goel RK, Blum B, Tavares AH, Kenney D, Conway HL, Ewoldt JK, Chitalia VC, et al: SARS-CoV-2 disrupts proximal elements in the JAK-STAT pathway. J Virol. 95:e00862212021. View Article : Google Scholar : PubMed/NCBI | |
Montero P, Milara J, Roger I and Cortijo J: Role of JAK/STAT in interstitial lung diseases; molecular and cellular mechanisms. Int J Mol Sci. 22:62112021. View Article : Google Scholar : PubMed/NCBI | |
Simpson JA, Al-Attar A, Watson NF, Scholefield JH, Ilyas M and Durrant LG: Intratumoral T cell infiltration, MHC class I and STAT1 as biomarkers of good prognosis in colorectal cancer. Gut. 59:926–933. 2010. View Article : Google Scholar : PubMed/NCBI | |
Jia H, Song L, Cong Q, Wang J, Xu H, Chu Y, Li Q, Zhang Y, Zou X, Zhang C, et al: The LIM protein AJUBA promotes colorectal cancer cell survival through suppression of JAK1/STAT1/IFIT2 network. Oncogene. 36:2655–2666. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Li X, Tan F, Yu N and Pei H: STAT1 Inhibits MiR-181a expression to suppress colorectal cancer cell proliferation through PTEN/Akt. J Cell Biochem. 118:3435–3443. 2017. View Article : Google Scholar : PubMed/NCBI | |
Schroder K, Hertzog PJ, Ravasi T and Hume DA: Interferon-gamma: An overview of signals, mechanisms and functions. J Leukoc Biol. 75:163–189. 2004. View Article : Google Scholar : PubMed/NCBI | |
Stark GR and Darnell JE Jr: The JAK-STAT pathway at twenty. Immunity. 36:503–514. 2012. View Article : Google Scholar : PubMed/NCBI | |
Varinou L, Ramsauer K, Karaghiosoff M, Kolbe T, Pfeffer K, Müller M and Decker T: Phosphorylation of the STAT1 transactivation domain is required for full-fledged IFN-gamma-dependent innate immunity. Immunity. 19:793–802. 2003. View Article : Google Scholar : PubMed/NCBI | |
Garda-Diaz A, Shin DS, Moreno BH, Saco J, Escuin-Ordinas H, Rodriguez GA, Zaretsky JM, Sun L, Hugo W, Wang X, et al: Interferon receptor signaling pathways regulating PD-L1 and PD-L2 expression. Cell Rep. 19:1189–1201. 2017. View Article : Google Scholar | |
Ivashkiv LB: IFNγ: Signalling, epigenetics and roles in immunity, metabolism, disease and cancer immunotherapy. Nat Rev Immunol. 18:545–558. 2018. View Article : Google Scholar : PubMed/NCBI | |
Abiko K, Mandai M, Hamanishi J, Yoshioka Y, Matsumura N, Baba T, Yamaguchi K, Murakami R, Yamamoto A, Kharma B, et al: PD-L1 on tumor cells is induced in asdtes and promotes peritoneal dissemination of ovarian cancer through CTL dysfunction, din. Cancer Res. 19:1363–1374. 2013.PubMed/NCBI | |
Tian X, Guan W, Zhang L, Sun W, Zhou D, Lin Q, Ren W, Nadeem L and Xu G: Physical interaction of STAT1 isoforms with TGF-β receptors leads to functional crosstalk between two signaling pathways in epithelial ovarian cancer. J Exp Clin Cancer Res. 37:1032018. View Article : Google Scholar : PubMed/NCBI | |
Padmanabhan S, Gaire B, Zou Y, Uddin MM and Vancurova I: IFNγ-induced PD-L1 expression in ovarian cancer cells is regulated by JAK1, STAT1 and IRF1 signaling. Cell Signal. 97:1104002022. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Kortylewski M and Pardoll D: Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat Rev Immunol. 7:41–51. 2007. View Article : Google Scholar : PubMed/NCBI | |
Priceman SJ, Kujawski M, Shen S, Cherryholmes GA, Lee H, Zhang C, Kruper L, Mortimer J, Jove R, Riggs AD and Yu H: Regulation of adipose tissue T cell subsets by Stat3 is crucial for diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA. 110:13079–13084. 2013. View Article : Google Scholar : PubMed/NCBI | |
Deng J, Liu Y, Lee H, Herrmann A, Zhang W, Zhang C, Shen S, Priceman SJ, Kujawski M, Pal SK, et al: S1PR1-STAT3 signaling is crucial for myeloid cell colonization at future metastatic sites. Cancer Cell. 21:642–654. 2012. View Article : Google Scholar : PubMed/NCBI | |
Park EJ, Lee JH, Yu GY, He G, Ali SR, Holzer RG, Osterreicher CH, Takahashi H and Karin M: Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell. 140:197–208. 2012. View Article : Google Scholar | |
Carro MS, Lim WK, Alvarez MJ, Bollo RJ, Zhao X, Snyder EY, Sulman EP, Anne SL, Doetsch F, Colman H, et al: The transcriptional network for mesenchymal transformation of brain tumours. Nature. 463:318–325. 2010. View Article : Google Scholar : PubMed/NCBI | |
Marotta LL, Almendro V, Marusyk A, Shipitsin M, Schemme J, Walker SR, Bloushtain-Qimron N, Kim JJ, Choudhury SA, Maruyama R, et al: The JAK2/STAT3 signaling pathway is required for growth of CD44+CD24-stem cell-like breast cancer cells in human tumors. J Clin Invest. 121:2723–2735. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schroeder A, Herrmann A, Cherryholmes G, Kowolik C, Buettner R, Pal S, Yu H, Müller-Newen G and Jove R: Loss of androgen receptor expression promotes a stem-like cell phenotype in prostate cancer through STAT3 signaling. Cancer Res. 74:1227–1237. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, Nebelsiek T, Lundgren-May T, Canli O, Schwitalla S, et al: gp130-mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 15:91–102. 2009. View Article : Google Scholar : PubMed/NCBI | |
Grivennikov S, Karin E, Terzic J, Mucida D, Yu GY, Vallabhapurapu S, Scheller J, Rose-John S, Cheroutre H, Eckmann L and Karin M: IL-6 and Stat3 are required for survival of intestinal epithelial cells and development of colitis-associated cancer. Cancer Cell. 15:103–113. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yu H and Jove R: The STATs of cancer-new molecular targets come of age. Nat Rev Cancer. 4:97–105. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lin TS, Mahajan S and Frank DA: STAT signaling in the pathogenesis and treatment of leukemias. Oncogene. 19:2496–2504. 2000. View Article : Google Scholar : PubMed/NCBI | |
Battle TE and Frank DA: The role of STATs in apoptosis. Curr Mol Med. 2:381–392. 2002. View Article : Google Scholar : PubMed/NCBI | |
Bruns HA and Kaplan MH: The role of constitutively active Stat6 in leukemia and lymphoma. Crit Rev Oncol Hematol. 57:245–253. 2006. View Article : Google Scholar : PubMed/NCBI | |
Sorger H, Dey S, Vieyra-Garcia PA, Pölöske D, Teufelberger AR, de Araujo ED, Sedighi A, Graf R, Spiegl B, Lazzeri I, et al: Blocking STAT3/5 through direct or upstream kinase targeting in leukemic cutaneous T-cell lymphoma. EMBO Mol Med. 14:e152002022. View Article : Google Scholar : PubMed/NCBI | |
Zhao R, Xing S, Li Z, Fu X, Li Q, Krantz SB and Zhao ZJ: Identification of an acquired JAK2 mutation in polycythemia vera. J Biol Chem. 280:22788–22792. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zhao L, Ma Y, Seemann J and Huang LJ: A regulating role of the JAK2 FERM domain in hyperactivation of JAK2(V617F). Biochem J. 426:91–98. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kralovics R, Passamonti F, Buser AS, Teo SS, Tiedt R, Passweg JR, Tichelli A, Cazzola M and Skoda RC: A gain-of-function mutation of JAK2 in myeloproliferative disorders. N Engl J Med. 352:1779–1790. 2005. View Article : Google Scholar : PubMed/NCBI | |
Levine RL, Wadleigh M, Cools J, Ebert BL, Wernig G, Huntly BJ, Boggon TJ, Wlodarska I, Clark JJ, Moore S, et al: Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell. 7:387–397. 2005. View Article : Google Scholar : PubMed/NCBI | |
Walz C, Crowley BJ, Hudon HE, Gramlich JL, Neuberg DS, Podar K, Griffin JD and Sattler M: Activated Jak2 with the V617F point mutation promotes G1/S phase transition. J Biol Chem. 281:18177–18183. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wernig G, Gonneville JR, Crowley BJ, Rodrigues MS, Reddy MM, Hudon HE, Walz C, Reiter A, Podar K, Royer Y, et al: The Jak2V617F oncogene associated with myeloproliferative diseases requires a functional FERM domain for transformation and for expression of the Myc and Pim protooncogenes. Blood. 111:3751–3759. 2008. View Article : Google Scholar : PubMed/NCBI | |
Furuhata A, Kimura A, Shide K, Shimoda K, Murakami M, Ito H, Gao S, Yoshida K, Tagawa Y, Hagiwara K, et al: p27 deregulation by Skp2 overexpression induced by the JAK2V617 mutation. Biochem Biophys Res Commun. 383:411–416. 2009. View Article : Google Scholar : PubMed/NCBI | |
Hanahan D and Weinberg RA: Hallmarks of cancer: The next generation. Cell. 144:646–674. 2011. View Article : Google Scholar : PubMed/NCBI | |
Jäkel H, Weinl C and Hengst L: Phosphorylation of p27Kip1 by JAK2 directly links cytokine receptor signaling to cell cycle control. Oncogene. 30:3502–3512. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mohrherr J, Uras IZ, Moll HP and Casanova E: STAT3: Versatile functions in non-small cell lung cancer. Cancers (Basel). 12:11072020. View Article : Google Scholar : PubMed/NCBI | |
Bromberg J: Stat proteins and oncogenesis. J Clin Investig. 109:1139–1142. 2002. View Article : Google Scholar : PubMed/NCBI | |
Huynh J, Etemadi N, Hollande F, Ernst M and Buchert M: The JAK/STAT3 axis: A comprehensive drug target for solid malignancies. Semin Cancer Biol. 45:13–22. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee HJ, Zhuang G, Cao Y, Du P, Kim HJ and Settleman J: Drug resistance via feedback activation of Stat3 oncogene-addicted cancer cells. Cancer Cell. 26:207–221. 2014. View Article : Google Scholar : PubMed/NCBI | |
Gao SP, Mark KG, Leslie K, Pao W, Motoi N, Gerald WL, Travis WD, Bornmann W, Veach D, Clarkson B and Bromberg JF: Mutations in the EGFR kinase domain mediate STAT3 activation via IL-6 production in human lung adenocarcinomas. J Clin Investig. 117:3846–3856. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhu Z, Aref AR, Cohoon TJ, Barbie TU, Imamura Y, Yang S, Moody SE, Shen RR, Schinzel AC, Thai TC, et al: Inhibition of KRAS-driven tumorigenicity by interruption of an autocrine cytokine circuit. Cancer Discov. 4:452–465. 2014. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Huang Y, Zeng J, Chen B, Huang N, Guo N, Liu L, Xu H, Mo X and Li W: Down-regulation of JAK1 by RNA interference inhibits growth of the lung cancer cell line A549 and interferes with the PI3K/mTOR pathway. J Cancer Res Clin Oncol. 137:1629–1640. 2011. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Jin J, Xu J, Shao YW and Fan Y: JAK2 variations and functions in lung adenocarcinoma. Tumour Biol. 39:10104283177111402017. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Kim C, Baek SH, Ko JH, Lee SG, Yang WM, Um JY, Sethi G and Ahn KS: Capsazepine inhibits JAK/STAT3 signaling, tumor growth, and cell survival in prostate cancer. Oncotarget. 8:17700–17711. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JH, Kim JE, Kim BG, Han HH, Kang S and Cho NH: STAT3-induced WDR1 overexpression promotes breast cancer cell migration. Cell Signal. 28:1753–1760. 2016. View Article : Google Scholar : PubMed/NCBI | |
Subramaniam A, Shanmugam MK, Ong TH, Li F, Perumal E, Chen L, Vali S, Abbasi T, Kapoor S, Ahn KS, et al: Emodin inhibits growth and induces apoptosis in an orthotopic hepatocellular carcinoma model by blocking activation of STAT3. Br J Pharmacol. 170:807–821. 2013. View Article : Google Scholar : PubMed/NCBI | |
Paul A, Das S, Das J, Samadder A, Bishayee K, Sadhukhan R and Khuda-Bukhsh AR: Diarylheptanoid-myricanone isolated from ethanolic extract of Myrica cerifera shows anticancer effects on HeLa and PC3 cell lines: Signalling pathway and drug-DNA interaction. J Integr Med. 11:405–415. 2013. View Article : Google Scholar : PubMed/NCBI | |
He G and Karin M: NF-kappaB and STAT3-key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Chen T, Lu X, Xie H, Zhou L and Zheng S: Overexpression of variant PNPLA3 gene at I148M position causes malignant transformation of hepatocytes via IL-6-JAK2/STAT3 pathway in low dose free fatty acid exposure: A laboratory investigation in vitro and in vivo. Am J Transl Res. 8:1319–1338. 2016.PubMed/NCBI | |
Miller AM, Wang H, Bertola A, Park O, Horiguchi N, Ki SH, Yin S, Lafdil F and Gao B: Inflammation-associated interleukin-6/signal transducer and activator of transcription 3 activation ameliorates alcoholic and nonalcoholic fatty liver diseases in interleukin-10-deficient mice. Hepatol. 54:846–856. 2011. View Article : Google Scholar | |
Kim E, Kim M, Woo DH, Shin Y, Shin J, Chang N, Oh YT, Kim H, Rheey J, Nakano I, et al: Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells. Cancer Cell. 23:839–852. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cao R, Wang L, Wang H, Xia L, Erdjument-Bromage H, Tempst P, Jones RS and Zhang Y: Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science. 298:1039–1043. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kim KH and Roberts CW: Targeting EZH2 in cancer. Nat Med. 22:128–134. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kleer CG, Cao Q, Varambally S, Shen R, Ota I, Tomlins SA, Ghosh D, Sewalt RG, Otte AP, Hayes DF, et al: EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 100:11606–11611. 2003. View Article : Google Scholar : PubMed/NCBI | |
Cebria F, Kobayashi C, Umesono Y, Nakazawa M, Mineta K, Ikeo K, Gojobori T, Itoh M, Taira M, Sánchez Alvarado A and Agata K: The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 419:620–624. 2002.PubMed/NCBI | |
Cao W, Ribeiro Rde O, Liu D, Saintigny P, Xia R, Xue Y, Lin R, Mao L and Ren H: EZH2 promotes malignant behaviors via cell cycle dysregulation and its mRNA level associates with prognosis of patient with non-small cell lung cancer. PLoS One. 7:e529842012. View Article : Google Scholar : PubMed/NCBI | |
Wu LJ, Zhang X, Wang J, Kong X, Zheng BY and Yu H: HeZ: ZMYND10 downregulates cyclins B1 and D1 to arrest cell cycle by trimethylating lysine 9 on histone 3. Life Res. 4:17–24. 2021. View Article : Google Scholar | |
Zhang Y and Tong T: FOXA1 antagonizes EZH2-mediated CDKN2A repression in carcinogenesis. Biochem Biophys Res Commun. 453:172–178. 2014. View Article : Google Scholar : PubMed/NCBI | |
Ganem D: KSHV infection and the pathogenesis of Kaposi's sarcoma. Annu Rev Pathol. 1:273–296. 2006. View Article : Google Scholar : PubMed/NCBI | |
Farrell PJ, Rowe DT, Rooney CM and Kouzarides T: Epstein-Barr virus BZLF1 trans-activator specifically binds to a consensus AP-1 site and is related to c-fos. EMBO J. 8:127–132. 1989. View Article : Google Scholar : PubMed/NCBI | |
Feederle R, Kost M, Baumann M, Janz A, Drouet E, Hammerschmidt W and Delecluse HJ: The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J. 19:3080–3089. 2000. View Article : Google Scholar : PubMed/NCBI | |
Kenney SC and Mertz JE: Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol. 26:60–68. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Ma R, Wang Y, Sun W, Yang Z, Han M, Han T, Wu XA and Liu R: Viruses run: the evasion mechanisms of the antiviral innate immunity by Hantavirus. Front Microbiol. 12:7591982021. View Article : Google Scholar : PubMed/NCBI | |
Mesev EV, LeDesma RA and Ploss A: Decoding type I and III interferon signaling during viral infection. Nat. Microbiol. 4:914–924. 2019. | |
Boneschi V, Brambilla L, Berti E, Ferrucci S, Corbellino M, Parravicini C and Fossati S: Human herpesvirus 8 DNA in the skin and blood of patients with Mediterranean Kaposi's sarcoma: Clinical correlations. Dermatology. 203:19–23. 2001. View Article : Google Scholar : PubMed/NCBI | |
Campbell TB, Borok M, Gwanzura L, MaWhinney S, White IE, Ndemera B, Gudza I, Fitzpatrick L and Schooley RT: Relationship of human herpesvirus 8 peripheral blood virus load and Kaposi's sarcoma clinical stage. AIDS. 14:2109–2116. 2000. View Article : Google Scholar : PubMed/NCBI | |
Murray PG and Young LS: The Role of the Epstein-Barr virus in human disease. Front Biosci. 7:d519–d540. 2002. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Ueda K, Sakakibara S, Okuno T, Parravicini C, Corbellino M and Yamanishi K: Activation of latent Kaposi's sarcoma-associated herpesvirus by demethylation of the promoter of the lytic transactivator. Proc Natl Acad Sci USA. 98:4119–4124. 2001. View Article : Google Scholar : PubMed/NCBI | |
Fardet L, Blum L, Kerob D, Agbalika F, Galicier L, Dupuy A, Lafaurie M, Meignin V, Morel P and Lebbé C: Human herpesvirus 8-associated hemophagocytic lymphohistiocytosis in human immunodeficiency virus-infected patients. Clin Infect Dis. 37:285–291. 2003. View Article : Google Scholar : PubMed/NCBI | |
Grandadam M, Dupin N, Calvez V, Gorin I, Blum L, Kernbaum S, Sicard D, Buisson Y, Agut H, Escande JP and Huraux JM: Exacerbations of clinical symptoms in human immunodeficiency virus type 1-infected patients with multicentric Castleman's disease are associated with a high increase in Kaposi's sarcoma herpesvirus DNA load in peripheral blood mononuclear cells. J Infect Dis. 175:1198–1201. 1997. View Article : Google Scholar : PubMed/NCBI | |
Oksenhendler E, Carcelain G, Aoki Y, Boulanger E, Maillard A, Clauvel JP and Agbalika F: High levels of human herpesvirus 8 viral load, human interleukin-6, interleukin-10, and C reactive protein correlate with exacerbation of multicentric Castleman disease in HIV-infected patients. Blood. 96:2069–2073. 2000. View Article : Google Scholar : PubMed/NCBI | |
Robles R, Lugo D, Gee L and Jacobson MA: Effect of antiviral drugs used to treat cytomegalovirus end-organ disease on subsequent course of previously diagnosed Kaposi's sarcoma in patients with AIDS. J Acquir Immune Defic Syndr Hum Retrovirol. 20:34–38. 1999. View Article : Google Scholar : PubMed/NCBI | |
King CA, Li X, Barbachano-Guerrero A and Bhaduri-McIntosh S: STAT3 regulates lytic activation of Kaposi's sarcoma-associated herpesvirus. J Virol. 89:11347–11355. 2015. View Article : Google Scholar : PubMed/NCBI | |
Mousavizadeh L and Ghasemi S: Genotype and phenotype of COVID-19: Their roles in pathogenesis. J Microbiol Immunol Infect. 54:159–163. 2021. View Article : Google Scholar : PubMed/NCBI | |
Robson F, Khan KS, Le TK, Paris C, Demirbag S, Barfuss P, Rocchi P and Ng WL: Coronavirus RNA proofreading: molecular basis and therapeutic targeting. Mol Cell. 79:710–727. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chou JM, Tsai JL, Hung JN, Chen IH, Chen ST and Tsai MH: The ORF8 protein of SARS-CoV-2 modulates the spike protein and its implications in viral transmission. Front Microbiol. 13:8835972022. View Article : Google Scholar : PubMed/NCBI | |
Kim D, Lee JY, Yang JS, Kim JW, Kim VN and Chang H: The architecture of SARS-CoV-2 transcriptome. Cell. 181:914–921. e102020. View Article : Google Scholar : PubMed/NCBI | |
Liu DX, Fung TS, Chong KK, Shukla A and Hilgenfeld R: Accessory proteins of SARS-CoV and other coronaviruses. Antiviral Res. 109:97–109. 2014. View Article : Google Scholar : PubMed/NCBI | |
Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 181:271–280. e82020. View Article : Google Scholar : PubMed/NCBI | |
Valcarcel A, Bensussen A, Álvarez-Buylla ER and Díaz J: Structural analysis of SARS-CoV-2 ORF8 protein: Pathogenic and therapeutic implications. Front Genet. 12:6932272021. View Article : Google Scholar : PubMed/NCBI | |
Leifert JA, Holler PD, Harkins S, Kranz DM and Whitton JL: The cationic region from HIV tat enhances the cell-surface expression of epitope/MHC class I complexes. Gene Ther. 10:2067–2073. 2003. View Article : Google Scholar : PubMed/NCBI | |
Haque M, Ueda K, Nakano K, Hirata Y, Parravicini C, Corbellino M and Yamanishi K: Major histocompatibility complex class I molecules are down-regulated at the cell surface by the K5 protein encoded by Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8. J Gen Virol. 82:1175–1180. 2001. View Article : Google Scholar : PubMed/NCBI | |
Selvaraj C, Dinesh DC, Pedone EM, Alothaim AS, Vijayakumar R, Rudhra O and Singh SK: SARS-CoV-2 ORF8 dimerization and binding mode analysis with class I MHC: computational approaches to identify COVID-19 inhibitors. Brief Funct Genomics. 22:227–240. 2023. View Article : Google Scholar : PubMed/NCBI | |
Cai H, Chen Y, Feng Y, Asadi M, Kaufman L, Lee K, Kehrer T, Miorin L, Garcia-Sastre A, Gusella GL, et al: SARS-CoV-2 viral protein ORF3A injures renal tubules by interacting with TRIM59 to induce STAT3 activation. Mol Ther. 31:774–787. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ackermann M, Verleden SE, Kuehnel M, Haverich A, Welte T, Laenger F, Vanstapel A, Werlein C, Stark H, Tzankov A, et al: Pulmonary vascular endothelialitis, thrombosis, and angiogenesis in Covid-19. N Engl J Med. 383:120–128. 2020. View Article : Google Scholar : PubMed/NCBI | |
Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 191:145–147. 2020. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama T, Kubli SP, Yoshinaga SK, Pfeffer K and Mak TW: An aberrant STAT pathway is central to COVID-19. Cell Death Differ. 27:3209–3225. 2020. View Article : Google Scholar : PubMed/NCBI | |
Martineau AR, Jolliffe DA, Hooper RL, Greenberg L, Aloia JF, Bergman P, Dubnov-Raz G, Esposito S, Ganmaa D, Ginde AA, et al: Vitamin D supplementation to prevent acute respiratory tract infections: Systematic review and meta-analysis of individual participant data. BMJ. 356:i65832017. View Article : Google Scholar : PubMed/NCBI | |
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS and Manson JJ; HLH Across Speciality Collaboration, : UK: COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet. 395:1033–1034. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jamilloux Y, Henry T, Belot A, Viel S, Fauter M, El Jammal T, Walzer T, Francois B and Seve P: Should we stimulate or suppress immune responses in COVID-19? Cytokine and anti-cytokine interventions. Autoimmun Rev. 19:1025672020. View Article : Google Scholar : PubMed/NCBI | |
Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Rawling M, Savory E and Stebbing J: Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 395:e30–e31. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vannucchi AM, Mortara A, D'Alessio A, Morelli M, Tedeschi A, Festuccia MB, Monforte AD, Capochiani E, Selleri C, Simonetti F, et al: JAK Inhibition with Ruxolitinib in Patients with COVID-19 and severe pneumonia: multicenter clinical experience from a compassionate use program in Italy. J Clin Med. 10:37522021. View Article : Google Scholar : PubMed/NCBI | |
Dobosh B, Zandi K, Giraldo DM, Goh SL, Musall K, Aldeco M, LeCher J, Giacalone VD, Yang J, Eddins DJ, et al: Baricitinib attenuates the proinflammatory phase of COVID-19 driven by lung-infiltrating monocytes. Cell Rep. 39:1109452022. View Article : Google Scholar : PubMed/NCBI | |
Ucciferri C, Auricchio A, Marinari S, Vecchiet J and Falasca K: COVID-19 in a patient with SISTEMIC sclerosis: The role of ruxolitinib. Eur J Inflammation. 19:1–4. 2021. View Article : Google Scholar | |
Ucciferri C, Vecchiet J and Falasca K: Role of monoclonal antibody drugs in the treatment of COVID-19. World J Clin Cases. 8:4280–4285. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hashemi R, Morshedi M, Asghari Jafarabadi M, Altafi D, Saeed Hosseini-Asl S and Rafie-Arefhosseini S: Anti-inflammatory effects of dietary vitamin D. Neurol Genet. 4:e2782018. View Article : Google Scholar : PubMed/NCBI | |
Hashemi R, Hosseini-Asl SS, Arefhosseini SR and Morshedi M: The impact of vitamin D3 intake on inflammatory markers in multiple sclerosis patients and their first-degree relatives. PLoS One. 15:e02311452020. View Article : Google Scholar : PubMed/NCBI | |
Grant WB, Lahore H, McDonnell SL, Baggerly CA, French CB, Aliano JL and Bhattoa HP: Evidence that Vitamin D Supplementation Could Reduce Risk of Influenza and COVID-19 Infections and Deaths. Nutrients. 12:9882020. View Article : Google Scholar : PubMed/NCBI | |
Hii CS and Ferrante A: The Non-Genomic Actions of Vitamin D. Nutrients. 8:1352016. View Article : Google Scholar : PubMed/NCBI | |
Hafezi S, Saheb Sharif-Askari F, Saheb Sharif-Askari N, Ali Hussain Alsayed H, Alsafar H, Al Anouti F, Hamid Q and Halwani R: Vitamin D enhances type I IFN signaling in COVID-19 patients. Sci Rep. 12:177782022. View Article : Google Scholar : PubMed/NCBI |