1
|
World Health Organization (WHO), .
Cardiovascular diseases (CVDs). WHO; Geneva: http://www.who.int/mediacentre/factsheets/fs317/en/December
21–2020
|
2
|
Ramos KS and Partridge CR: Atherosclerosis
and cancer: Flip sides of the neoplastic response in mammalian
cells? Cardiovasc Toxicol. 5:245–255. 2005. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hansen ES: International commission for
protection against environmental mutagens and carcinogens. ICPEMC
working paper 7/1/2. Shared risk factors for cancer and
atherosclerosis-a review of the epidemiological evidence. Mutat
Res. 239:163–179. 1990. View Article : Google Scholar : PubMed/NCBI
|
4
|
De Flora S and Izzotti A: Mutagenesis and
cardiovascular diseases Molecular mechanisms, risk factors, and
protective factors. Mutat Res. 621:5–17. 2007. View Article : Google Scholar : PubMed/NCBI
|
5
|
Botto N, Rizza A, Colombo MG, Mazzone AM,
Manfredi S, Masetti S, Clerico A, Biagini A and Andreassi MG:
Evidence for DNA damage in patients with coronary artery disease.
Mutat Res. 493:23–30. 2001. View Article : Google Scholar : PubMed/NCBI
|
6
|
Henle ES and Linn S: Formation,
prevention, and repair of DNA damage by iron/hydrogen peroxide. J
Biol Chem. 272:19095–19098. 1997. View Article : Google Scholar : PubMed/NCBI
|
7
|
Chatterjee N and Walker GC: Mechanisms of
DNA damage, repair, and mutagenesis. Environ Mol Mutagen.
58:235–263. 2017. View
Article : Google Scholar : PubMed/NCBI
|
8
|
Teebor GW, Boorstein RJ and Cadet J: The
repairability of oxidative free radical mediated damage to DNA: A
review. Int J Radiat Biol. 54:131–150. 1988. View Article : Google Scholar : PubMed/NCBI
|
9
|
Demple B and DeMott MS: Dynamics and
diversions in base excision DNA repair of oxidized abasic lesions.
Oncogene. 21:8926–8934. 2002. View Article : Google Scholar : PubMed/NCBI
|
10
|
Harper JW and Elledge SJ: The DNA damage
response: Ten years after. Mol Cell. 28:739–745. 2007. View Article : Google Scholar : PubMed/NCBI
|
11
|
Minten EV and Yu DS: DNA repair:
translation to the clinic. Clin Oncol. 31:303–310. 2019. View Article : Google Scholar
|
12
|
Whitaker AM, Schaich MA, Smith MS, Flynn
TS and Freudenthal BD: Base excision repair of oxidative DNA
damage: From mechanism to disease. Front Biosci (Landmark Ed).
22:14932017. View
Article : Google Scholar : PubMed/NCBI
|
13
|
Okasaka T, Matsuo K, Suzuki T, Ito H,
Hosono S, Kawase T, Watanabe M, Yatabe Y, Hida T, Mitsudomi T, et
al: hOGG1 Ser326Cys polymorphism and risk of lung cancer by
histological type. J Hum Genet. 54:739–745. 2009. View Article : Google Scholar : PubMed/NCBI
|
14
|
Rodrigues P, de Marco G, Furriol J,
Mansego ML, Pineda-Alonso M, Gonzalez-Neira A, Martin-Escudero JC,
Benitez J, Lluch A, Chaves FJ and Eroles P: Oxidative stress in
susceptibility to breast cancer: study in Spanish population. BMC
Cancer. 14:1–5. 2014. View Article : Google Scholar
|
15
|
Ming-Shiean H, Yu JC, Wang HW, Chen ST,
Hsiung CN, Ding SL, Wu PE, Shen CY and Cheng CW: Synergistic
effects of polymorphisms in DNA repair genes and endogenous
estrogen exposure on female breast cancer risk. Ann Surg Oncol.
17:760–771. 2010. View Article : Google Scholar : PubMed/NCBI
|
16
|
Sanjari Moghaddam A, Nazarzadeh M, Bidel
Z, Karamatinia A, Darvish H and Mosavi Jarrahi A: hOGG 1 gene
polymorphism and breast cancer risk: A systematic review and
meta-analysis study. Breast J. 24:70–73. 2018. View Article : Google Scholar : PubMed/NCBI
|
17
|
Romanowicz H, Pyziak Ł, Jabłoński F, Bryś
M, Forma E and Smolarz B: Analysis of DNA repair genes
polymorphisms in breast cancer. Pathol Oncol Res. 23:117–123. 2017.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Chen Y, Li J, Li T and Mo Z: hOGG1 C1245G
gene polymorphism associated with prostate cancer: A meta-analysis.
Int J Biol Markers. 30:e161–e168. 2015. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dhillon VS, Yeoh E and Fenech M: DNA
repair gene polymorphisms and prostate cancer risk in South
Australia-results of a pilot study. Urol Oncol. 29:641–646. 2011.
View Article : Google Scholar : PubMed/NCBI
|
20
|
Takezaki T, Gao CM, Wu JZ, Li ZY, Wang JD,
Ding JH, Liu YT, Hu X, Xu TL, Tajima K and Sugimura H: hOGG1
Ser326Cys polymorphism and modification by environmental factors of
stomach cancer risk in Chinese. Int J Cancer. 99:624–627. 2002.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Su Y, Xu A and Zhu J: The effect of
oxoguanine glycosylase 1 rs1052133 polymorphism on colorectal
cancer risk in Caucasian population. Tumor Biol. 35:513–517. 2014.
View Article : Google Scholar
|
22
|
Li Z, Guan W, Li MX, Zhong ZY, Qian CY,
Yang XQ, Liao L, Li ZP and Wang D: Genetic polymorphism of DNA
base-excision repair genes (APE1, OGG1 and XRCC1) and their
correlation with risk of lung cancer in a Chinese population. Arch
Med Res. 42:226–234. 2011. View Article : Google Scholar : PubMed/NCBI
|
23
|
Tse D, Zhai R, Zhou W, Heist RS, Asomaning
K, Su L, Lynch TJ, Wain JC, Christiani DC and Liu G: Polymorphisms
of the NER pathway genes, ERCC1 and XPD are associated with
esophageal adenocarcinoma risk. Cancer Causes Control.
19:1077–1083. 2008. View Article : Google Scholar : PubMed/NCBI
|
24
|
Do AT, Brooks JT, Le Neveu MK and LaRocque
JR: Double-strand break repair assays determine pathway choice and
structure of gene conversion events in Drosophila melanogaster. G3
(Bethesda). 4:425–432. 2014. View Article : Google Scholar : PubMed/NCBI
|
25
|
Nowacka-Zawisza M, Wiśnik E, Wasilewski A,
Skowrońska M, Forma E, Bryś M, Różański W and Krajewska WM:
Polymorphisms of homologous recombination RAD51, RAD51B, XRCC2, and
XRCC3 genes and the risk of prostate cancer. Anal Cell Pathol
(Amst). 2015:8286462015.PubMed/NCBI
|
26
|
Hasselbach L, Haase S, Fischer D, Kolberg
HC and Stürzbecher HW: Characterisation of the promoter region of
the human DNA-repair gene Rad51. Eur J Gynaecol Oncol. 26:589–598.
2005.PubMed/NCBI
|
27
|
Michalska MM, Samulak D, Romanowicz H and
Smolarz B: Association of polymorphisms in the 5′ untranslated
region of RAD51 gene with risk of endometrial cancer in the Polish
population. Arch Gynecol Obstet. 290:985–991. 2014. View Article : Google Scholar : PubMed/NCBI
|
28
|
Al Zoubi MS, Zavaglia K, Mazanti C, Al
Hamad M, Al Batayneh K, Aljabali AAA and Bevilacqua G:
Polymorphisms and mutations in GSTP1, RAD51, XRCC1 and XRCC3 genes
in breast cancer patients. Int J Biol Markers. 32:e337–e343. 2017.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Tulbah S, Alabdulkarim H, Alanazi M,
Parine NR, Shaik J, Pathan AA, Al-Amri A, Khan W and Warsy A:
Polymorphisms in RAD51 and their relation with breast cancer in
Saudi females. Onco Targets Ther. 9:269–277. 2016.PubMed/NCBI
|
30
|
Smolarz B, Makowska M, Samulak D,
Michalska MM, Mojs E, Romanowicz H and Wilczak M: Association
between polymorphisms of the DNA repair gene RAD51 and ovarian
cancer. Pol J Pathol. 64:290–295. 2013. View Article : Google Scholar : PubMed/NCBI
|
31
|
Romanowicz-Makowska H, Smolarz B, Samulak
D, Michalska M, Lewy J, Burzyński M and Kokołaszwili G: A single
nucleotide polymorphism in the 5′ untranslated region of RAD51 and
ovarian cancer risk in Polish women. Eur J Gynaecol Oncol.
33:406–410. 2012.PubMed/NCBI
|
32
|
Warde-Farley D, Donaldson SL, Comes O,
Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT,
et al: The GeneMANIA prediction server: Biological network
integration for gene prioritization and predicting gene function.
Nucleic Acids Res. 38:214–220. 2010. View Article : Google Scholar : PubMed/NCBI
|
33
|
Wang K, Maayah M, Sweasy JB and Alnajjar
KS: The role of cysteines in the structure and function of OGG1. J
Biol Chem. 296:1000932021. View Article : Google Scholar : PubMed/NCBI
|
34
|
Daboussi F, Dumay A, Delacôte F and Lopez
BS: DNA double-strand break repair signalling: The case of RAD51
post-translational regulation. Cell Signal. 14:969–975. 2002.
View Article : Google Scholar : PubMed/NCBI
|
35
|
Duan WX, Hua RX, Yi W, Shen LJ, Jin ZX,
Zhao YH, Yi DH, Chen WS and Yu SQ: The association between OGG1
Ser326Cys polymorphism and lung cancer susceptibility: A
meta-analysis of 27 studies. PLoS One. 7:e359702012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Thacker J: The RAD51 gene family, genetic
instability and cancer. Cancer Lett. 219:125–135. 2005. View Article : Google Scholar : PubMed/NCBI
|
37
|
Hassan FM: OGG1 rs1052133 polymorphism and
genetic susceptibility to chronic myelogenous leukaemia. Asian Pac
J Cancer Prev. 20:925–928. 2019. View Article : Google Scholar : PubMed/NCBI
|
38
|
Lord CJ and Ashworth A: RAD51, BRCA2 and
DNA repair: A partial resolution. Nat Struct Mol Biol. 14:461–462.
2007. View Article : Google Scholar : PubMed/NCBI
|
39
|
Wu L, Sowers JR, Zhang Y and Ren J:
Targeting DNA damage response in cardiovascular diseases: From
pathophysiology to therapeutic implications. Cardiovasc Res.
119:691–709. 2023. View Article : Google Scholar : PubMed/NCBI
|