1
|
Su F and Xu W: Enhancing brain plasticity
to promote stroke recovery. Front Neurol. 11:5540892020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Barone FC and Feuerstein GZ: Inflammatory
mediators and stroke: New opportunities for novel therapeutics. J
Cereb Blood Flow Metab. 19:819–834. 1999. View Article : Google Scholar : PubMed/NCBI
|
3
|
Clemens JA: Cerebral ischemia: Gene
activation, neuronal injury, and the protective role of
antioxidants. Free Radic Biol Med. 28:1526–1531. 2000. View Article : Google Scholar : PubMed/NCBI
|
4
|
Gürsoy-Ozdemir Y, Can A and Dalkara T:
Reperfusion-induced oxidative/nitrative injury to neurovascular
unit after focal cerebral ischemia. Stroke. 35:1449–1453. 2004.
View Article : Google Scholar : PubMed/NCBI
|
5
|
del Zoppo GJ: Stroke and neurovascular
protection. N Engl J Med. 354:553–555. 2006. View Article : Google Scholar : PubMed/NCBI
|
6
|
Romero JR, Babikian VL, Katz DI and
Finklestein SP: Neuroprotection and stroke rehabilitation:
Modulation and enhancement of recovery. Behav Neurol. 17:17–24.
2006. View Article : Google Scholar : PubMed/NCBI
|
7
|
Legos JJ and Barone FC: Update on
pharmacological strategies for stroke: Prevention, acute
intervention and regeneration. Curr Opin Investig Drugs. 4:847–858.
2003.PubMed/NCBI
|
8
|
Bang OY, Kim EH, Cha JM and Moon GJ: Adult
stem cell therapy for stroke: Challenges and progress. J Stroke.
18:256–266. 2016. View Article : Google Scholar : PubMed/NCBI
|
9
|
Chen HY, Hung YC, Chen TY, Huang SY, Wang
YH, Lee WT, Wu TS and Lee EJ: Melatonin improves presynaptic
protein, SNAP-25, expression and dendritic spine density and
enhances functional and electrophysiological recovery following
transient focal cerebral ischemia in rats. J Pineal Res.
47:260–270. 2009. View Article : Google Scholar : PubMed/NCBI
|
10
|
Freire M, Sarandeses CS, Covelo G and
Díaz-Jullien C: Phosphorylation of prothymosin α. An approach to
its biological significance. Vitam Horm. 102:73–99. 2016.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Fujita R, Ueda M, Fujiwara K and Ueda H:
Prothymosin-alpha plays a defensive role in retinal ischemia
through necrosis and apoptosis inhibition. Cell Death Differ.
16:349–358. 2009. View Article : Google Scholar : PubMed/NCBI
|
12
|
Teixeira A, Yen B, Gusella GL, Thomas AG,
Mullen MP, Aberg J, Chen X, Hoshida Y, van Bakel H, Schadt E, et
al: Prothymosin α variants isolated from CD8+ T cells and
cervicovaginal fluid suppress HIV-1 replication through type I
interferon induction. J Infect Dis. 211:1467–1475. 2015. View Article : Google Scholar : PubMed/NCBI
|
13
|
Fujita R and Ueda H: Prothymosin-alpha1
prevents necrosis and apoptosis following stroke. Cell Death
Differ. 14:1839–1842. 2007. View Article : Google Scholar : PubMed/NCBI
|
14
|
Ueda H: Prothymosin alpha plays a key role
in cell death mode-switch, a new concept for neuroprotective
mechanisms in stroke. Naunyn Schmiedebergs Arch Pharmacol.
377:315–323. 2008. View Article : Google Scholar : PubMed/NCBI
|
15
|
Karapetian RN, Evstafieva AG, Abaeva IS,
Chichkova NV, Filonov GS, Rubtsov YP, Sukhacheva EA, Melnikov SV,
Schneider U, Wanker EE and Vartapetian AB: Nuclear oncoprotein
prothymosin alpha is a partner of Keap1: Implications for
expression of oxidative stress-protecting genes. Mol Cell Biol.
25:1089–1099. 2005. View Article : Google Scholar : PubMed/NCBI
|
16
|
Ueda H: Prothymosin alpha and cell death
mode switch, a novel target for the prevention of cerebral
ischemia-induced damage. Pharmacol Ther. 123:323–333. 2009.
View Article : Google Scholar : PubMed/NCBI
|
17
|
Halder SK, Sugimoto J, Matsunaga H and
Ueda H: Therapeutic benefits of 9-amino acid peptide derived from
prothymosin alpha against ischemic damages. Peptides. 43:68–75.
2013. View Article : Google Scholar : PubMed/NCBI
|
18
|
Wang LC, Wu CL, Cheng YY and Tsai KJ:
Deletion of nuclear localizing signal attenuates proinflammatory
activity of prothymosin-alpha and enhances its neuroprotective
effect on transient ischemic stroke. Mol Neurobiol. 54:582–593.
2017. View Article : Google Scholar : PubMed/NCBI
|
19
|
Belayev L, Alonso OF, Busto R, Zhao W and
Ginsberg MD: Middle cerebral artery occlusion in the rat by
intraluminal suture. Neurological and pathological evaluation of an
improved model. Stroke. 27:1616–1623. 1996. View Article : Google Scholar : PubMed/NCBI
|
20
|
Juan WS, Huang SY, Chang CC, Hung YC, Lin
YW, Chen TY, Lee AH, Lee AC, Wu TS and Lee EJ: Melatonin improves
neuroplasticity by upregulating the growth-associated protein-43
(GAP-43) and NMDAR postsynaptic density-95 (PSD-95) proteins in
cultured neurons exposed to glutamate excitotoxicity and in rats
subjected to transient focal cerebral ischemia even during a
long-term recovery period. J Pineal Res. 56:213–223. 2014.
View Article : Google Scholar : PubMed/NCBI
|
21
|
Lee EJ, Wu TS, Lee MY, Chen TY, Tsai YY,
Chuang JI and Chang GL: Delayed treatment with melatonin enhances
electrophysiological recovery following transient focal cerebral
ischemia in rats. J Pineal Res. 36:33–42. 2004. View Article : Google Scholar : PubMed/NCBI
|
22
|
Li KJ, Shiau AL, Chiou YY, Yo YT and Wu
CL: Transgenic overexpression of prothymosin alpha induces
development of polycystic kidney disease. Kidney Int. 67:1710–1722.
2005. View Article : Google Scholar : PubMed/NCBI
|
23
|
Su BH, Tseng YL, Shieh GS, Chen YC, Shiang
YC, Wu P, Li KJ, Yen TH, Shiau AL and Wu CL: Prothymosin α
overexpression contributes to the development of pulmonary
emphysema. Nat Commun. 4:19062013. View Article : Google Scholar : PubMed/NCBI
|
24
|
Huang SY, Chang CH, Hung HY, Lin YW and
Lee EJ: Neuroanatomical and electrophysiological recovery in the
contralateral intact cortex following transient focal cerebral
ischemia in rats. Neurol Res. 40:130–138. 2018. View Article : Google Scholar : PubMed/NCBI
|
25
|
Bederson JB, Pitts LH, Tsuji M, Nishimura
MC, Davis RL and Bartkowski H: Rat middle cerebral artery
occlusion: Evaluation of the model and development of a neurologic
examination. Stroke. 17:472–476. 1986. View Article : Google Scholar : PubMed/NCBI
|
26
|
Clark WM, Rinker LG, Lessov NS, Hazel K,
Hill JK, Stenzel-Poore M and Eckenstein F: Lack of interleukin-6
expression is not protective against focal central nervous system
ischemia. Stroke. 31:1715–1720. 2000. View Article : Google Scholar : PubMed/NCBI
|
27
|
Caceres A, Banker G, Steward O, Binder L
and Payne M: MAP2 is localized to the dendrites of hippocampal
neurons which develop in culture. Brain Res. 315:314–318. 1984.
View Article : Google Scholar : PubMed/NCBI
|
28
|
DeGiosio RA, Grubisha MJ, MacDonald ML,
McKinney BC, Camacho CJ and Sweet RA: More than a marker: Potential
pathogenic functions of MAP2. Front Mol Neurosci. 15:9748902022.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Tomasoni R, Repetto D, Morini R, Elia C,
Gardoni F, Di Luca M, Turco E, Defilippi P and Matteoli M: SNAP-25
regulates spine formation through postsynaptic binding to p140Cap.
Nat Commun. 4:21362013. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yoo KS, Lee K, Oh JY, Lee H, Park H, Park
YS and Kim HK: Postsynaptic density protein 95 (PSD-95) is
transported by KIF5 to dendritic regions. Mol Brain. 12:972019.
View Article : Google Scholar : PubMed/NCBI
|
31
|
Skopeliti M, Iconomidou VA, Derhovanessian
E, Pawelec G, Voelter W, Kalbacher H, Hamodrakas SJ and Tsitsilonis
OE: Prothymosin alpha immunoactive carboxyl-terminal peptide
TKKQKTDEDD stimulates lymphocyte reactions, induces dendritic cell
maturation and adopts a beta-sheet conformation in a
sequence-specific manner. Mol Immunol. 46:784–792. 2009. View Article : Google Scholar : PubMed/NCBI
|
32
|
Ueda H: Non-vesicular release of alarmin
prothymosin α complex associated with annexin-2 flop-out. Cells.
12:15692023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Ueda H, Fujita R, Yoshida A, Matsunaga H
and Ueda M: Identification of prothymosin-alpha1, the
necrosis-apoptosis switch molecule in cortical neuronal cultures. J
Cell Biol. 176:853–862. 2007. View Article : Google Scholar : PubMed/NCBI
|
34
|
Matsunaga H and Ueda H: Stress-induced
non-vesicular release of prothymosin-α initiated by an interaction
with S100A13, and its blockade by caspase-3 cleavage. Cell Death
Differ. 17:1760–1772. 2010. View Article : Google Scholar : PubMed/NCBI
|
35
|
Fujita R, Yoshida A, Mizuno K and Ueda H:
Cell density-dependent death mode switch of cultured cortical
neurons under serum-free starvation stress. Cell Mol Neurobiol.
21:317–324. 2001. View Article : Google Scholar : PubMed/NCBI
|
36
|
Ueda H: Prothymosin α plays role as a
brain guardian through Ecto-F1 ATPase-P2Y12
complex and TLR4/MD2. Cells. 12:4962023. View Article : Google Scholar : PubMed/NCBI
|
37
|
Huang EJ and Reichardt LF: Neurotrophins:
Roles in neuronal development and function. Annu Rev Neurosci.
24:677–736. 2001. View Article : Google Scholar : PubMed/NCBI
|
38
|
Tai SH, Huang SY, Chao LC, Lin YW, Huang
CC, Wu TS, Shan YS, Lee AH and Lee EJ: Lithium upregulates
growth-associated protein-43 (GAP-43) and postsynaptic density-95
(PSD-95) in cultured neurons exposed to oxygen-glucose deprivation
and improves electrophysiological outcomes in rats subjected to
transient focal cerebral ischemia following a long-term recovery
period. Neurol Res. 44:870–878. 2022. View Article : Google Scholar : PubMed/NCBI
|
39
|
Michaluk P, Wawrzyniak M, Alot P, Szczot
M, Wyrembek P, Mercik K, Medvedev N, Wilczek E, De Roo M,
Zuschratter W, et al: Influence of matrix metalloproteinase MMP-9
on dendritic spine morphology. J Cell Sci. 124:3369–3380. 2011.
View Article : Google Scholar : PubMed/NCBI
|
40
|
Oliveira-Silva P, Jurgilas PB, Trindade P,
Campello-Costa P, Perales J, Savino W and Serfaty CA: Matrix
metalloproteinase-9 is involved in the development and plasticity
of retinotectal projections in rats. Neuroimmunomodulation.
14:144–149. 2007. View Article : Google Scholar : PubMed/NCBI
|