Research progress on oncoprotein hepatitis B X‑interacting protein (Review)
- Authors:
- Lei Cheng
- Lijuan Guo
- Teng Zou
- Yisong Yang
- Ran Tao
- Shuangping Liu
-
Affiliations: Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China, Chronic Disease Research Center, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China, Department of Anatomy, Medical College, Dalian University, Dalian, Liaoning 116622, P.R. China - Published online on: April 3, 2024 https://doi.org/10.3892/mmr.2024.13213
- Article Number: 89
-
Copyright: © Cheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Chaturvedi VK, Singh A, Dubey SK, Hetta HF, John J and Singh MP: Molecular mechanistic insight of hepatitis B virus mediated hepatocellular carcinoma. Microb Pathog. 128:184–194. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bar-Peled L, Schweitzer LD, Zoncu R and Sabatini DM: Ragulator Is a GEF for the Rag GTPases that signal amino acid levels to mTORC1. Cell. 150:1196–1208. 2012. View Article : Google Scholar : PubMed/NCBI | |
Xiu M, Zeng X, Shan R, Wen W, Li J and Wan R: The oncogenic role of HBXIP. Biomed Pharmacother. 133:1110452021. View Article : Google Scholar : PubMed/NCBI | |
Giguère V: Canonical signaling and nuclear activity of mTOR-a teamwork effort to regulate metabolism and cell growth. FEBS J. 285:1572–1588. 2018. View Article : Google Scholar : PubMed/NCBI | |
Villa E, Sahu U, O'Hara BP, Ali ES, Helmin KA, Asara JM, Gao P, Singer BD and Ben-Sahra I: mTORC1 stimulates cell growth through SAM synthesis and m(6)A mRNA-dependent control of protein synthesis. Mol Cell. 81:2076–2093.e9. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Wang X, Duan J, Sun W, Chen Z, Li Q, Ou Z, Jiang G, Ren X and Liu S: HBXIP protein overexpression predicts the poor prognosis of pancreatic ductal adenocarcinomas. Pathol Res Pract. 215:343–346. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Feng Q, Yu H, Zhou X, Shan C, Zhang Q and Liu S: HBXIP: A potential prognosis biomarker of colorectal cancer which promotes invasion and migration via epithelial-mesenchymal transition. Life Sci. 245:1173542020. View Article : Google Scholar : PubMed/NCBI | |
Piao JJ, Li N, Wang YX, Lin ZH and Liu SP: HBXIP expression in gastric adenocarcinoma predicts poor prognosis. Zhonghua Bing Li Xue Za Zhi. 46:88–92. 2017.(In Chinese). PubMed/NCBI | |
Li N, Wang Y, Che S, Yang Y, Piao J, Liu S and Lin Z: HBXIP over expression as an independent biomarker for cervical cancer. Exp Mol Pathol. 102:133–137. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Sun J, Li N, Che S, Jin T, Liu S and Lin Z: HBXIP overexpression is correlated with the clinical features and survival outcome of ovarian cancer. J Ovarian Res. 10:262017. View Article : Google Scholar : PubMed/NCBI | |
Xia H, Ma L, Li J, Bai H and Wang D: Elevated HBXIP expression is associated with aggressive phenotype and poor prognosis in esophageal squamous cell carcinoma. Am J Cancer Res. 7:2190–2198. 2017.PubMed/NCBI | |
Cheng D, Liang B and Li Y: HBXIP expression predicts patient prognosis in breast cancer. Med Oncol. 31:2102014. View Article : Google Scholar : PubMed/NCBI | |
Guo ZY, Jiang LP and Zhu ZT: High HBXIP expression is related to poor prognosis in HCC by extensive database interrogation. Eur Rev Med Pharmacol Sci. 25:6196–6207. 2021.PubMed/NCBI | |
Wang Y, Li N, Che S, Jin T, Piao J, Liu S and Lin Z: HBXIP suppression reduces cell proliferation and migration and its overexpression predicts poor prognosis in non-small-cell lung cancer. Tumour Biol. 39:10104283177096752017. View Article : Google Scholar : PubMed/NCBI | |
Gao X and Yang L: HBXIP knockdown inhibits FHL2 to promote cycle arrest and suppress cervical cancer cell proliferation, invasion and migration. Oncol Lett. 25:1862023. View Article : Google Scholar : PubMed/NCBI | |
Xu F, Zhu X, Han TAO, You X, Liu F, Ye L, Zhang X, Wang X and Yao Y: The oncoprotein hepatitis B X-interacting protein promotes the migration of ovarian cancer cells through the upregulation of S-phase kinase-associated protein 2 by Sp1. Int J Oncol. 45:255–263. 2014. View Article : Google Scholar : PubMed/NCBI | |
Meng X and Liu W: The effects of HBXIP on the biological functions of tongue squamous cell carcinoma cells and correlation with PI3K/Akt. Transl Cancer Res. 9:3375–3384. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qiu L, Lu F, Zhang L, Wang G, Geng R and Miao Y: HBXIP regulates gastric cancer glucose metabolism and malignancy through PI3K/AKT and p53 signaling. Onco Targets Ther. 13:3359–3374. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fang X, Tan T, Gao B, Zhao Y, Liu T and Xia Q: Germacrone regulates HBXIP-Mediated cell cycle, apoptosis and promotes the formation of autophagosomes to inhibit the proliferation of gastric cancer cells. Front Oncol. 10:5373222020. View Article : Google Scholar : PubMed/NCBI | |
Fujii R, Zhu C, Wen Y, Marusawa H, Bailly-Maitre B, Matsuzawa S, Zhang H, Kim Y, Bennett CF, Jiang W and Reed JC: HBXIP, cellular target of hepatitis B virus oncoprotein, is a regulator of centrosome dynamics and cytokinesis. Cancer Res. 66:9099–9107. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fei H, Zhou Y, Li R, Yang M, Ma J and Wang F: HBXIP, a binding protein of HBx, regulates maintenance of the G2/M phase checkpoint induced by DNA damage and enhances sensitivity to doxorubicin-induced cytotoxicity. Cell Cycle. 16:468–476. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang Z, Li Y, Fang R, Wang H, Shi H, Zhang X, Zhang W and Ye L: Hepatitis B X-interacting protein promotes the formation of the insulin gene-transcribing protein complex Pdx-1/Neurod1 in animal pancreatic β-cells. J Biol Chem. 293:2053–2065. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qin Y, Ni P, Zhang Q, Wang X, Du X, Yin Z, Wang L, Ye L and Chen L: Hbxip is essential for murine embryogenesis and regulates embryonic stem cell differentiation through activating mTORC1. Development. 149:dev2005272022. View Article : Google Scholar : PubMed/NCBI | |
Yonehara R, Nada S, Nakai T, Nakai M, Kitamura A, Ogawa A, Nakatsumi H, Nakayama KI, Li S, Standley DM, et al: Structural basis for the assembly of the Ragulator-Rag GTPase complex. Nat Commun. 8:16252017. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang D, Ren H, Shi Y and Gao Y: Oncogenic HBXIP enhances ZEB1 through Sp1 to accelerate breast cancer growth. Thorac Cancer. 9:1664–1670. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu BW, Wang TJ, Li LL, Zhang L, Liu YX, Feng JY, Wu Y, Xu FF, Zhang QS, Bao MZ, et al: Oncoprotein HBXIP induces PKM2 via transcription factor E2F1 to promote cell proliferation in ER-positive breast cancer. Acta Pharmacol Sin. 40:530–538. 2019. View Article : Google Scholar : PubMed/NCBI | |
Haradhvala NJ, Polak P, Stojanov P, Covington KR, Shinbrot E, Hess JM, Rheinbay E, Kim J, Maruvka YE, Braunstein LZ, et al: Mutational strand asymmetries in cancer genomes reveal mechanisms of DNA damage and repair. Cell. 164:538–549. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith J, Tho LM, Xu N and Gillespie DA: The ATM-Chk2 and ATR-Chk1 pathways in DNA damage signaling and cancer. Adv Cancer Res. 108:73–112. 2010. View Article : Google Scholar : PubMed/NCBI | |
Holoch D and Moazed D: RNA-mediated epigenetic regulation of gene expression. Nat Rev Genet. 16:71–84. 2015. View Article : Google Scholar : PubMed/NCBI | |
Easwaran H, Tsai HC and Baylin SB: Cancer epigenetics: Tumor heterogeneity, plasticity of stem-like states, and drug resistance. Mol Cell. 54:716–727. 2014. View Article : Google Scholar : PubMed/NCBI | |
Pourdehnad M, Truitt M, Siddiqi I, Ducker G, Shokat K and Ruggero D: Myc and mTOR converge on a common node in protein synthesis control that confers synthetic lethality in Myc-driven cancers. Proc Natl Acad Sci USA. 110:11988–11993. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Wang Z, Shi H, Li H, Li L, Fang R, Cai X, Liu B, Zhang X and Ye L: HBXIP and LSD1 Scaffolded by lncRNA hotair mediate transcriptional activation by c-Myc. Cancer Res. 76:293–304. 2016. View Article : Google Scholar : PubMed/NCBI | |
Smith J, Sen S, Weeks RJ, Eccles MR and Chatterjee A: Promoter DNA hypermethylation and paradoxical gene activation. Trends Cancer. 6:392–406. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li H, Wang Z, Jiang M, Fang RP, Shi H, Shen Y, Cai XL, Liu Q, Ye K, Fan SJ, et al: The oncoprotein HBXIP promotes human breast cancer growth through down-regulating p53 via miR-18b/MDM2 and pAKT/MDM2 pathways. Acta Pharmacol Sin. 39:1787–1796. 2018. View Article : Google Scholar : PubMed/NCBI | |
Maruyama T, Kadowaki H, Okamoto N, Nagai A, Naguro I, Matsuzawa A, Shibuya H, Tanaka K, Murata S, Takeda K, et al: CHIP-dependent termination of MEKK2 regulates temporal ERK activation required for proper hyperosmotic response. EMBO J. 29:2501–2514. 2010. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zhang Z, Zhou X, Li L, Liu Q, Wang Z, Bai X, Zhao Y, Shi H, Zhang X and Ye L: The oncoprotein HBXIP enhances migration of breast cancer cells through increasing filopodia formation involving MEKK2/ERK1/2/Capn4 signaling. Cancer Lett. 355:288–296. 2014. View Article : Google Scholar : PubMed/NCBI | |
Halbeisen RE, Galgano A, Scherrer T and Gerber AP: Post-transcriptional gene regulation: From genome-wide studies to principles. Cell Mol Life Sci. 65:798–813. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Vásquez E, Alata Jimenez N, Vázquez NA and Strobl-Mazzulla PH: Emerging role of dynamic RNA modifications during animal development. Mech Dev. 154:24–32. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Yin Z, Hou B, Yu M, Chen R, Jin H and Jian Z: Expression profiles and prognostic significance of RNA N6-methyladenosine-related genes in patients with hepatocellular carcinoma: Evidence from independent datasets. Cancer Manag Res. 11:3921–3931. 2019. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Wang X, Cao C, Gao Y, Zhang S, Yang Z, Liu Y, Zhang X, Zhang W and Ye L: HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g. Cancer Lett. 415:11–19. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang N, Wang T, Li Q, Han F, Wang Z, Zhu R and Zhou J: HBXIP drives metabolic reprogramming in hepatocellular carcinoma cells via METTL3-mediated m6A modification of HIF-1α. J Cell Physiol. 236:3863–3880. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang Z and Jiang X, Li D and Jiang X: viaHBXIP promotes gastric cancer METTL3-mediated MYC mRNA m6A modification. Aging (Albany NY). 12:24967–24982. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fabian MR, Sonenberg N and Filipowicz W: Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 79:351–379. 2010. View Article : Google Scholar : PubMed/NCBI | |
Shukla GC, Singh J and Barik S: MicroRNAs: Processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol. 3:83–92. 2011.PubMed/NCBI | |
Liu F, Zhang W, You X, Liu Y, Li Y, Wang Z, Wang Y, Zhang X and Ye L: The oncoprotein HBXIP promotes glucose metabolism reprogramming via downregulating SCO2 and PDHA1 in breast cancer. Oncotarget. 6:27199–27213. 2015. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Wang D, Ren H, Shi Y and Gao Y: MiR-145-targeted HBXIP modulates human breast cancer cell proliferation. Thorac Cancer. 10:71–77. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Lu Z, Kong G, Gao Y, Wang T, Wang Q, Cai N, Wang H, Liu F, Ye L and Zhang X: Hepatitis B virus X protein accelerates hepatocarcinogenesis with partner survivin through modulating miR-520b and HBXIP. Mol Cancer. 13:1282014. View Article : Google Scholar : PubMed/NCBI | |
Hu XM, Yan XH, Hu YW, Huang JL, Cao SW, Ren TY, Tang YT, Lin L, Zheng L and Wang Q: miRNA-548p suppresses hepatitis B virus X protein associated hepatocellular carcinoma by downregulating oncoprotein hepatitis B x-interacting protein. Hepatol Res. 46:804–815. 2016. View Article : Google Scholar : PubMed/NCBI | |
Sebastian-delaCruz M, Gonzalez-Moro I, Olazagoitia-Garmendia A, Castellanos-Rubio A and Santin I: The role of lncRNAs in gene expression regulation through mRNA Stabilization. Noncoding RNA. 7:32021.PubMed/NCBI | |
Zaniani NR, Oroujalian A, Valipour A and Peymani M: LAMTOR5 expression level is a biomarker for colorectal cancer and lncRNA LAMTOR5-AS1 predicting miRNA sponging effect. Mol Biol Rep. 48:6093–6101. 2021. View Article : Google Scholar : PubMed/NCBI | |
Balasooriya ER, Madhusanka D, Lopez-Palacios TP, Eastmond RJ, Jayatunge D, Owen JJ, Gashler JS, Egbert CM, Bulathsinghalage C, Liu L, et al: Integrating clinical cancer and PTM proteomics data identifies a mechanism of ACK1 kinase activation. Mol Cancer Res. 22:137–151. 2024. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Wen X, Jin L, Han H and Guo H: HOOKLESS1 acetylates AUTOPHAGY-RELATED PROTEIN18a to promote autophagy during nutrient starvation in Arabidopsis. Plant Cell. 36:136–157. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yin X, Wang X and Komatsu S: Phosphoproteomics: Protein phosphorylation in regulation of seed germination and plant growth. Curr Protein Pept Sci. 19:401–412. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cockram PE, Kist M, Prakash S, Chen SH, Wertz IE and Vucic D: Ubiquitination in the regulation of inflammatory cell death and cancer. Cell Death Differ. 28:591–605. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pispa J, Mikkonen E, Arpalahti L, Jin C, Martínez-Fernández C, Cerón J and Holmberg CI: AKIR-1 regulates proteasome subcellular function in Caenorhabditis elegans. iScience. 26:1078862023. View Article : Google Scholar : PubMed/NCBI | |
Ye L, Zhang W, Jin T, Zhang L, Wang T, Fu X, Jin T, Zhang W and Ye L: The regulation of acetylation and stability of HMGA2 via the HBXIP-activated Akt-PCAF pathway in promotion of esophageal squamous cell carcinoma growth. Nucleic Acids Res. 48:4858–4876. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu FF, Sun HM, Fang RP, Zhang L, Shi H, Wang X, Fu XL, Li XM, Shi XH, Wu Y, et al: The modulation of PD-L1 induced by the oncogenic HBXIP for breast cancer growth. Acta Pharmacol Sin. 43:429–445. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Sun B, Ruan X, Hou X, Zhi J, Meng X, Zheng X and Gao M: Oncoprotein HBXIP promotes tumorigenesis through MAPK/ERK pathway activation in non-small cell lung cancer. Cancer Biol Med. 18:105–119. 2021. View Article : Google Scholar : PubMed/NCBI | |
Min JH, Yang H, Ivan M, Gertler F, Kaelin WG Jr and Pavletich NP: Structure of an HIF-1alpha-pVHL complex: Hydroxyproline recognition in signaling. Science. 296:1886–1889. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhou XL, Zhu CY, Wu ZG, Guo X and Zou W: The oncoprotein HBXIP competitively binds KEAP1 to activate NRF2 and enhance breast cancer cell growth and metastasis. Oncogene. 38:4028–4046. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bopape M, Tiloke C and Ntsapi C: Moringa oleifera and Autophagy: Evidence from in vivo studies on chaperone-mediated autophagy in HepG2 cancer cells. Nutr Cancer. 75:1822–1847. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu B, Wang T, Wang H, Zhang L, Xu F, Fang R, Li L, Cai X, Wu Y, Zhang W and Ye L: Oncoprotein HBXIP enhances HOXB13 acetylation and co-activates HOXB13 to confer tamoxifen resistance in breast cancer. Hematol Oncol. 11:262018. View Article : Google Scholar | |
Li L, Fang R, Liu B, Shi H, Wang Y, Zhang W, Zhang X and Ye L: Deacetylation of tumor-suppressor MST1 in Hippo pathway induces its degradation through HBXIP-elevated HDAC6 in promotion of breast cancer growth. Oncogene. 35:4048–4057. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhou X, Liu B, Shi X, Li X, Xu F, Fu X, Wang X, Ye K, Jin T, et al: HBXIP blocks myosin-IIA assembly by phosphorylating and interacting with NMHC-IIA in breast cancer metastasis. Acta Pharm Sin B. 13:1053–1070. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yoneyama M, Kawada K, Gotoh Y, Shiba T and Ogita K: Endogenous reactive oxygen species are essential for proliferation of neural stem/progenitor cells. Neurochem Int. 56:740–746. 2010. View Article : Google Scholar : PubMed/NCBI | |
Freyre-Fonseca V, Delgado-Buenrostro NL, Gutiérrez-Cirlos EB, Calderón-Torres CM, Cabellos-Avelar T, Sánchez-Pérez Y, Pinzón E, Torres I, Molina-Jijón E, Zazueta C, et al: Titanium dioxide nanoparticles impair lung mitochondrial function. Toxicol Lett. 202:111–119. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cremers CM and Jakob U: Oxidant sensing by reversible disulfide bond formation. J Biol Chem. 288:26489–26496. 2013. View Article : Google Scholar : PubMed/NCBI | |
Galadari S, Rahman A, Pallichankandy S and Thayyullathil F: Reactive oxygen species and cancer paradox: To promote or to suppress? Free Radic Biol Med. 104:144–164. 2017. View Article : Google Scholar : PubMed/NCBI | |
Moldogazieva NT, Lutsenko SV and Terentiev AA: Reactive oxygen and nitrogen species-induced protein modifications: Implication in carcinogenesis and anticancer therapy. Cancer Res. 78:6040–6047. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Wang R, Wang X, Guo X, Du Y, Guo X, Zong X, Zhu C and Zhou X: HBXIP is a novel regulator of the unfolded protein response that sustains tamoxifen resistance in ER+ breast cancer. J Biol Chem. 298:1016442022. View Article : Google Scholar : PubMed/NCBI | |
Baird L and Yamamoto M: Immunoediting of KEAP1-NRF2 mutant tumours is required to circumvent NRF2-mediated immune surveillance. Redox Biol. 67:1029042023. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Li L, Guo X, Zhang C, Du Y, Li T, Tong K, Zhu C and Wang Z: HBXIP induces anoikis resistance by forming a reciprocal feedback loop with Nrf2 to maintain redox homeostasis and stabilize Prdx1 in breast cancer. NPJ Breast Cancer. 8:72022. View Article : Google Scholar : PubMed/NCBI | |
Tang R, Luo J, Zhu X, Miao P, Tang H, Jian Y, Ruan S, Ling F and Tang M: Recent progress in the effect of ferroptosis of HSCs on the development of liver fibrosis. Front Mol Biosci. 10:12588702023. View Article : Google Scholar : PubMed/NCBI | |
Zhao C and Dahlman-Wright K: Liver X receptor in cholesterol metabolism. J Endocrinol. 204:233–240. 2010. View Article : Google Scholar : PubMed/NCBI | |
Cohen RN, Brzostek S, Kim B, Chorev M, Wondisford FE and Hollenberg AN: The specificity of interactions between nuclear hormone receptors and corepressors is mediated by distinct amino acid sequences within the interacting domains. Mol Endocrinol. 15:1049–1061. 2001. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li H, Zhang Y, Li L, Fang R, Li Y, Liu Q, Zhang W, Qiu L, Liu F, et al: Oncoprotein HBXIP modulates abnormal lipid metabolism and growth of breast cancer cells by activating the LXRs/SREBP-1c/FAS signaling cascade. Cancer Res. 76:4696–4707. 2016. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Li XM, Shi XH, Ye K, Fu XL, Wang X, Guo SM, Ma JQ, Xu FF, Sun HM, et al: Sorafenib triggers ferroptosis via inhibition of HBXIP/SCD axis in hepatocellular carcinoma. Acta Pharmacol Sin. 44:622–634. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Li H, Che N, Zheng Y, Fan W, Li M, Li X and Xuan Y: HBXIP accelerates glycolysis and promotes cancer angiogenesis via AKT/mTOR pathway in bladder cancer. Exp Mol Pathol. 121:1046652021. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhao Y, Li H, Li Y, Cai X, Shen Y, Shi H, Li L, Liu Q, Zhang X and Ye L: The nuclear import of oncoprotein hepatitis B X-interacting protein depends on interacting with c-Fos and phosphorylation of both proteins in breast cancer cells. J Biol Chem. 288:18961–18974. 2013. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Li L, Zhang Y, Zhang Y, Zhao Y, You X, Lin Z, Zhang X and Ye L: The oncoprotein HBXIP uses two pathways to up-regulate S100A4 in promotion of growth and migration of breast cancer cells. J Biol Chem. 287:30228–30239. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu F, You X, Wang Y, Liu Q, Liu Y, Zhang S, Chen L, Zhang X and Ye L: The oncoprotein HBXIP enhances angiogenesis and growth of breast cancer through modulating FGF8 and VEGF. Carcinogenesis. 35:1144–1153. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clarke HJ, Chambers JE, Liniker E and Marciniak SJ: Endoplasmic reticulum stress in malignancy. Cancer Cell. 25:563–573. 2014. View Article : Google Scholar : PubMed/NCBI | |
Clarke R, Shajahan AN, Wang Y, Tyson JJ, Riggins RB, Weiner LM, Bauman WT, Xuan J, Zhang B, Facey C, et al: Endoplasmic reticulum stress, the unfolded protein response, and gene network modeling in antiestrogen resistant breast cancer. Horm Mol Biol Clin Investig. 5:35–44. 2011. View Article : Google Scholar : PubMed/NCBI | |
Meng X, Qi XY, Wang QX and Liu WX: Effect of HBXIP on biological function and PI3K/Akt signaling pathway of adenoid cystic carcinoma cell line ACC-M. Shanghai Kou Qiang Yi Xue. 26:389–394. 2017.(In Chinese). PubMed/NCBI | |
Cai X, Cao C, Li J, Chen F, Zhang S, Liu B, Zhang W, Zhang X and Ye L: Inflammatory factor TNF-α promotes the growth of breast cancer via the positive feedback loop of TNFR1/NF-κB (and/or p38)/p-STAT3/HBXIP/TNFR1. Oncotarget. 8:58338–58352. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhuang C, Narayanapillai S, Zhang W, Sham Y and Xing C: Rapid identification of Keap1-Nrf2 small-molecule inhibitors through structure-based virtual screening and hit-based substructure search. J Med Chem. 57:1121–1126. 2014. View Article : Google Scholar : PubMed/NCBI |