
Molecular and pathophysiological relationship between obesity and chronic inflammation in the manifestation of metabolic dysfunctions and their inflammation‑mediating treatment options (Review)
- Authors:
- Fani-Niki Varra
- Michail Varras
- Viktoria-Konstantina Varra
- Panagiotis Theodosis-Nobelos
-
Affiliations: Department of Pharmacy, School of Health Sciences, Frederick University, Nicosia 1036, Cyprus, Fourth Department of Obstetrics and Gynecology, ‘Elena Venizelou’ General Hospital, Athens 11521, Greece, Department of Pharmacy, School of Health Sciences, University of Patras, Patras 26504, Greece - Published online on: April 9, 2024 https://doi.org/10.3892/mmr.2024.13219
- Article Number: 95
-
Copyright: © Varra et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
Sethi JK and Vidal-Puig AJ: Thematic review series: Adipocyte biology. Adipose tissue function and plasticity orchestrate nutritional adaptation. J Lipid Res. 48:1253–1262. 2007. View Article : Google Scholar : PubMed/NCBI | |
Luo L and Liu M: Adipose tissue in control of metabolism. J Endocrinol. 231:R77–R99. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jung UJ and Choi MS: Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 15:6184–6223. 2014. View Article : Google Scholar : PubMed/NCBI | |
Curat CA, Miranville A, Sengenè C, Diehl M, Tonus C, Busse R and Bouloumié A: From blood monocytes to adipose tissue-resident macrophages: Induction of diapedesis by human mature adipocytes. Diabetes. 53:1285–1292. 2004. View Article : Google Scholar : PubMed/NCBI | |
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al: Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 360:1509–1517. 2009. View Article : Google Scholar : PubMed/NCBI | |
Nauli AM and Matin S: Why do men accumulate abdominal visceral fat? Front Physiol. 10:14862019. View Article : Google Scholar : PubMed/NCBI | |
Kahn CR, Wang G and Lee KY: Altered adipose tissue and adipocyte function in the pathogenesis of metabolic syndrome. J Clin Invest. 129:3990–4000. 2019. View Article : Google Scholar : PubMed/NCBI | |
Blüher M: Adipose tissue dysfunction in obesity. Exp Clin Endocrinol Diabetes. 117:241–250. 2009. View Article : Google Scholar : PubMed/NCBI | |
Tan CY and Vidal-Puig A: Adipose tissue expandability: The metabolic problems of obesity may arise from the inability to become more obese. Biochem Soc Trans. 36:935–940. 2008. View Article : Google Scholar : PubMed/NCBI | |
Sebo ZL and Rodeheffer MS: Assembling the adipose organ: Adipocyte lineage segragation and adipogenesis in vivo. Development. 146:dev1720982019. View Article : Google Scholar : PubMed/NCBI | |
Lafontan M and Langin D: Lipolysis and lipid modilization in human adipose tissue. Prog Lipid Res. 48:275–297. 2009. View Article : Google Scholar : PubMed/NCBI | |
Frayn KN: Adipose tissue as a buffer for daily lipid flux. Diabetologia. 45:1201–1210. 2002. View Article : Google Scholar : PubMed/NCBI | |
Cinti S, Mitchell G, Barbatelli G, Murano I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS and Obin MS: Adipocyte death defines macrophage location and function in adipose tissue of obese mice and humans. J Lipid Res. 46:2347–2355. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ellulu MS, Patimah I, Khazaai H, Rahmat A and Abed Y: Obesity and inflammation: The linking mechanism and the complications. Arch Med Sci. 13:851–863. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS: Inflammation and metabolic disorders. Nature. 444:860–867. 2006. View Article : Google Scholar : PubMed/NCBI | |
Fantuzzi G: Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 115:911–919. 2005. View Article : Google Scholar : PubMed/NCBI | |
Weir CB and Jan A: BMI classification percentile and cut off points. StatPearls Treasure Island, FL: StatPearls Publishing; 2020 | |
Marcadenti A and de Abreu-Silva EO: Different adipose tissue depots: Metabolic implications and effects of surgical removal. Endocrinol Nutr. 62:458–464. 2015. View Article : Google Scholar : PubMed/NCBI | |
Fuster JJ, Ouchi N, Gokce N and Walsh K: Obesity-induced changes in adipose tissue microenvironment and their impact on cardiovascular disease. Circ Res. 118:1786–1807. 2016. View Article : Google Scholar : PubMed/NCBI | |
Osborn O and Olefsky JM: The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med. 18:363–374. 2012. View Article : Google Scholar : PubMed/NCBI | |
Gustafson B, Hedjazifar S, Gogg S, Hammarstedt A and Smith U: Insulin resistance and impaired adipogenesis. Trends Endocrinol Metab. 26:193–200. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kuk JL, Katzmarzyk PT, Nichaman MZ, Church TS, Blair SN and Ross R: Visceral fat in an independent predictor of all-cause mortality in men. Obesity (Silver Spring). 14:336–341. 2006. View Article : Google Scholar : PubMed/NCBI | |
Klein J, Permana PA, Owecki M, Chaldakov GN, Böhm M, Hausman G, Lapière CM, Atanassova P, Sowiński J, Fasshauer M, et al: What are subcutaneous adipocytes really good for? Exp Dermatol. 16:45–70. 2007. View Article : Google Scholar : PubMed/NCBI | |
Cameron AJ, Magliano DJ and Soderberg S: A systemic review of the impact of including both waist and hip circumference in risk models for cardiovascular diseases, diabetes and mortality. Obes Rev. 14:86–94. 2013. View Article : Google Scholar : PubMed/NCBI | |
Koster A, Murphy RA, Eiriksdottir G, Aspelund T, Sigurdsson S, Lang TF, Gudnason V, Launer LJ and Harris TB: Fat distribution and mortality: The AGES-Reykjavik study. Obesity (Silver Spring). 23:893–897. 2015. View Article : Google Scholar : PubMed/NCBI | |
Arner P, Andersson DP, Thörne A, Wirén M, Hoffstedt J, Näskybd E, Thorell A and Rydén M: Variations in the size of the major omentum are primarily determined by fat cell number. J Clin Endocrinol Metab. 98:E897–E901. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chait A and den Hartigh LJ: Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med. 25:222020. View Article : Google Scholar : PubMed/NCBI | |
James WP: Assessing obesity: Are ethnic differences in body mass index and waist classification criteria justified? Obes Rev. 6:179–181. 2005. View Article : Google Scholar : PubMed/NCBI | |
James WP, Rigby N and Leach R: Obesity and the metabolic syndrome: The stress on society. Ann N Y Acad Sci. 1083:1–10. 2006. View Article : Google Scholar : PubMed/NCBI | |
El-Sayed AM, Scarborough P and Galea S: Ethnic inequalities in obesity among children and adults in the UK: A systematic review of the literature. Obes Rev. 12:e516–e534. 2011. View Article : Google Scholar : PubMed/NCBI | |
Barnett AH, Dixon AN, Bellary S, Hanif MW, O'Hare JP, Raymond NT and Kumar S: Type 2 diabetes and cardiovascular risk in the UK south Asian community. Diabetologia. 49:2234–2246. 2006. View Article : Google Scholar : PubMed/NCBI | |
Misra A and Khurana L: Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int J Obes (Lond). 35:167–187. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pi-Sunyer X: The medical risks of obesity. Postgrad Med. 121:21–33. 2009. View Article : Google Scholar : PubMed/NCBI | |
Kyrou I, Randeva HS, Tsigos C, Kaltsas G, Weickert MO, Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, et al: Clinical problems caused by obesity. Endotext [Internet] South Dartmouth (MA): MDText.com, Inc; 2018 | |
Khanna D, Khanna S, Khanna P, Kahar P and Patel BM: Obesity: A chronic low-grade inflammation and its markers. Cureus. 14:e227112022.PubMed/NCBI | |
Bobbert T, Rochlitz H, Wegewitz U, Akpulat S, Mai K, Weickert MO, Möhlig M, Pfeiffer AFH and Spranger J: Changes of adiponectin oligomer composition by moderate weight reduction. Diabetes. 54:2712–2719. 2005. View Article : Google Scholar : PubMed/NCBI | |
Hotamisligil GS, Shargill NS and Spiegelman BM: Adipose expression of tumor necrosis factor-α: Direct role in obesity-linked insulin resistance. Science. 259:87–91. 1993. View Article : Google Scholar : PubMed/NCBI | |
Mohlig M, Weickert MO, Ghadamgadai E, Machlitt A, Pfüller B, Arafat AM, Pfeiffer AFH and Schöfl C: Adipocyte fatty acid-binding protein is associated with marker of obesity, but is an unlikely link between obesity, insulin resistance and hyperandrogenism in polycystic ovary syndrome women. Eur J Endocrinol. 157:195–200. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fonseca-Alaniz MH, Takada J, Alonso-Vale MI and Lima FB: Adipose tissue as an endocrine organ: From theory to practice. J Pediatr. 83:192–203. 2007. View Article : Google Scholar : PubMed/NCBI | |
Maury E and Brichard SM: Adipokine dysregulation, adipose tissue inflammation and metabolic syndrome. Mol Cell Endocrinol. 314:1–16. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gregor MF and Hotamilsigil GS: Inflammatory mechanisms in obesity. Annu Rev Immunol. 29:415–445. 2011. View Article : Google Scholar : PubMed/NCBI | |
Weickert MO, Hodges P, Tan BK and Randeva HS: Neuroendocrine and endocrine dysfunction in the hyperinsulinemic PCOS patient: The role of metformin. Minerva Endocrinol. 37:25–40. 2012.PubMed/NCBI | |
Randeva HS, Tan BK, Weickert MO, Lois K, Nestler JE, Sattar N and Lehnert H: Cardiometabolic aspects of the polycystic ovary syndrome. Endocr Rev. 33:812–841. 2012. View Article : Google Scholar : PubMed/NCBI | |
Makki K, Froguel P and Wolowczuk I: Adipose tissue in obesity-related inflammation and insulin resistance. Cells, cytokines and chemokines. ISRN Inflamm. 2013:1392392013. View Article : Google Scholar : PubMed/NCBI | |
Sivakumar K, Bari MF, Adaikalakoteswari A, Guller S, Weickert MO, Randeva HS, Grammatopoulos DK, Bastie CC and Vatish M: Elevated fetal adispin/acylation-stimulating protein (ASP) in obese pregnancy: Novel placental secretion via Hofbauer cells. J Clin Endocrinol Metab. 98:4113–4122. 2013. View Article : Google Scholar : PubMed/NCBI | |
von Loeffelholz C, Mohlig M, Arafat AM, Isken F, Spranger J, Mai K, Randeva HS, Pfeiffer AFH and Weickert MO: Circulation vaspin is unrelated to insulin sensitivity in a cohort of nondiabetic humans. Eur J Endocrinol. 162:507–513. 2013. View Article : Google Scholar : PubMed/NCBI | |
Elmasry SA, Al-Azzawi MA, Ghoneim AH, Nasr MY and AboZaid MMN: Role of oxidant-antioxidant imbalance in the pathogenesis of chronic obstructive pulmonary disease. Egypt J Chest Dis Tuberc. 64:813–820. 2015. View Article : Google Scholar | |
Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E and Arrigo T: Oxidative stress in obesity: A critical component in human diseases. Int J Mol Sci. 16:378–400. 2015. View Article : Google Scholar | |
Reilly SM and Saltiel AR: Adapting to obesity with adipose tissue inflammation. Nat Rev Endocrinol. 13:633–643. 2017. View Article : Google Scholar : PubMed/NCBI | |
Rheinheimer J, de Souza BM, Cardoso NS, Bauer AC and Crispim D: Current role of the NLRP3 inflammasome on obesity and insulin resistance: A systematic review. Metabolism. 74:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
Deshmane SL, Kremley S, Amini S and Sawaya BE: Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 29:313–326. 2009. View Article : Google Scholar : PubMed/NCBI | |
Taylor EB: The complex role of adipokines in obesity, inflammation and autoimmunity. Clin Sci (Lond). 135:731–752. 2021. View Article : Google Scholar : PubMed/NCBI | |
Matsushima K, Larsen CG, DuBois GC and Oppenheim JJ: Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myolomonocytic cell line. J Exp Med. 169:1485–1490. 1989. View Article : Google Scholar : PubMed/NCBI | |
Rollins BJ: Chemokines. Blood. 90:909–928. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K and Kasuga M: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest. 116:1494–1505. 2006. View Article : Google Scholar : PubMed/NCBI | |
Singh S, Anshita D and Ravichandiran V: MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 101((PtB)): 1075982021. View Article : Google Scholar : PubMed/NCBI | |
Dietze-Schroeder D, Sell H, Uhlig M, Koener M and Eckel J: Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes. 54:2003–2011. 2005. View Article : Google Scholar : PubMed/NCBI | |
Christiansen T, Richelsen B and Bruun JM: Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int J Obes (Lond). 29:146–150. 2005. View Article : Google Scholar : PubMed/NCBI | |
Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, et al: Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 54:2277–2286. 2005. View Article : Google Scholar : PubMed/NCBI | |
Piemonti L, Calori G, Mercalli A, Lattuada G, Monti P, Garancini MP, Constantio F, Ruotolo G, Luzi L and Perseglin G: Fasting plasma leptin, tumor necrosis factor-alpha receptor 2, and monocyte chemoattracting protein 1 concentration in a population of glucose-tolerant and glucose-intolerant women: Impact on cardiovascular mortality. Diabetes Care. 26:2883–2889. 2003. View Article : Google Scholar : PubMed/NCBI | |
Simeoni E, Hoffman MM, Winkelman BR, Ruiz J, Fleury S, Boehm BO, März W and Vassalli G: Association between the A-2518G polymorphism in the monocyte chemoattractant protein-1 gene and insulin resistance and type 2 diabetes mellitus. Diabetologia. 47:1574–1580. 2004. View Article : Google Scholar : PubMed/NCBI | |
Herder C, Baumert J, Thorand B, Koenig W, de Jager W, Meisinger C, Illig T, Martin S and Kolb H: Chemokines as risk factors for type 2 diabetes: Results from the MONICA/KORA Augsburg study, 1984–2002. Diabetologia. 49:921–929. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kim CS, Park HS, Kawada T, Kim JH, Lim D, Hubbard NE, Kwon BS, Rrickson KL and Yu R: Circulating levels of MCP-1 and IL-8 are elevated in human obese subjects and associated with obesity-related parameters. Int J Obes (Lond). 30:1347–1355. 2006. View Article : Google Scholar : PubMed/NCBI | |
Shimobayashi M, Albert V, Woelnerhanssen B, Frei IC, Weissenberger D, Meyer-Gerpach AC, Clement N, Moes S, Colombi M, Meier JA, et al: Insulin resistance causes inflammation in adipose tissue. J Clin Invest. 128:1538–1550. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu B, Guo X, Xu H, Jiang B, Li H, Wang Y, Yin O, Zhou T, Cai JJ, Glaser S, et al: Adipose tissue inflammation and systemic insulin resistance in mice with diet-induced obesity is possibly associated with disruption of PFKFB3 in hematopoietic cells. Lab Invest. 101:328–340. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ylä-Herttuala S, Lipton A, Rosenfeld ME, Särkioja T, Yoshimura T, Leonard EJ, Witztum JL and Steinberg D: Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci USA. 88:5252–5256. 1991. View Article : Google Scholar : PubMed/NCBI | |
Arakelyan A, Petrkova J, Hermanova Z, Boyajyan A, Lukl J and Petrek M: Serum levels of the MCP-1 chemokine in patients with ischemic stroke and myocardiac infarction. Mediators Inflamm. 14:175–179. 2005. View Article : Google Scholar : PubMed/NCBI | |
Sukumar D, Partridge C, Wang X and Shapses SA: The high serum monocyte chemoattractant protein-1 in obesity is influenced by high parathyroid hormone and not adiposity. J Clin Endocrinol Metab. 296:1852–1858. 2011. View Article : Google Scholar : PubMed/NCBI | |
Takeya M, Yoshimura T, Leonard EJ and Takahashi K: Detection of monocyte chemoattractant protein-1 in human atherosclerotic lesions by an anti-monocyte chemoattractant protein-1 monoclonal antibody. Hum Pathol. 24:534–539. 1993. View Article : Google Scholar : PubMed/NCBI | |
Gu L, Οkada Y, Clinton SK, Gerard C, Sukhova GK, Libby P and Rollins BJ: Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-defined mice. Mol Cell. 2:275–281. 1998. View Article : Google Scholar : PubMed/NCBI | |
Boring M, Gosling J, Cleary M and Charo IF: Decreased lesion in CCR2-/- mice reveals a role for chemokines in the initation of atherosclerosis. Nature. 394:894–897. 1998. View Article : Google Scholar : PubMed/NCBI | |
Deng Y and Scherer PE: Adipokines as novel biomarkers and regulators of the metabolic syndrome. Ann N Y Acad Sci. 1212:E1–E19. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dutheil F, Gordon BA, Naughton G, Crendal E, Courteix D, Chaplais E, Thivel D, Lac G and Benson AC: Cardiovascular risk of adipokines: A review. J Inter Med Res. 46:2082–2095. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szumilas K, Szumilas P, Słuczanowska-Głąbowsk S, Zgutka K and Pawlik A: Role of adiponectin in the pathogenesis of Rheumatoid arthritis. Int J Mol Sci. 21:82652020. View Article : Google Scholar : PubMed/NCBI | |
Adolph TE, Grander C, Grabherr F and Tilg H: Adipokines and non-alcoholic fatty liver disease: Multiple interactions. Int J Mol Sci. 18:16492017. View Article : Google Scholar : PubMed/NCBI | |
Neumann UH, Chen S, Tam YY, Baker RK, Covey SD, Dullis PP and Kieffer TJ: IGFBP2 is neither sufficient nor necessary for the physiological actions of leptin on glucose homeostasis in male ob/ob mice. Endocrinology. 155:716–725. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zorena K, Jachimowicz-Duda O, Ślęzak D, Robakowska M and Mrugacz M: Adipokines in obesity. Potential lind to metabolic disorders and chronic complications. Int J Mol Sci. 21:35702020. View Article : Google Scholar : PubMed/NCBI | |
Kumada M, Kihara S, Ouchi N, Kobayashi H, Okamoto Y, Ohashi K, Maeda K, Nagaretani H, Kishida K, Maeda N, et al: Adiponectin specifically increased tissue inhibitor of metalloproteinase-1 through interleukin-10 expression in human macrophages. Circulation. 109:2046–2049. 2004. View Article : Google Scholar : PubMed/NCBI | |
Quedraogo R, Wu X, Xu SQ, Fuchsel L, Motoshima H, Mahadev K, Hough K, Scalia R and Goldstein BJ: Adiponectin suppression of high-glucose-induced reactive oxygen species in vascular endothelial cells: Evidence for involvement of a cAMP signaling pathway. Diabetes. 55:1840–1846. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yuan F, Li YN, Liu YH, Yi B, Tian JW and Liu FY: Adiponectin inhibits the generation of reactive oxygen species induced by high glucose and promotes endothelial NO synthase formation in human mesangial cells. Mol Med Rep. 6:449–453. 2012. View Article : Google Scholar : PubMed/NCBI | |
Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M and Shimomura I: Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 114:1752–1761. 2004. View Article : Google Scholar : PubMed/NCBI | |
Castro JR, Grune T and Speckmann B: The two faces of reactive oxygen species (ROS) in adipocyte function and dysfunction. Biol Chem. 397:709–724. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fujita K, Nishizawa H, Funahashi T, Shimomura I and Shimabukuro M: Systemic oxidative stress is associated with visceral fat accumulation and the metabolic syndrome. Circulation. 70:1437–1442. 2006. View Article : Google Scholar : PubMed/NCBI | |
Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Yamamoto M and Sugimoto T: Adiponectin and AMP kinase activator stimulate proliferation, differentiation, and mineralization of osteoblastic MC3T3-E1 cells. BMC Cell Biol. 8:512007. View Article : Google Scholar : PubMed/NCBI | |
Xie C and Chen Q: Adipokines: New therapeutic target for osteoarthritis? Curr Reumatol Rep. 21:712020. | |
Gamberi Τ, Μagherini F, Modesti A and Fiaschi T: Adiponectin signaling pathways in liver diseases. Biomedicines. 6:522018. View Article : Google Scholar : PubMed/NCBI | |
Ouchi N, Kihara S, Arita Y, Nishida M, Matsuyama A, Okamoto Y, Ishigami M, Kuriyama H, Kishida K, Nishizawa H, et al: Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation. 103:1057–1063. 2001. View Article : Google Scholar : PubMed/NCBI | |
Matsuda M, Shimomura I, Sata M, Arita Y, Nishida M, Maeda N, Kumada M, Okamoto Y, Nagaretani H, Nishizawa H, et al: Role of adiponectin in preventing vascular stenosis. The missing link of adipo-vascular axis. J Biol Chem. 277:37487–37491. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kadowaki T and Yamauchi T: Adiponectin and adiponectin receptors. Endocr Rev. 26:439–451. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zha N, Wu X and Gao P: Adiponectin and its receptors in diabetic kidney disease: Molecular mechanisms and clinical potential. Endocrinol. 158:2022–2034. 2017. View Article : Google Scholar | |
Alnaggar ARLR, Sayed M, El-Deena KE, Gomma M and Hamed Y: Evaluation of serum adiponectin levels in diabetic nephropathy. Diabetes Metab Syndr. 13:128–131. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ouedraogo R, Gong Y, Berzins B, Wu X, Mahadev K, Hough K, Chan L, Goldstein BJ and Scalia R: Adiponectin deficiency increases leukocyte-endothelium interactions via up-regulation of endothelial cell adhesion molecules in vivo. J Clin Invest. 117:1718–1761. 2007. View Article : Google Scholar : PubMed/NCBI | |
Abella V, Scotece M, Conde J, López V, Lazzaro V, Pino J, Gómez-Rein O and Gualillo O: Adipokines, metabolic syndrome and rheumatic diseases. J Immunol Res. 2014:3437462014. View Article : Google Scholar : PubMed/NCBI | |
Stefan N and Stumvoll M: Adiponectin-its role in metabolism and beyond. Horm Metab Res. 34:469–474. 2002. View Article : Google Scholar : PubMed/NCBI | |
Weyer C, Funahashi T, Tanaka S, Hotta K, Matsuzawa Y, Pratley RE and Tataranni PA: Hypoadiponectinemia in obesity and type 2 diabetes: Close association with insulin resistance and hyperinsulinemia. J Clin Endocrinol Metab. 86:1930–1935. 2001. View Article : Google Scholar : PubMed/NCBI | |
Arita Y, Kihara S, Ouchi N, Takahashi M, Maed K, Miyagawa J, Hotta K, Shimomura I, Nakamura T, Miyaoka K, et al: Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun. 257:79–83. 1999. View Article : Google Scholar : PubMed/NCBI | |
Scherer PE: Adipose tissue. From lipid storage compartment to endocrine organ. Diabetes. 55:1537–1545. 2006. View Article : Google Scholar : PubMed/NCBI | |
Trujillo ME and Scherer PE: Adipose tissue-derived factors: Impact on health and disease. Endocr Rev. 27:762–778. 2006. View Article : Google Scholar : PubMed/NCBI | |
Oh DK, Ciaraldi T and Henry RR: Adiponectin in health and disease. Diabetes Obes Metab. 9:282–289. 2007. View Article : Google Scholar : PubMed/NCBI | |
Li S, Shin HJ, Ding EL and van Dam RM: Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA. 302:179–188. 2009. View Article : Google Scholar : PubMed/NCBI | |
Li C, Cheng H, Adhikari BK, Wang S, Yang N, Liu W, Sun J and Wang Y: The role of apelin-APJ system in diabetes and obesity. Front Endocrinol (Lausanne). 2022:132022. | |
Al-Mansoori L, Al-Jaber H, Price MS and Elrayess MA: Role of inflammatory cytokines, growth factors and adipokines in adipogenesis and insulin resistance. Inflammation. 45:31–44. 2022. View Article : Google Scholar : PubMed/NCBI | |
Vykoukal D and Davies MG: Vascular biology of metabolic syndrome. J Vasc Surg. 54:819–831. 2011. View Article : Google Scholar : PubMed/NCBI | |
Than A, He HL, Chua SH, Xu D, Sun L, Leow MKS and Chen P: Apelin enhances brown adipogenesis and browning of white adipocytes. J Biol Chem. 290:1469–14691. 2015. View Article : Google Scholar | |
Yamamoto T, Habata Y, Matsumoto Y, Yasuhara Y, Hashimoto T, Hamajyo H, Anayama H, Fujii R, Fuse H, Shintani Y and Mori M: Apelin-transgenic mice exhibit a resistance against diet-induced obesity by increasing vascular mass and mitochondrial biogenesis in skeletal muscle. Biochim Biophys Acta. 1810:853–862. 2011. View Article : Google Scholar : PubMed/NCBI | |
Mughal A and O'Rourke ST: Vascular effects on apelin: Mechanisms and therapeutic potential. Pharmacol Ther. 190:139–147. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yamazaki S, Sekiguchi A, Uchiyama A, Fujiwara C, Inoue Y, Yokoyama Y, Ogino S, Torii R, Hosoi M, Akai R, et al: Apelin/APJ signaling suppresses the pressure ulcer formation in cutaneous ischemia-perfusion injury mouse model. Sci Rep. 10:13492020. View Article : Google Scholar : PubMed/NCBI | |
Attané C, Foussal C, Gonidec SL, Benani A, Daviaud D, Wanecq E, Guzmán-Ruiz R, Dray C, Bezaire V, Rancoule C, et al: Apelin treatment increases complete fatty acid oxidation, mitochondrial oxidative capacity and biogenesis in muscle of insulin-resistant mice. Diabetes. 61:310–320. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lay SL, Simard G, Martinez MC and Andriantsitohaina R: Oxidative stress and metabolic pathologies: From an adipocentric point of view. Oxid Med Cell Longev. 2014:9085392014.PubMed/NCBI | |
Kim S, Kim S, Hwang AR, Choi HC, Lee JY and Woo CH: Apelin-13 inhibits methylglyoxal-induced unfolded protein responses and endothelial dysfuction via regulating AMPK pathway. Int J Mol Sci. 21:40692020. View Article : Google Scholar : PubMed/NCBI | |
Fibbi B, Marroncini G, Naldi L and Peri A: The Yin and Yang effects of the apelinergic system in oxidative stress. Int J Mol Sci. 24:47452023. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Proenca R, Maffei M, Barone M, Leopold L and Friedman JM: Positional cloning of the mouse obes gene and its human homologue. Nature. 372:425–432. 1994. View Article : Google Scholar : PubMed/NCBI | |
Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK and Friedman JM: Weight-reducing effects of the plasma protein encoded by the obese gene. Science. 269:543–546. 1995. View Article : Google Scholar : PubMed/NCBI | |
Caro JF, Sinha MK, Kolaczynski JW, Zhang PL and Considine RV: Leptin: The tale of an obesity gene. Diabetes. 45:1455–1462. 1996. View Article : Google Scholar : PubMed/NCBI | |
Fantuzzi G and Faggioni R: Leptin in the regulation of immunity, inflammation and haematopoiesis. J Leukoc Biol. 68:437–446. 2000. View Article : Google Scholar : PubMed/NCBI | |
Münzberg H and Morrison CD: Structure, production and signaling of leptin. Metabolism. 64:13–23. 2015. View Article : Google Scholar : PubMed/NCBI | |
Trayhurn P, Duncan JS, Hoggard N and Rayner DV: Regulation of leptin production: A dominant role for the sympathetic nervous system? Proc Nutr Soc. 57:413–419. 1998. View Article : Google Scholar : PubMed/NCBI | |
Dieguez C, Vazquez MJ, Romero A, Lopez M and Nogueiras R: Hypothalamic control of lipid metabolism: Focus on leptin, ghrelin and melanocortins. Neuroendocrinology. 94:1–11. 2011. View Article : Google Scholar : PubMed/NCBI | |
Morton GJ and Schwartz MW: Leptin and the central nervous system control of glucose metabolism. Physiol Rev. 91:389–411. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sahu A: Leptin signaling in the hypothalamus: Emphasis on energy homeostasis and leptin resistance. Front Neuroendocrinol. 24:225–253. 2003. View Article : Google Scholar : PubMed/NCBI | |
Blaszczak AM, Jalilvand A and Hsueh WA: Adipocytes, innate immunity and obesity: A mini-review. Front Immunol. 12:6507682021. View Article : Google Scholar : PubMed/NCBI | |
Obradovic M, Sudar-Milovanovic E, Soskic S, Essack M, Arya S, Stewart AJ, Gojobori T and Isenovic ER: Leptin and obesity: Role and clinical implication. Front Endocrinol (Lausanne). 12:5858872021. View Article : Google Scholar : PubMed/NCBI | |
Fahed G, Aoun L, Zerdan MB, Allam S, Zerdan MB, Bouferraa Y and Assi HI: Metabolic syndrome: Updates on pathophysiology and management in 2021. Int J Mol Sci. 23:7862022. View Article : Google Scholar : PubMed/NCBI | |
van den Hoek AM, Teusink B, Voshol PJ, Havekes LM, Romijn JA and Piji H: Leptin deficiency per se dictates body composition and insulin action in ob/ob mice. J Neuroendocrinol. 20:120–127. 2008. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Xie H, Zhao Q, Xie GQ, Wu XP, Liao EY and Luo XH: Relationships between serum adiponectin, apelin, leptin, resistin, visfatin levels and bone mineral density, and bone biochemical markers in post-menopausal Chinese women. J Endocrinol Invest. 33:707–711. 2010. View Article : Google Scholar : PubMed/NCBI | |
Aizawa-Abe M, Ogawa Y, Masuzaki H, Ebihara K, Satoh N, Iwai H, Matsuoka N, Hayashi T, Hosoda K, Inoue G, et al: Pathophysiological role of leptin in obesity-related hypertension. J Clin Investig. 105:1243–1252. 2000. View Article : Google Scholar : PubMed/NCBI | |
Ferri C, Desideri G, Valenti M, Bellini C, Pasin M, Santucci A and De Mattia G: Early up-regulation of endothelial adhesion molecules in obese hypertensive men. Hypertension. 34:568–573. 1999. View Article : Google Scholar : PubMed/NCBI | |
Hukshorn CJ, Lindeman JH, Toet KH, Saris WH, Eilers PH, Westerterp-Plantenga MS and Kooistra T: Leptin and the proinflammatory state associated with human obesity. J Clin Endocrinol Metab. 89:1773–1778. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kim JE, Kim JS, Jo MJ, Cho E, Ahn SY, Kwon YJ and Ko GJ: The roles and associated mechanisms of adipokines in development of metabolic syndrome. Molecules. 27:3342022. View Article : Google Scholar : PubMed/NCBI | |
Romacho T, Valencia I, Ramos-González MR, Vallejo S, López-Esteban M, Lorenzo O, Cannata P, Romero A, Hipólito-Luengo AS, Gómez-Cerezo JF, et al: Visfatin/eNampt induces endothelial dysfunction in vivo: A role for toll-like receptor 4 and NLRP3 inflammasome. Sci Rep. 10:53862020. View Article : Google Scholar : PubMed/NCBI | |
Toussirot E: Mini review: The contribution of adipokines to joint inflammation in inflammatory rheumatic diseases. Front Endocrinol (Lausanne). 11:6065602020. View Article : Google Scholar : PubMed/NCBI | |
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Silva C, Rotellar F, Cienfuegos JA, Salvador J and Frühbeck G: Association of increased visfatin/PBEF/NAMPT circulating concentrations and gene expression levels in peripheral blood cells with lipid metabolism and fatty liver in human morbid obesity. Nutr Metab Cardiovasc Dis. 21:245–253. 2011.PubMed/NCBI | |
Chang YH, Chang DM, Lin KC, Shin SJ and Lee YJ: Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: A meta-analysis and systemic review. Diabetes Metab Res Rev. 27:515–527. 2011. View Article : Google Scholar : PubMed/NCBI | |
Martos-Moreno GA, Kratzch J, Korner A, Barrios V, Hawkins F, Kiess W and Argente J: Serum visfatin and vispin levels in prepubertal childres: Effect of obesity and weitht loss after beharior modifications on their secretion and relationship with glucose metabolism. Int J Obes (Lond). 35:1355–1362. 2011. View Article : Google Scholar : PubMed/NCBI | |
Olszanecka-Glinianowicz M, Kocełak P, Nylec M, Chudek J and Zahorska-Markiewicz B: Circulating visfatin level and visfatin/insulin ration in obese women with metabolic syndrome. Arch Med Sci. 8:214–218. 2012. View Article : Google Scholar : PubMed/NCBI | |
de Luis DA, Aller R, Sagrado MG, Conde R, Izaola O and de la Fuente B: Serum visfatin levels and metabolic syndrome criteria in obese female subjects. Diabetes Metab Res Rev. 29:576–581. 2013. View Article : Google Scholar : PubMed/NCBI | |
Friebe D, Neef M, Kratzch J, Erbs S, Dittrich K, Garten A, Petzold-Qunque S, Blüher S, Reinehr T, Stumvoll M, et al: Leucocytes are a major source of circulating nicotinamide phorsphoribosyltransferase (NAMPT)/pre-B cell colony (PBEF)/visfatin linking obesity and inflammation in humans. Diabetologia. 54:1200–1211. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kim SR, Bae YH, Bae SK, Choi KS, Yoon KH, Koo TH, Jang HO, Yun Il, Kim KW, Kwon YG, et al: Visfatin enhances ICAM-1 and VCAM-1 expression through ROS-dependent NF-κΒ activation in endothelial cells. Biochim Biophys Acta. 1783:886–895. 2008. View Article : Google Scholar : PubMed/NCBI | |
Patel SD, Rajala MW, Rossetti L, Scherer PE and Shapiro L: Disulfide-dependent multimeric assembly of resistin family hormones. Science. 304:1154–1158. 2004. View Article : Google Scholar : PubMed/NCBI | |
Oki K, Yamane K, Kamei N, Nojima H and Kohno N: Circulatin visfatin level is correlated with inflammation, but not with insulin resistance. Clin Endocrinol (Oxf). 67:796–800. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moschen AR, Kaser A, Enrich B, Mosheimer B, Theurl M, Niederegger H and Tigl H: Visfatin an adipocytokine with proinflammatory and immunomodulating properties. J Immunol. 178:1748–1758. 2007. View Article : Google Scholar : PubMed/NCBI | |
Krysiak R, Handzlik-Orlik G and Okopien B: The role of adipokines in connective tissue diseases. Eur J Nutr. 51:513–528. 2012. View Article : Google Scholar : PubMed/NCBI | |
Heo YJ, Choi SE, Jeon JY, Han SJ, Kim DJ, Kang Y, Lee KW and Kim HJ: Visfatin induces inflammation and insulin resistance via the NF-κΒ and STAT3 signaling pathways in hepatocytes. J Diabet Res. 2019:40216232019. View Article : Google Scholar : PubMed/NCBI | |
Francisco V, Sanz MJ, Real JT, Marques P, Capuozzo M, Eldjoudi DA and Gualillo O: Adipokines in non-alcoholic fatty liver disease: Are we on the road toward new biomarkers and therapeutic targets? Biology (Basel). 11:12372022.PubMed/NCBI | |
Oita RC, Ferdinando D, Wilson S, Bunce C and Mazzatti DJ: Visfatin induces oxidative stress in differentiated C2C12 myotubes in an Akt- and MAPK-independent, NFκΒ-dependent manner. Pflugers Arch. 459:619–630. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee S, Lee HC, Kwon YW, Lee SE, Cho Y, Kim J, Lee S, Kim JY, Lee J, Yang HM, et al: Adenylyl cyclase-associated protein 1 (CAP1) is a receptor for human resistin and mediated inflammatory actions of human monocytes. Cell Metab. 19:484–497. 2014. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Yang Q, Cai D, Guo H, Fang J, Cui H, Gou L, Deng J, Wang Z and Zuo Z: Resistin, a novel host defence peptide of innate immunity. Front Immunol. 12:6998072021. View Article : Google Scholar : PubMed/NCBI | |
Kawanami D, Maemura K, Takeda N, Harada T, Nojiri T, Imai Y, Manabe I, Utsunomiya K and Nagai R: Direct reciprocal effects of resistin and adiponectin on vascular endothelial cells: A new insight into adipocytokine-endothelial cell interactions. Biochem Biophys Res Commun. 314:415–419. 2004. View Article : Google Scholar : PubMed/NCBI | |
Bokarewa M, Nagaev I, Dahlberg L, Smith U and Tarkowski A: Resistin, an adipokine with potent proimflammatory properties. J Immunol. 174:5789–5795. 2005. View Article : Google Scholar : PubMed/NCBI | |
Agaev I, Bokarewa M, Tarkowski A and Smith U: Human resistin is a systemic immune-derived proinflammatory cytokine targeting both leukocytes and adipocytes. PLoS One. 1:e312006. View Article : Google Scholar : PubMed/NCBI | |
Ebihara T, Matsumoto H, Matsubara T, Matsuura H, Hirose T, Shimizu K, Ogura H, Kang S, Tanaka T and Shimazu T: Adipocytokine profile reveals resistin forming a prognostic-related cytokine network in the acute phase of sepsis. Shock. 56:718–726. 2021. View Article : Google Scholar : PubMed/NCBI | |
Heilbronn LK, Rood J, Janderova L, Albu JB, Kelley DE, Ravussin E and Smith SR: Relationship between serum resistin concentrations and insulin resistance in nonobese, obese, and obese diabetic subjects. J Clin Endocrinol Metabol. 89:1844–1848. 2004. View Article : Google Scholar : PubMed/NCBI | |
Steppan CM, Bailey ST, Bhat S, Brown EJ, Banerjee RR, Wright CM, Patel HR, Ahima RS and Lazar MA: The hormone resistin links obesity to diabetes. Nature. 409:307–312. 2001. View Article : Google Scholar : PubMed/NCBI | |
Vidal-Puig A and O'Rahilly S: Resistin: A new link between obesity and insulin resistance? Clin Endocrinol (Oxf). 55:437–438. 2001. View Article : Google Scholar : PubMed/NCBI | |
McTernan CL, McTernan PG, Harte AL, Levick PL, Barnet AH and Kumar S: Resistin, central obesity, and type 2 diabetes. Lancet. 359:46–47. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Chu WS, Hemphill C and Elbein SC: Hunan resistin gene: Molecular scanning and evaluation of association with insulin sensitivity and type 2 diabetes in Caucasians. J Clin Endocrinol Metabol. 87:2520–2524. 2002. View Article : Google Scholar : PubMed/NCBI | |
Osawa H, Yamada K, Onuma H, Murakami A, Ochi M, Kawata H, Nishimiya T, Niiya T, Shimizu I, Nishida W, et al: The G/G genotype of resistin single-nucleotide polymorphism at −420 increases type 2 diabetes mellitus susceptibility by inducing promoter activity through specific binding of Sp1/3. Am J Hum Genet. 75:678–686. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kielstein JT, Becker B, Graf S, Brabant G, Haller H and Fliser D: Increased resistin blood levels are not associated with insulin resistance in patients with renal disease. Am J Kidney Dis. 42:62–66. 2003. View Article : Google Scholar : PubMed/NCBI | |
Patel L, Buckels AC, Kinghorn IJ, Mourdock PR, Holbrook JD, Plumpton C, Macphee CH and Smith SA: Resistin is expressed in human macrophages and directly regulated by PPAR gamma activators. Biochem Biophys Res Commun. 300:472–476. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chen C, Jiang J, Lü JM, Chai H, Wang X, Lin PH and Yao Q: Resistin descreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol. 299:H193–H201. 2010. View Article : Google Scholar : PubMed/NCBI | |
Acquarone E, Monacelli F, Borghi R, Nencioni A and Odetti P: Resistin: A reappraisal. Mech Ageing Dev. 178:46–63. 2019. View Article : Google Scholar : PubMed/NCBI | |
Iwaki T, Urano T and Umemura K: PAI-1, progress in understanding the clinical problem and its aetiology. Br J Heamatol. 157:291–298. 2012. View Article : Google Scholar | |
Para I, Albu A and Porojan MD: Adipokines and arterial stiffness in obesity. Medicina (Kaunas). 57:6532021. View Article : Google Scholar : PubMed/NCBI | |
Mertens I and Van Gaal LF: Obesity, haemostasis and the fibrinolytic system. Obes Rev. 3:85–101. 2002. View Article : Google Scholar : PubMed/NCBI | |
Juhan-Vague I, Alessi MC, Mavri A and Morange PE: Plasminogen activator inhibitor-1, inflammation, obesity, insulin resistance and vascular risk. J Thromb Haemost. 1:1575–1579. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tschoner A, Sturm W, Engl J, Kaser S, Laimer M, Laimer E, Klaus A, Patsch JR and Ebenbichler CF: Plasminogen activator inhibitor 1 and visceral obesity during pronounced weight loss after bariatric surgery. Nutr Metab Cardiovasc Dis. 22:340–346. 2012. View Article : Google Scholar : PubMed/NCBI | |
Khoukaz HB, Ji Y, Braet DJ, Vadali M, Abdelhamid AA, Emal CD, Lawrence DA and Fay WP: Drug targeting of plasminogen activator inhibitor-1 inhibits metabolic dysfunction and atherosclerosis in murine model of metabolic syndrome. Arterioscler Thromb Vasc Biol. 40:1479–1490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Eitzman DT, Westrick RJ, Xu Z, Tyson J and Grinsburg D: Plasminogen activator inhibitor-1 deficiency protects against atherosclerosis progression in the mouse carotid artery. Blood. 96:4212–4215. 2000. View Article : Google Scholar : PubMed/NCBI | |
Alessi MC and Juhan-Vague I: PAI-1 and the metabolic syndrome: Links, causes and consequences. Arterioscler Thromb Vasc Biol. 16:2200–2207. 2006. View Article : Google Scholar : PubMed/NCBI | |
Ma LJ, Mao SL, Taylor KL, Kanjanabuch T, Guan Y, Zhang Y, Brown NJ, Swift LL, McGuinness OP, Wasserman DH, et al: Prevention of obesity and insulin resistance in mice lacking plasminogen activator inhibitor 1. Diabetes. 53:336–346. 2004. View Article : Google Scholar : PubMed/NCBI | |
Gleeson LE, Sheedy FJ, Palsson-McDermott EM, Triglia D, O'Leary SM, O'Sullivan MP, O'Neill LA and Keane J: Cytting edge: Mycobacterium tuberculosis induces aerobic glycolysis in human alveolar macrophages that is required for control of intracellular bacillary replication. J Immunol. 196:2444–2449. 2016. View Article : Google Scholar : PubMed/NCBI | |
Shoelson SE, Herrero L and Naaz A: Obesity, inflammation and insulin resistance. Gastroenterology. 132:2169–2180. 2007. View Article : Google Scholar : PubMed/NCBI | |
Stojsavljević S, Palčić MG, Jukić LV, Duvnjak LS and Duvnjak M: Adipokines and proinflammatory cytokines, the key mediators in the pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol. 20:18070–18091. 2014. View Article : Google Scholar : PubMed/NCBI | |
Plomgaard P, Bouzakri K, Krogh-Madsen R, Mittendorfer B, Zierath JR and Pedersen BK: Tumor necrosis factor-alpha induces skeletal muscle insulin resistance in healthy human subjects via inhibition of Akt substrate 160 phosphorylation. Diabetes. 54:2936–2945. 2005. View Article : Google Scholar | |
Ruan H and Lodish HF: Insulin resistance in adipose tissue: Direct and indirect effects of tumor necrosis factor-α. Cytokine Growth Factor Rev. 14:447–455. 2003. View Article : Google Scholar : PubMed/NCBI | |
Illei GG and Lipsky PE: Novel, antigen-specific therapeutic approaches to autoimmuneinflammatory diseses. Curr Opin Immunol. 12:712–718. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chandel NS, Schumacker PT and Arch RH: Reactive oxygen species are downstream products of TRAF-mediated signal trasduction. J Biol Chem. 276:42728–42736. 2001. View Article : Google Scholar : PubMed/NCBI | |
Micheau O and Tschopp J: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 114:181–190. 2003. View Article : Google Scholar : PubMed/NCBI | |
Campbell J, Ciesielski CJ, Hunt AE, Horwood NJ, Beech JT, Hayes LA, Denys A, Feldmann M, Brennan FM and Foxwell BMJ: A novel mechanism for TNF-alpha regulation by p38 MAPK: Involvement of NF-kappa B with implications for therapy in rheumatoid arthritis. J Immunol. 173:6928–6937. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang B and Trayhurn P: Acute and prolonged effects of TNF-alpha on the expression and secretion of inflammation-related adipokines by human adipocytes differentiated in culture. Pflugers Arch. 452:418–427. 2006. View Article : Google Scholar : PubMed/NCBI | |
Rider P, Carmi Y, Guttman O, Braiman A, Cohen I, Voronov E, White MR, Dinarello CA and Apte RN: IL-1α and IL-1β recruit different myeloid cells and promote different stages of sterile inflammation. J Immunol. 187:4835–4843. 2011. View Article : Google Scholar : PubMed/NCBI | |
Thornberry NA, Bull HG, Calaycay JR, Chapman KT, Howard AD, Kostura MJ, Miller DK, Molineaux SM, Weidner JR and Aunins J: A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature. 356:768–774. 1992. View Article : Google Scholar : PubMed/NCBI | |
Akdis M, Arab A, Altunbulakli C, Azkur K, Costa RA, Crameri R, Duan S, Eiwegger T, Eljaszewicz A, Ferstl R, et al: Interleukins (from IL-1 to IL-38), interferons, transforming growth factor β, and TNF-α: Receptors, functions, and roles in diseases. J Allergy Clin Immunol. 138:984–1010. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ghabari M, Maragheh SM, Aghazadeh A, Mehrjuyan SR, Hussen BM, Shadbad MA, Dastmalchi N and Safaralizadeh R: Interleukin-1 in obesity-related low-grade inflammation: From molecular mechanisms to therapeutic strategies. Int Immunopharmacol. 96:1077652021. View Article : Google Scholar : PubMed/NCBI | |
Speaker KJ and Fleshner M: Interleukin-1 beta: A potential link between stress and the development of visceral obesity. BMC Physiol. 12:1–15. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bruun JM, Pedersen SB, Kristensen K and Richelsen B: Effects of pro-inflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol Cell Endocrinol. 190:91–99. 2002. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez RR and Leavis P: Leptin upregulates β3-integrin expression and interleukin-1β upregulates leptin and leptin receptor expression in human endometrial epithelial cell cultures. Endocrine. 16:21–28. 2021. View Article : Google Scholar | |
Müller G, Ertl J, Gerl M and Preidisch G: Leptin impairs metabolic actions of insulin in isolated rat adipocytes. J Biol Chem. 272:10585–10593. 1997. View Article : Google Scholar : PubMed/NCBI | |
Moschen AR, Molnar C, Enrich B, Geiger S, Ebenbichler CF and Tilg H: Adipose and liver expression of interleukin (IL)-1 family members in morbid obesity and effects of weight loss. Mol Med. 17:840–845. 2011. View Article : Google Scholar : PubMed/NCBI | |
Shaul ME, Bennett G, Strissel KJ, Greenberg AS and Obin MS: Dynamic, M2-like remodeling phenotypes of CD11c+ adipose tissue macrophages during high-fat diet-induced obesity in mice. Diabetes. 59:1171–1181. 2010. View Article : Google Scholar : PubMed/NCBI | |
Schoettl T, Fischer IP and Ussar S: Heterogeneity of adipose tissue in development and metabolic function. J Exp Biol. 221 (Pt Suppl 1):jeb1629582018. View Article : Google Scholar : PubMed/NCBI | |
Buechler C, Krautbauer S and Eisinger K: Adipose tissue fibrosis. World J Diabetes. 6:548–553. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shikama Y, Aki N, Hata A, Nishimura M, Oyadomari S and Funaki M: Palmitate-stimulated monocytes induce adhesion molecule expression in endothelial cells via IL-1 signaling pathway. J Cell Physiol. 230:732–742. 2015. View Article : Google Scholar : PubMed/NCBI | |
Miura K, Kodama Y, Inokuchi S, Scnabl B, Aoyama T, Ohnishi H, Olefsky JM, Brenner DA and Seki E: Toll-like receptor 9 promotes steatohepatitis by induction of interleukin-1beta in mice. Gastroenterology. 139:323–334. 2010. View Article : Google Scholar : PubMed/NCBI | |
Gao D, Madi M, Ding C, Fok M, Steele T, Ford C, Hunter L and Bing C: Interleukin-1β mediates macrophage-induced impairemnet of insulin signalin in human primary adipocytes. Am J Physiol Endocrinol Metab. 307:E289–E304. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar : PubMed/NCBI | |
Calabrese L, Fiocco Z, Satoh TK, Peris K and French LE: Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 186:925–941. 2022. View Article : Google Scholar : PubMed/NCBI | |
Maedler K, Sergeev P, Ris F, Oberholzer J, Holler-Jemelka H, Spinas GA, Kaiser N, Halban PA and Donath MY: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest. 110:851–860. 2002. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhang H, Zhao B and Fei H: IL-1beta caused pancreatic beta-cells apoptosis is mediated in part by endoplasmic reticulum stress via the induction of endoplasmic reticulum Ca2+ release through the c-Jun N-terminal kinase pathway. Mol Cell Biochem. 324:183–190. 2009. View Article : Google Scholar : PubMed/NCBI | |
Brichory FM, Misek DE, Yim AM, Krause MC, Giordano TJ, Beer DG and Hanash SM: An immune response manifested by the common occurrence of annexins I and II aytoantibodies and high circulating levels of IL-6 in lung cancer. Proc Natl Acad Sci USA. 98:9824–9829. 2001. View Article : Google Scholar : PubMed/NCBI | |
Scheller J, Chalaris A, Schmidt-Arras D and Rose-John S: The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta. 1813:878–888. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tanaka T, Narazaki M and Kishimoto T: IL-6 in inflammation, immunity and disease. Cold Spring Harb Perspect Biol. 6:a0162952014. View Article : Google Scholar : PubMed/NCBI | |
IL6R Genetics Consortium Emerging Risk Factors and Collaboration, . Sarwar N, Butterworth AS, Freitag DF, Gregson J, Willeit P, Gorman DN, Gao P, Saleheen D, Rendon A, et al: Interleukin-6 receptor pathways in coronary heart disease: A collaborative meta-analysis of 82 studies. Lancet. 379:1205–1213. 2012. View Article : Google Scholar : PubMed/NCBI | |
Elhage R, Clamens S, Besnard S, Mallat Z, Tedgui A, Arnal J, Maret A and Bayard F: Involvement of interleukin-6 in atherosclerosis but not in the prevention of fatty streak formation by 17beta-estradiol in apolipoprotein E-deficient mice. Atherosclerosis. 156:315–320. 2001. View Article : Google Scholar : PubMed/NCBI | |
Schieffer B, Selle T, Hilfiker A, Hilfiker-Kleiner D, Grote K, Tietge UJF, Trautwein C, Luchtefeld M, Schmittkamp C, Heeneman S, et al: Impact of interleukin-6 on plaque development and morphology in experimental atherosclerosis. Circulation. 110:3493–3500. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mishra D, Richard JE, Maric I, Porteiro B, Häring M, Kooijman S, Musovic S, Eerola K, López-Ferreras L, Peris E, et al: Parabrachial interleukin-6 reduces body weight and food intake and increases thermogenesis to regulate energy metabolism. Cell Rep. 26:3011–3026. 2019. View Article : Google Scholar : PubMed/NCBI | |
Rosen ED and Spiegelman BM: What we talk about when we talk about fat. Cell. 156:20–44. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, Klein S and Coppack SW: Subcutaneous adipose tissue related interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 82:4196–4200. 1997. View Article : Google Scholar : PubMed/NCBI | |
Sopasakis VR, Sandqvist M, Gustafson B, Hammerstedt A, Schmelz M, Yang X, Jansson PA and Smith U: High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res. 12:454–460. 2004. View Article : Google Scholar : PubMed/NCBI | |
Fernandez-Real JM and Ricart W: Insulin resistance and chronic cardiovascular inflammatory sundrome. Endocr Rev. 24:278–301. 2003. View Article : Google Scholar : PubMed/NCBI | |
Charles BA, Doumatey A, Huang H, Zhou J, Chen G, Shriner D, Adeyemo A and Rotimi CN: The roles of IL-6, IL-10 and IL-1RA in obesity and insulin resistance in African-Americans. J Clin Endocrinol Metab. 96:E2018–E2022. 2011. View Article : Google Scholar : PubMed/NCBI | |
Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS and Chrousos GP: Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 82:4167–4170. 1997. View Article : Google Scholar : PubMed/NCBI | |
Pradhan AD, Manson JE, Rifai N, Buring JE and Ridker PM: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 286:327–334. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bastard JP, Maachi M, van Nhieu JT, Jardel C, Bruckert E, Grimaldi A, Robert JJ, Capeau J and Hainque B: Adipose tissue IL-6 content correlates with resistance to insulin activation of glucose uptake both in vivo and in vitro. J Clin Endocrinol Metab. 87:2084–2089. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kopp HP, Kopp CW, Festa A, Krzyzanowaska K, Kriwanek S, Minar E, Roka R and Schernthaner G: Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Throm Vasc Biol. 23:1042–1047. 2003. View Article : Google Scholar : PubMed/NCBI | |
Xu E, Pereira MMA, Karakasilioti I, Theurich S, Al-Maarri M, Rappl G, Waisman A, Wenderlich FT and Brüning JC: Temporal and tissue-specific requirements for T-lympocyte IL-6 signaling in obesity-associated inflammation and insulin resistance. Nat Commun. 8:148032017. View Article : Google Scholar : PubMed/NCBI | |
Wondmkum YT: Obesity, insulin resistance, and type 2 diabetes: Associations and therapeutic implications. Diabetes Metab Syndr Obes. 13:3611–3616. 2020. View Article : Google Scholar : PubMed/NCBI | |
Fu Z, Gilbert ER and Liu D: Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 9:25–53. 2013. View Article : Google Scholar : PubMed/NCBI | |
Röder PV, Wu B, Liu Y and Han W: Pancreatic regulation of glucose homeostasis. Exp Mol Med. 48:e2192016. View Article : Google Scholar : PubMed/NCBI | |
Fazakerley DJ, Krycer JR, Kearney AL, Hocking SL and James DE: Muscle and adipose tissue insulin resistance: Malady without mechanism? J Lipid Res. 60:1720–1732. 2019. View Article : Google Scholar : PubMed/NCBI | |
Newsholme P and Krause M: Nutritional regulation of insulin secretion: Implications for diabetes. Clin Biochem Rev. 33:35–47. 2012.PubMed/NCBI | |
Dashty M: A quick look at biochemistry: Carbohydrate metabolism. Clin Biochem. 46:1339–1352. 2013. View Article : Google Scholar : PubMed/NCBI | |
Samuel VT and Shulman GI: The pathogenesis of insulin resistance: Intergrating signaling pathways and substrate flux. J Clin Invest. 126:12–22. 2016. View Article : Google Scholar : PubMed/NCBI | |
Taniguchi CM, Emanuelli B and Kahn CR: Critical nodes in signaling pathways: Insights into insulin action. Nat Rev Mol Cell Biol. 7:85–96. 2006. View Article : Google Scholar : PubMed/NCBI | |
Merry TL, Hedges CP, Masson SW, Laube B, Pöhlmann D, Wueest S, Walsh ME, Arnold M, Langhans W, Konrad D, et al: Partial impairment of insulin receptor expression mimics fasting to prevent diet-induced fatty liver diseasee. Nat Commun. 11:20802020. View Article : Google Scholar : PubMed/NCBI | |
Shanik MH, Xu Y, Skrha J, Dankner R, Zick Y and Roth J: Insulin resistance and hyperinsulinemia: Is hyperinsulinemia the cart or the horse? Diabetes Car. 31 (Suppl 2):S262–S268. 2008. View Article : Google Scholar : PubMed/NCBI | |
Braccini L, Ciraolo E, Campa CC, Perino A, Longo DL, Tibolla G, Pregnolato M, Cao Y, Tassone B, Damilano F, et al: PI3K-C2γ is a Rab5 effector selectively controlling endosomal Akt2 activation downstream of insulin signalling. Nat Commun. 6:74002015. View Article : Google Scholar : PubMed/NCBI | |
Huang X, Liu G, Guo J and Su Z: The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci. 14:1483–1496. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gray SL, Donald C, Jetha A, Covey SD and Kieffer TJ: Hyperinsulinemia precedes insulin resistance in mice lacking pancreatic beta-cell leptin signaling. Endocrinology. 151:4178–4186. 2010. View Article : Google Scholar : PubMed/NCBI | |
Wild S, Roglic G, Green A, Sicree R and King H: Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care. 27:1047–1053. 2004. View Article : Google Scholar : PubMed/NCBI | |
Smith BW and Adams LA: Nonalcoholic faty liver disease and diabetes mellitus: Pathogenesis and treatment. Nat Rev Endocrinol. 7:456–465. 2011. View Article : Google Scholar : PubMed/NCBI | |
Willians AJK and Long AE: Following the fate of the failing β-cell: New insights from first-phase insulin responses. Diabetes. 62:3990–3992. 2013. View Article : Google Scholar | |
Gariani K, Philippe J and Jornayvaz FR: Non-alcoholic fatty liver disease and insulin resistance: From bench to bedside. Diabetes Metab. 39:16–26. 2013. View Article : Google Scholar : PubMed/NCBI | |
Zhao J, Wu Y, Rong X, Zheng C and Guo J: Anti-lipolysis induced by insulin in diverse pathophysiologic conditions of adipose tissue. Diabetes Metab Syndr Obes. 13:1575–1585. 2020. View Article : Google Scholar : PubMed/NCBI | |
Griffin ME, Marcucci MJ, Cline GW, Bell K, Barucci N, Lee D, Goodyear LJ, Kraegen EW, White MF and Shulman GI: Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes. 48:1270–1274. 1999. View Article : Google Scholar : PubMed/NCBI | |
Boden G and Shulman GI: Free fatty acids in obesity and type 2 diabetes: Defining their role in the development of insulin resistance and beta-cell dysfunction. Eur J Clin Invest. 32:14–23. 2002. View Article : Google Scholar : PubMed/NCBI | |
Unger RH and Zhou YT: Lipotoxicity of beta-cells in obesity and in other causes of fatty acid spillover. Diabetes. 50 (Suppl 1):S118–S121. 2001. View Article : Google Scholar : PubMed/NCBI | |
Bugianesi E, Gastaldelli A, Vanni E, Gambino R, Cassader M, Baldi S, Ponti V, Pagano G, Ferranini E and Rizzetto M: Insulin resistance in non-diabetic patients with non-alcoholic fatty liver disease: Sites and mechanisms. Diabeltologia. 48:634–642. 2005. View Article : Google Scholar | |
Perry RJ, Samuel VT, Petersen KF and Shulman GI: The role of hepatic insulin resistance and type 2 diabetes. Nature. 510:84–91. 2014. View Article : Google Scholar : PubMed/NCBI | |
Brown MS and Goldstein JL: Selective versus total insulin resistance: A pathogenic paradox. Cell Metab. 7:95–96. 2008. View Article : Google Scholar : PubMed/NCBI | |
Kim GT, Kim SJ, Park SH, Lee D and Park TS: Hepatic expression of the serine palmitoyltansferase subunit Sptlc2 reduces lipid droplets in the liver by activating VLDL secretion. J Lipid Atheroscler. 9:291–303. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hall JE, da Silva AA, do Carmo JM, Dubinion J, Hamza S, Munusamy S, Smith G and Stec DE: Obesity-induced hypertension: Role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 285:17271–17276. 2010. View Article : Google Scholar : PubMed/NCBI | |
Weickert MO and Pfeiffer AFH: Signalling mechanisms linking hepatic glucose and lipid metabolism. Diabetologia. 4:1732–1741. 2006. View Article : Google Scholar : PubMed/NCBI | |
Murakami T, Michelagnoli S, Longhi R, Gianfranceschi G, Pazzucconi F, Calabresi L, Sirtori CR and Franceschini G: Triglycerides are major determinants of cholesterol esterification/transfer and HDL remodeling in human plasma. Arterioscler Thromb Vasc Biol. 15:1819–1828. 1995. View Article : Google Scholar : PubMed/NCBI | |
Eisenberg S, Gavish D, Oschry Y, Fainaru M and Deckelbaum RJ: Abnormalities in very low, low and high density lipoproteins in hypertriglyceridemia. Reversal toward normal with bezafibrate treatment. J Clin Invest. 74:470–482. 1984. View Article : Google Scholar : PubMed/NCBI | |
Tripathy D, Mohanty P, Dhindsa S, Syed T, Ghanim H, Aljada A and Dandona P: Elevation of free fatty acids induces inflammation and impairs vascular reactivity in healthy subjects. Diabetes. 52:2882–2887. 2003. View Article : Google Scholar : PubMed/NCBI | |
Esler M, Rumantir M, Wiesner G, Kaye D, Hastings J and Lambert G: Sympathetic nervous system and insulin resistance from obesity to diabetes. Am J Hypertens. 14((11 Pt 2)): 304S–309S. 2001. View Article : Google Scholar : PubMed/NCBI | |
Samad F and Ruf W: Inflammation, obesity and thrombosis. Blood. 122:3415–3422. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ernst E and Resch KL: Fibrinogen as a cardiovascular risk factor: A meta-analysis and review of the literature. Ann Intern Med. 118:956–963. 1993. View Article : Google Scholar : PubMed/NCBI | |
Kannel WB, Wolf PA, Castelli WP and D'Agostino RB: Fibrionogen and risk of cardiovascular disease. The Framingham study. JAMA. 258:1183–1186. 1987. View Article : Google Scholar : PubMed/NCBI | |
Nieuwdorp M, Stroes ES, Meijers JC and Buller H: Hypercoagulability in the metabolic syndrome. Curr Opin Pharmacol. 5:155–159. 2005. View Article : Google Scholar : PubMed/NCBI | |
Raynaud E, Perez-Martin A, Brun JF, Aïssa-Benhaddad A, Fédou C and Mercier J: Atherosclerosis. 150:365–370. 2000. View Article : Google Scholar : PubMed/NCBI | |
Tabrez S, Jabir NR, Shakil S and Alama MN: Association of plasma fibrinogen level with insulin resistance in angiographically confirmed coronary artery disease patients. Crit Rev Eukaryot Gene Expr. 29:277–285. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bryk-Wiązania AH and Undas A: Hypofribrinolysis in type 2 diabetes and its clinical implications: From mechanisms to pharmacological modulation. Cardiovasc Diabetol. 20:1912021. View Article : Google Scholar : PubMed/NCBI | |
Davalos D and Akassoglou K: Fibrinogen as a key regulator of inflammation in disease. Semin Immunopathol. 34:43–62. 2012. View Article : Google Scholar : PubMed/NCBI | |
Nawaz SS and Siddiqui K: Plasminogen activator inhibitor-1 mediated downregulation of adiponectin in type 2 diabetic patients with metabolic syndrome. Cytokine X. 4:1000642002. View Article : Google Scholar : PubMed/NCBI | |
Chen R, Yan J, Liu P, Wang Z and Wang C: Plasminogen activator inhibitor links obesity and thrombotic cerebrovascular diseases: The roles of PAI-1 and obesity on stroke. Metab Brain Dis. 32:667–673. 2017. View Article : Google Scholar : PubMed/NCBI | |
Matsuzawa Y: The metabolic syndrome and adipocytokines. FEBS Lett. 580:2917–2921. 2006. View Article : Google Scholar : PubMed/NCBI | |
Mertens I, Ballaux D, Funahashi T, Matsuzawa Y, Van der Planken M, Verrijken A, Ruge JB and Gaal LFV: Inverse relationship between plasminogen activator inhibitor-I activity and adiponectin in overweight and obese women. Interrelationship with visceral adipose tissue, insulin resistance, HDL-chol and inflammation. Thromb Haemost. 94:1190–1195. 2005. View Article : Google Scholar : PubMed/NCBI | |
Shimomura I, Funahashi T, Takahashi M, Maeda K, Kotani K, Nakamura T, Yamashita S, Miura N, Fukuda Y, Takemura K, et al: Enhanced expression of PAI-1 in visceral fat: Possible contributor to vascular disease in obesity. Nat Med. 2:800–803. 1996. View Article : Google Scholar : PubMed/NCBI | |
Kaji H: Adipose tissue-derived plasminogen activator inhibitor-1 function and regulation. Compr Physiol. 6:1873–1896. 2016. View Article : Google Scholar : PubMed/NCBI | |
Reaven GM: Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 37:1595–1607. 1988. View Article : Google Scholar : PubMed/NCBI | |
Alberti KG, Zimmet P and Shaw J; IDF Edipemiology Task Force Consensus Group, : The metabolic syndrome-a new world-wide definition. Lancet. 366:1059–1062. 2005. View Article : Google Scholar : PubMed/NCBI | |
Zafar U, Khaliq S, Ahmad HU, Manzoor S and Lone KP: Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones (Athens). 17:299–313. 2018. View Article : Google Scholar : PubMed/NCBI | |
Spiegelman BM and Flier JS: Obesity and the regulation of energy balance. Cell. 104:531–543. 2001. View Article : Google Scholar : PubMed/NCBI | |
Mottilo S, Filion KB, Genest J, Joseph L, Pilote L, Poirier P, Rinfret S, Schiffrin EL and Eisenberg MJ: The metabolic syndrome and cardiovascular risk a systematic review and meta-analysis. J Am Coll Cardiol. 56:1113–1132. 2010. View Article : Google Scholar | |
Weiss R, Bremer AA and Lusting RH: What is metabolic syndrome, and why are children getting it? Ann N Y Acad Sci. 1281:123–140. 2013. View Article : Google Scholar : PubMed/NCBI | |
Grundy SM: Metabolic syndrome pandemic. Arteroscler Thromb Vasc Biol. 28:629–636. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ford ES, Li C and Zhao G: Prevalence and correlates of metabolic syndrome based on a harmonious definition among adults in the US. J Diabetes. 2:180–193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kahn R, Buse J, Ferrannini E and Stern M: The metabolic syndrome: Time for a critical appraisal. Joint statement from the Americal diabetes association and the European association for the study of diabetes. Diabetologia. 48:1684–1699. 2005. View Article : Google Scholar : PubMed/NCBI | |
Pi-Sunyer X: The metabolic syndrome: How to approach differing definitions. Med Clin North Am. 91:1025–1040. 2007. View Article : Google Scholar : PubMed/NCBI | |
Chung G, Jung HS and Kim HJ: Sociodemographic and health characteristics associated with metabolic syndrome in men and women aged ≥50 Years. Metab Sundr Relat Disord. 19:159–166. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hydrie MZ, Shera AS, Fawwad A, Basit A and Hussain A: Prevalence of metabolic syndrome in urban Pakistan (Karachi): Comparison of newly proposed international diabetes federation and modified adult treatment panel III criteria. Metab Syndr Relat Disord. 7:119–124. 2009. View Article : Google Scholar : PubMed/NCBI | |
Rosenbaum M, Sy M, Pavlovich K, Leibel RL and Hirsch J: Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. J Clin Invest. 118:2583–2591. 2008.PubMed/NCBI | |
Imai SI: Nicotinamide phosphoribosyltrasferase (Nampt): A link between NED biology, metabolism, and disease. Curr Pharm Des. 15:20–28. 2009. View Article : Google Scholar : PubMed/NCBI | |
Lago F, Dieguez C, Gomez-Reino G and Gulillo O: Adipokines as emerging mediators of immune response and inflammation. Nat Clin Pract Rheumatol. 3:716–724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hopps E, Noto D, Caimi G and Averna MR: A novel comoponent of the metabolic syndrome: The oxidative stress. Nutr Metab Cardiovasc Dis. 20:72–77. 2010. View Article : Google Scholar : PubMed/NCBI | |
Vona R, Gambardella L, Cittadini C, Straface E and Pietraforte D: Biomarkers of oxidative stress in metabolic syndrome and associated dieseases. Oxid Med Cell Longev. 2019:82672342019. View Article : Google Scholar : PubMed/NCBI | |
Schieber M and Chandel NS: ROS function in redox signaling and oxidative stress. Curr Biol. 24:R453–R462. 2014. View Article : Google Scholar : PubMed/NCBI | |
Juan CA, de la Lastra JM, Plou FJ and Pérez-Lebeña EP: The chemistry of reactive oxygen species (ROS) revisited: Outlining their role in biological macromolecules (DNA, lipids and proteins) and induced pathologies. Int J Mol Sci. 22:46422021. View Article : Google Scholar : PubMed/NCBI | |
Grattagliano I, Palmieri VO, Portincasa P, Moschetta A and Palasciano G: Oxidative stress-induced risk factors associated with the metabolic syndrome: A unifying hypothesis. J Nutr Biochem. 19:491–504. 2008. View Article : Google Scholar : PubMed/NCBI | |
Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C and Morales-González JA: Inflammation, oxidative stress, and obesity. Int J Mol Sci. 12:3117–3132. 2001. View Article : Google Scholar : PubMed/NCBI | |
Sena CM, Leadro A, Azul L, Seiça R and Perry G: Vascular oxidative stress: Impact and therapeutic approaches. Front Physiol. 9:16682018. View Article : Google Scholar : PubMed/NCBI | |
Smirne C, Croce E, Di Benedetoo D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E and Pirisi M: Oxidative stress in non-alchoholic fatty liver disease. Livers. 2:30–76. 2022. View Article : Google Scholar | |
Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E and Golditz GA: Imact of overweight on the risk of developing common chronic diseases during a 10-year period. Arch Intern Med. 161:1581–1586. 2001. View Article : Google Scholar : PubMed/NCBI | |
Rother KI: Diabetes treatment-Bridging the devide. N Engl J Med. 356:1499–1501. 2007. View Article : Google Scholar : PubMed/NCBI | |
Norhammar A and Schenck-Gustafsson K: Type 2 diabetes and cardiovascular disease in women. Diabetologia. 56:1–9. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chan JM, Rimm EB, Colditz GA, Stampfer MJ and Willett WC: Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 17:961–969. 1994. View Article : Google Scholar : PubMed/NCBI | |
Colditz GA, Willett WC, Rotnitzky A and Manson JE: Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 122:481–486. 1995. View Article : Google Scholar : PubMed/NCBI | |
Wannamethee SG and Shaper AG: Weight change and duration of overweight and obesity in the incidence of type 2 diabetes. Diabetes Care. 22:1266–1272. 1999. View Article : Google Scholar : PubMed/NCBI | |
Schienkiewitz A, Schulz MB, Hoffmann K, Kroke A and Boeing H: Body mass index history and risk of type 2 diabetes: Results from the European Prospective Investigation into cancer nutrition (EPIC)-Potsdam study. Am J Clin Nutr. 84:427–433. 2006. View Article : Google Scholar : PubMed/NCBI | |
DeFronzo RA: Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 88:787–835. 2004. View Article : Google Scholar : PubMed/NCBI | |
Ferrannini E, Gastaldelli A, Miyazaki Y, Matsuda M, Mari A and DeFronzo RA: Beta-cell function in subjects spanning the range from normal glucose tolerance to overt diabetes: A new analysis. J Clin Endocrinol Metab. 90:493–500. 2005. View Article : Google Scholar : PubMed/NCBI | |
Panenin F, Castantino S and Cosentino F: Insulin resistance, diabetes, and cardiovascular risk. Curr Atheroscler Rep. 16:4192014. View Article : Google Scholar : PubMed/NCBI | |
Abdul-Ghami MA and DeFronzo RA: Phathophysiology of prediabetes. Curr Diab Rep. 9:193–199. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reaven GM: Insulin resistance: The link between obesity and cardiovascular disease. Med Clin North Am. 95:875–892. 2011. View Article : Google Scholar : PubMed/NCBI | |
DeFronzo RA, Ferrannini E and Simonson DC: Fasting hyperglycemia in non-insulin-dependent diabetes mellitus: contributions of excessive hepatic glucose production and impaired tissue glucose uptake. Metabolism. 38:387–395. 1989. View Article : Google Scholar : PubMed/NCBI | |
Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA and Shulman RG: Quatitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med. 322:223–228. 1990. View Article : Google Scholar : PubMed/NCBI | |
McGarry JD: Banting lecture 2001: Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes. 51:7–18. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Madarino L, DeFronzo R and Cusi K: A substained increase in plasma free fatty acids impairs insulin secretion in nondiabetic sujects genetically predisposed to develop type 2 diabetes. Diabetes. 52:2461–2474. 2003. View Article : Google Scholar : PubMed/NCBI | |
Lei XG and Vatamaniuk MZ: Two tales of antioxidant enzymes on β cells and diabetes. Antioxid Redox Signal. 14:489–503. 2011. View Article : Google Scholar : PubMed/NCBI | |
Krebs M, Krssaak M, Bernroider E, Anderwald C, Brehm A, Meyerspeer M, Nowotny P, Roth E, Waldhäusl W and Roden M: Mechanism of amino acid-induced skeletal muscle insulin resistance in humans. Diabetes. 51:599–605. 2002. View Article : Google Scholar : PubMed/NCBI | |
Pi-Sunyer FX: The epidemiology of central fat distribution in relation to disease. Nutr Rev. 62((7 Pt2)): S120–S126. 2004. View Article : Google Scholar : PubMed/NCBI | |
Despres JP: Intra-abdominal obesity: An untreated risk factor for type 2 diabetes and cardiovascular disease. J Endocrinol Invest. 29 (3 Suppl):S77–S82. 2006. | |
Klein S, Allison DB, Heymsfield SB, Kelley DE, Leibel RL, Nomas C and Kahn R; Association for Weight Management and Obesity Prevention; NASSO, the Obesity Society; American Society for Nutrition, : American Diabetes Association: Waist circumference and cardiometabolic risk: A consensus statement from shaping America's health: Association for weight management and obesity pevention; NAASO, the obesity society; the American society for nutrition; and the American diabetes association. Diabetes Care. 30:1647–1652. 2007. View Article : Google Scholar : PubMed/NCBI | |
Ashwell M, Gumn P and Gibson S: Waist-to-height is a better screening tool than waist cincumference and BMI for adult cardiometabolic risk factors: Systemic review and meta-analysis. Obes Rev. 13:275–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kouli GM, Panagiotakos DB, Kyrou I, Georgousopoulou EN, Chryoshoou C, Tsigos C, Tousoulis D and Pitsavos C: Visceral adiposity index and 10-year cardiovascular disease incidence. The ATTICA study. Nutr Metab Cardiovasc Dis. 27:881–889. 2017. View Article : Google Scholar : PubMed/NCBI | |
Weiss R: Fat distribution and storage: How much, where, and how? Eur J Endocrinol. 157 (Suppl 1):S39–S45. 2007. View Article : Google Scholar : PubMed/NCBI | |
Montague CT and O'Rahilly S: The perils of portliness: Causes and consequences of viscelar adiposity. Diabetes. 49:883–888. 2000. View Article : Google Scholar : PubMed/NCBI | |
Yang X and Smith U: Adipose tissue distribution and risk of metabolic disease: Does thiazolidinedione-induced adipose tissue redistribution provide a clue to the anwer? Diagetologia. 50:1127–1139. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peraldi P and Spiegelman B: TNF-α and insulin resistance: Summary and future prospects. Mol Cell Biochem. 182:169–175. 1998. View Article : Google Scholar : PubMed/NCBI | |
Pickup JC: Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 27:813–823. 2004. View Article : Google Scholar : PubMed/NCBI | |
Han CY: Roles of reactive oxygen species on insulin resistance in adipose tissue. Diabetes Metab J. 40:272–279. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yan LJ: Redox imbalance stress in diabetes mellitus: Role of the polyol pathway. Animal Model Exp Med. 1:7–13. 2018. View Article : Google Scholar : PubMed/NCBI | |
Dutta BJ, Singh S, Seksaria S, Gupta GD and Singh A: Inside the diabetic brain: Insulin resistance and molecular mechanism associated with cognitive impairment and its possible therapeutic strategies. Pharmacol Res. 182:1063582022. View Article : Google Scholar : PubMed/NCBI | |
Li H, Ren J, Li Y, Wu Q and Wei J: Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front Endocrinol (Lausanne). 14:11340252023. View Article : Google Scholar : PubMed/NCBI | |
Emanuela F, Grazia M, Marco DR, Paola LM, Giorgio F and Marco B: Inflammation as a link between obesity and metabolic syndrome. J Nutr Metab. 2012:4763802012. View Article : Google Scholar : PubMed/NCBI | |
Böni-Schnetzler M and Meier DT: Islet inflammation in type 2 diabetes. Semin Immunopathol. 41:501–513. 2019. View Article : Google Scholar : PubMed/NCBI | |
Larsen CN, Faulenbach A, Vaag Α, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T and Donath MY: Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 356:1517–1526. 2007. View Article : Google Scholar : PubMed/NCBI | |
Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY and Mandrup-Poulsen T: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care. 32:1663–1668. 2009. View Article : Google Scholar : PubMed/NCBI | |
Infante M, Padilla N, Alejandro R, Caprio M, Della-Morte D, Fabbri A and Ricordi C: Diabetes-modifying antirheumatic drugs: The roles of DMARDs as glucose-lowering agents. Medicina (Kaunas). 58:5712022. View Article : Google Scholar : PubMed/NCBI | |
Powers NE, Swartzwelter B, Marchetti C, de Graaf DM, Lerchner A, Schlapschy M, Datar R, Binder U, Edwards CK III, Skerra A and Dinarell CA: PASylation of IL-1 receptor antagonist (IL-1Ra) retains IL-1 blockade and extends its duration in mouse urate crystal-induced peritonitis. J Biol Chem. 295:868–882. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tegtmeyer K, Atassi G, Zhao J, Maloney NJ and Lio PA: Off-Label studies on anakinra in dermatology: A review. J Dermatolog Treat. 33:73–86. 2022. View Article : Google Scholar : PubMed/NCBI | |
van Asseldonk EJ, Stienstra R, Koenen TB, Joosten LA, Netea MG and Tack CJ: Treatment with Anakinra improves disposition index but not insulin sensitivity in nondiabetic subjects with the metabolic syndrome: A randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab. 96:2119–2126. 2011. View Article : Google Scholar : PubMed/NCBI | |
van Poppel PCM, van Asseldonk EJP, Holst JJ, Vilsbøll T, Netea MG and Tack CJ: The interleukin-1 receptor antagonist anakinra improves first-phase insulin secretion and insulinogenic index in subjects with impaired glucose tolerance. Diabetes Obes Metab. 16:1269–1273. 2014. View Article : Google Scholar : PubMed/NCBI | |
Cucak H, Hansen G, Vrang N, Skarsfeldt T, Steiness E and Jelsing J: The IL-1β receptor antagonist SER140 postpones the onset of diabetes in female nonobese diabetic mice. J Diabetes Res. 2016:74846012016. View Article : Google Scholar : PubMed/NCBI | |
Cavelti-Weder C, Babians-Brunner A, Keller C, Stahel MA, Kurz-Levin M, Zayed H, Solinger AM, Mandrup-Poulsen T, Dinarello CA and Donath MY: Effects of gevokizumab on glycemia and inflammatory markers in type 2 diabetes. Diabetes Care. 35:1654–1662. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rissanen A, Howard CP, Botha J and Thuren T; Global Investigators, : Effects of anti-IL-1β antibody (canakinumab) on insulin secretion rates in impaired glucose tolerance or type 2 diabetes: Results of a randomized placebo-controlled trial. Diabetes Obes Metab. 14:1088–1096. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hensen J, Howard CP, Walter V and Thuren T: Impact of interleukin-1β antibody (canakinumab) on glycemic indicators in patients with type 2 diabetes mellitus: Results of secondary endpoints from a randomized, placebo-controlled trial. Diabetes Metab. 39:524–531. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ridker PM, Howard CP, Walter V, Everett B, Libby P, Hensen J and Thuren T; on the behalf of CANTOS Pilot Investigative Group, : Effects of Interleukin-1β Inhibition with Canakinumab on Hemoglobin A1c, Lipids, C-Reactive Protein, Interleukin-6, and Fibrinogen: A Phase IIb Randomized, Placebo-Controlled Trial. Circulation. 126:2739–2748. 2012. View Article : Google Scholar : PubMed/NCBI | |
Choudhury RP, Birks JS, Manii V, Biasiolli L, Robson MD, L'Allier PL, Gingras MA, Alie N, McLaughlin MA, Basson CT, et al: Artherial effects of canakinumab in patients with atherosclerosis and type 2 diabetes or glucose intolerance. J Am Coll Cardiol. 68:1769–1780. 2016. View Article : Google Scholar : PubMed/NCBI | |
Noe A, Howard C, Thuren T, Taylor A and Skerjanec A: Pharmacokinetic and pharmacodynamics characteristics of single-dose canakinumab in patients with type 2 diabetes mellitus. Clin Ther. 36:1625–1637. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sloan-Lancaster J, Abu-Raddad E, Polzer J, Miller JW, Schere JC, De Gaetano A, Berg JK and Landschulz WH: Double blind, randomized study evaluating the glycemic and anti-inflammatory effects of subcutaneous LY2189102, a neutralizing IL-1 antibody, in patients with type 2 diabetes. Diabetes Care. 36:2239–2246. 2013. View Article : Google Scholar : PubMed/NCBI | |
Everett BM, Donath MY, Pradhan AD, Thuren T, Pais P, Nicolau JC, Glynn RJ, Libby P and Ridker PM: Anti-inflimmatory therapy with canakinumad for the prevention and management of diabetes. J Am Coll Cardiol. 71:2392–2401. 2018. View Article : Google Scholar : PubMed/NCBI | |
Olson NC, Callas PW, Hanley AJG, Festa A, Haffner SM, Wagenknecht LE and Tracy RP: Circulating levels of TNF-α are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: The insulin resistance atherosclerosis study. J Clin Endocrinol Metab. 97:1032–1040. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wascher TC, Lindeman JHN, Sourij H, Kooistra T, Pacini G and Roden M: Chronic TNF-α neutralization does not improve insulin resistance or endothelial function in ‘healthy’ men with metabolic syndrome. Mol Med. 17:189–193. 2011. View Article : Google Scholar : PubMed/NCBI | |
van den Oever IAM, Baniaamam M, Simsek S, Raterman HG, van Denderen JC, van Eijk IC, Peters MJL, van der Horst-Bruinsma IE, Smulders YM and Nurmohamed MT: The effect of anti-TNF treatment on body composition and insulin resistance in patients with rheumatoid arthritis. Rheumatol Int. 41:319–328. 2021. View Article : Google Scholar : PubMed/NCBI | |
Kiortsis DN, Mavridis AK, Vasakos S, Nikas SN and Drosos AA: Effects of infliximab treatment on insulin resistance in patients with rheumatoid arthritis and ankylosing spondylitis. Ann Rheum Dis. 64:765–766. 2005. View Article : Google Scholar : PubMed/NCBI | |
Gonzalez-Gay MA, De Matias JM, Gonzalez-Juanatey C, Garcia-Porrua G, Sanchez-Andrade A, Martin J and Llorca J: Anti-tumor necrosis factor-alpha blockade improves insulin resistance in patients with rheumatoid arthritis. Clin Exp Rheumatol. 24:83–86. 2006.PubMed/NCBI | |
Haida KS, Bertachini G, Tavoni T, Guilhermetti M, Loures MR and Bazotte RB: Infliximab treatment prevents hyperglycemia and the intensification of hepatic gluconeogenesis in an animal model of high fat diet-induced liver glucose overproduction. Braz Arch Biol Technol. 55:389–393. 2012. View Article : Google Scholar | |
Méndez-García LA, Trejo-Millán F, Martínez-Reyes CP, Majarrez-Reyna AN, Esquivel-Velázquez M, Melendez-Mier G, Islas-Andrade S, Rojas-Bernbé A, Kzhyshkowska J and Escobedo G: Infliximab ameriorates tumor necrosis factor-alpha-induced insulin resistance by attenuating PTP1B activation in 3T3L1 adipocytes in vitro. Scan J Immunol. 88:e127162018. View Article : Google Scholar : PubMed/NCBI | |
Abdelhamid YA, Elyamany MF, Al-Shorbagy MY and Badary OA: Effects of TNF-α antagonist infliximad on fructose-induced metabolic syndrome in rats. Hum Exp Toxicol. 40:801–811. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bernstein LE, Berry J, Kim S, Canavan B and Grinspoon SK: Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 166:902–908. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lo J, Bernstein LE, Canavan B, Torriani M, Jackson MB, Ahima RS and Grinspoon SK: Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. Am J Physiol Endocrinol Metabol. 293:E102–E109. 2007. View Article : Google Scholar : PubMed/NCBI | |
Bravo C, Cataldo LR, Galgani J, Parada J and Santos JL: Leptin/Adiponectin ratios using either total or high molecular weight adiponectin as biomarkers of systemic insulin sensitivity in normoglycemic women. Diabetes Res. 2017:90310792017.PubMed/NCBI | |
Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, Khor VK, Ahima RS and Grinspoon SK: TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. J Clin Endocrinol Metab. 96:E146–E150. 2011. View Article : Google Scholar : PubMed/NCBI | |
Paquot N, Castillo MJ, Lefèbvre PJ and Scheen AJ: No increased insulin sensitivity after a single intravenous administration of a recombinant human tumor necrosis factor receptor: Fc fusion protein in obese insulin-resistant patients. J Clin Endocrinol Metab. 85:1316–1319. 2000. View Article : Google Scholar : PubMed/NCBI | |
Dominguez H, Storgaard H, Rask-Madsen C, Hermann TS, Ihlemann N, Nielsen DB, Spohr C, Kober L, Vaag A and Torp-Pedersen C: Metabolic and vascular effects of tumor necrosis factor-α blockade with etanercept in obese patients with type 2 diabetes. J Vasc Res. 42:517–525. 2005. View Article : Google Scholar : PubMed/NCBI | |
Ronti T, Lupattelli G and Mannarino E: The endocrine function of adipose tissue: An update. Clin Endocrinol (Oxf). 64:355–365. 2006. View Article : Google Scholar : PubMed/NCBI | |
Hu D, Russell RD, Remash D, Greenaway T, Rattigan S, Squibb KA, Jones G, Ross RM, Roberts CK, Premilovac D, et al: Are the metabolic benefits of resistance in type 2 diabetes linked to improvement in adipose tissue microvascular blood flow? Am J Physiol Endocrinol Metab. 315:E1242–E1250. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ruscitti P, Berardicurti O, Cipriani P and Giacomelli R; TRACK Study Group, : Benefits of anakinra versus TNF inhibitors in rheumatoid arthritis and type 2 diabetes: Long-term findings from participants furtherly followed-up in the TRACK study, a multicentre, open-label, randomized, controlled trial. Clin Exp Rheumatol. 39:403–406. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ramos-Zavala MG, Gonzalez-Ortiz M, Martinez-Abundis E, Robles-Cervantes JA, Gonzalez-Lopez R and Santiago-Hernandez NJ: Effect of diacerein on insulin secretion and metabolic control in drug-naïve patients with type 2 diabetes. Diabetes Care. 34:1591–1594. 2011. View Article : Google Scholar : PubMed/NCBI | |
Cardoso CRL, Leite NC, Carlos FO, Loureiro AA, Viegas BB and Salles GF: Efficacy and safety of diacerein in patients with inadequately controlled type 2 diabetes: A randomized controlled trial. Diabetes Care. 40:1356–1363. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tres GS, Fuchs SC, Piovesan F, Koehler-Santos P, Pereira FD, Camey S, Lisboa HK and Moreira LB: Effect of diacerein on metabolic control and inflammatory markers in patients with type 2 diabetes using antidiabetic agents: A randomized controlled trial. J Diabetes Res. 2018:42465212018. View Article : Google Scholar : PubMed/NCBI | |
Jangsiripornpakorn J, Srisuk S, Chailurkit L, Nimitphong H, Saetung S and Ongphiphadhanakul B: The glucose-lowering effect of low-dose diacerein and its responsiveness metabolic markers in uncontrolled diabetes. BMC Res Notes. 15:912022. View Article : Google Scholar : PubMed/NCBI | |
Piovesan F, Tres GS, Moreira LB, Andrades ME, Lisboa HK and Fucks SC: Effects of diacerein on renal function and inflammatory cytokines in participants with type 2 diabetes mellitus and chronic kidney disease: A randomized controlled trial. PLoS One. 12:e01865542017. View Article : Google Scholar : PubMed/NCBI | |
Di Prospero NA, Artis E, Andrade-Gordon P, Johnson DL, Vaccaro N, Xi L and Rothenberg P: CCR2 antagonism in patients with type 2 diabetes mellitus: A randomized, placebo-controlled study. Diabetes Obes Metab. 16:1055–1064. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mulder P, van den Hoek AM and Kleemann R: The CCR2 inhibitor propagermanium attenuates diet-induced insulin resistance, adipose tissue inflammation and non-alcoholic steatohepatitis. PLoS One. 12:e01697402017. View Article : Google Scholar : PubMed/NCBI | |
Huh JH, Kim HM, Lee ES, Kwon MH, Lee BR, Ko HJ and Chung CH: Dual CCR2/5 antagonist attenuates obesity-induced insulin resistance by regulating macrophage recruitment and M1/M2 status. Obesity (Silver Spring). 26:378–386. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tuttle KR, Brosius FC III, Adler SG, Kretzler M, Mehta RL, Tumlin JA, Tanaka Y, Haneda M, Liu J, Silk ME, et al: JAK1/JAK2 inhibition by baricitinib in diabetic kidney disease: Results from a phase 2 randomized controlled clinical trial. Nephrol Dial Transplant. 33:1950–1959. 2018. View Article : Google Scholar : PubMed/NCBI | |
Faghihimani E, Amnorroaya A, Rezvanian H, Adibi P, Ismail-Beigi F and Amini M: Salsalate improves glycemic control in patients with newly diagnosed type 2 diabetes. Acta Diabetol. 50:537–543. 2013. View Article : Google Scholar : PubMed/NCBI | |
Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA and Steven E; Targeting Inflammation Using Salsalate in Type 2 Diabetes Study Team, : Salicylate (Salsalate) in patients with type 2 diabetes: A randomized trial. Ann Intern Med. 159:1–12. 2013. View Article : Google Scholar : PubMed/NCBI | |
Li D, Zhong J, Zhang Q and Zhang J: Effects of anti-inflammatory therapies on glycemic control in type 2 diabetes mellitus. Front Immunol. 14:11251162023. View Article : Google Scholar : PubMed/NCBI | |
Raimondo MG, Biggioggero M, Crotti C, Becciolini A and Favalli EG: Profile of sarilumab and its potential in the treatment of rheumatoid arthritis. Drug Design Dev Ther. 11:1593–1603. 2017. View Article : Google Scholar : PubMed/NCBI | |
Klinder A, Waletzko-Hellwig J, Sellin ML, Seyfarth-Sehlke A, Wolfien M, Prehn F, Bader R and Jonitz-Heincke A: Effects of the interleukin-6 receptor blocker sarilumab on metabolic activity and differentiation capacity of primary human osteoblasts. Pharmaceutics. 14:13902022. View Article : Google Scholar : PubMed/NCBI | |
Genovese MC, Burmester GR, Hagino O, Thangavelu K, Iglesias-Rodriguez M, John GT, González-Gay MA, Mandrup-Poulsen T and Fleischmann R: Interleukin-6 receptor blockade or TNFα inhibition for reducing glycaemia in patients with RA and diabetes: Post hoc analyses of three randomised, controlled trials. Arthritis Res Ther. 22:2062020. View Article : Google Scholar : PubMed/NCBI | |
Drutskaya MS, Efimou GA, Kruglou AA and Nedospasou SA: Can we design a better anti-cytokine therapy? Semin Arthritis and Rhematism. 49:S39–S42. 2019.PubMed/NCBI | |
Nosenko MA, Atretkhany KSN, Mokhonov VV, Vasilenko EA, Kruglov AA, Tillib SV, Drutskaya MS and Nedospasov SA: Moduatation of bioavailability of proinflammatory cytokines produced by myeloid cells. Semin Arthritis Rheum. 49:S39–S42. 2019. View Article : Google Scholar : PubMed/NCBI | |
Velikova TV, Kabakchieva PP, Assyov YS and Georgiev TA: Targeting inflammatory cytokines to improve type 2 diabetes control. Biomed Res Int. 2021:72974192021. View Article : Google Scholar : PubMed/NCBI | |
Achari A and Jain SK: Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 18:13212017. View Article : Google Scholar : PubMed/NCBI | |
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka T, et al: The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 7:941–946. 2001. View Article : Google Scholar : PubMed/NCBI | |
Combs TP, Wagner JA, Berger J, Doebber T, Wang WJ, Zhang BB, Tanen M, Berg AH, O'Rahilly S, Savage DB, et al: Induction of adipocyte complement-related protein of 30 kilodaltons by PPRgamma agonists: A potential mechanism of insulin sensitization. Endocrinology. 143:998–1007. 2002. View Article : Google Scholar : PubMed/NCBI | |
Kolak M, Yki-Järvinen H, Kannisto K, Tiikkainen M, Hamsten A, Eriksson P and Fisher RM: Effects of chronic rosiglitazone therapy on gene expression in human adipose tissue in vivo in patients with type 2 diabetes. J Clin Endocrinol Metab. 92:720–724. 2007. View Article : Google Scholar : PubMed/NCBI | |
Peraldi P, Xu M and Spiegelman BM: Thiazolidinediones block tumor necrosis factor-alpha-incuded inhibition of insulin signaling. J Clin Invest. 100:1863–1869. 1997. View Article : Google Scholar : PubMed/NCBI | |
Wolf AM, Wolf D, Rumpold H, Enrich B and Tilg H: Adiponectin induces the anti-inflammatory cytokines IL-10 and IL-1RA in human leukocytes. Biochem Biophys Res Commun. 323:630–635. 2004. View Article : Google Scholar : PubMed/NCBI | |
Mosser DM and Zhang X: Interleukin-10: New perspectives on an old cytokine. Immunol Rev. 226:205–218. 2008. View Article : Google Scholar : PubMed/NCBI | |
Maclsaac RJ and Jerum G: Clinical indications for thiazolidinediones. Aust Prescr. 27:70–74. 2004. View Article : Google Scholar | |
Quinn CE, Hamilton PK, Lockhart CJ and McVeigh GE: Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br J Pharmacol. 153:636–645. 2008. View Article : Google Scholar : PubMed/NCBI | |
Graham DJ, Green L, Senior JR and Nourjah P: Troglitazone-induced liver failure: A case study. Am J Med. 114:299–306. 2003. View Article : Google Scholar : PubMed/NCBI | |
Tuccori M, Filion KB, Yin H, Yu OH, Platt RW and Azoulay L: Pioglitazone use and risk of bladder cancer: Population based cohort study. BMJ. 352:i15412016. View Article : Google Scholar : PubMed/NCBI | |
Aronoff S, Rosenblatt S, Braithwaite S, Egan JW, Mathisen AL and Schneider RL: Pioglitazone hydrochloride monotherapy improves glycemic control in the treatment of patients with type 2 diabetes: A 6-month randomized placebo-controlled dose-response study. The pioglitazone 001 study group. Diabetes Care. 23:1605–1611. 2000. View Article : Google Scholar : PubMed/NCBI | |
Mudaliar S, Chang AR and Henry RR: Thiazolidinediones, peripheral edema, and type 2 diabetes: Incidence, pathophysiology, and clinical implications. Endocr Pract. 9:406–416. 2003. View Article : Google Scholar : PubMed/NCBI | |
Arnold SV, Inzucchi SE, Echouffo-Tcheugui JB, Tang F, Lam CSP, Sperling LS and Kosiborod M: Understanding contemporary use of thiazolidinediones. Cir Heart Fail. 12:e0058552019. View Article : Google Scholar : PubMed/NCBI | |
Ferris FL III and Patz A: Macular edema. A complication of diabetic retinopathy. Surv Ophthalmol. 28:452–461. 1984. View Article : Google Scholar : PubMed/NCBI | |
Ryan EH Jr, Han DP, Ramsay RC, Cantrill HL, Bennett SR, Dev S and Williams DF: Diabetic macular edema associated with glitazone use. Retina. 26:562–570. 2006. View Article : Google Scholar : PubMed/NCBI | |
Vestergaard P: Discrepacies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes-a meta-analysis. Osteoporos Int. 18:427–444. 2007. View Article : Google Scholar : PubMed/NCBI | |
Fonseca V: Effect of thiazolidinediones on body weight in patients with diabetes mellitus. Am J Med. 115:42–48. 2003. View Article : Google Scholar | |
Ko KD, Kim KK and Lee KR: Does weight gain associated with thiazolidinedione use negatively affect cardiometabolic health? J Obes Metab Syndr. 26:102–106. 2017. View Article : Google Scholar : PubMed/NCBI |