Advances in microRNA regulation of deep vein thrombosis through venous vascular endothelial cells (Review)
- Authors:
- Chucun Fang
- Feng Huang
- Mengting Yao
- Zilong Wang
- Jiacheng Ma
- Dongwen Wu
- Tianting Guo
- Fei Zhang
- Jianwen Mo
-
Affiliations: The First Clinical Medical College, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, College of Nursing, Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China, Department of Orthopedics, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, P.R. China, Department of Orthopedics, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China - Published online on: April 9, 2024 https://doi.org/10.3892/mmr.2024.13220
- Article Number: 96
-
Copyright: © Fang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Bartel DP: Metazoan MicroRNAs. Cell. 173:20–51. 2018. View Article : Google Scholar : PubMed/NCBI | |
Matsuyama H and Suzuki HI: Systems and synthetic microRNA biology: From biogenesis to disease pathogenesis. Int J Mol Sci. 21:1322019. View Article : Google Scholar : PubMed/NCBI | |
Mohr AM and Mott JL: Overview of microRNA biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI | |
Thamotharan S, Chu A, Kempf K, Janzen C, Grogan T, Elashoff DA and Devaskar SU: Differential microRNA expression in human placentas of term intra-uterine growth restriction that regulates target genes mediating angiogenesis and amino acid transport. PLoS One. 12:e01764932017. View Article : Google Scholar : PubMed/NCBI | |
Lucas T, Schäfer F, Müller P, Eming SA, Heckel A and Dimmeler S: Light-inducible antimiR-92a as a therapeutic strategy to promote skin repair in healing-impaired diabetic mice. Nat Commun. 8:151622017. View Article : Google Scholar : PubMed/NCBI | |
Siomi H and Siomi MC: Posttranscriptional regulation of microRNA biogenesis in animals. Mol Cell. 38:323–332. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karreth FA, Tay Y, Perna D, Ala U, Tan SM, Rust AG, DeNicola G, Webster KA, Weiss D, Perez-Mancera PA, et al: In vivo identification of tumor-suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell. 147:382–395. 2011. View Article : Google Scholar : PubMed/NCBI | |
Vegter EL, van der Meer P, de Windt LJ, Pinto YM and Voors AA: MicroRNAs in heart failure: From biomarker to target for therapy. Eur J Heart Fail. 18:457–468. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jung H, Kim JS, Lee KH, Tizaoui K, Terrazzino S, Cargnin S, Smith L, Koyanagi A, Jacob L, Li H, et al: Roles of microRNAs in inflammatory bowel disease. Int J Biol Sci. 17:2112–2123. 2021. View Article : Google Scholar : PubMed/NCBI | |
Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt-Weber CB, Maes T, Rebane A, Krauss-Etschmann S and Rådinger M: Spotlight on microRNAs in allergy and asthma. Allergy. 76:1661–1678. 2021. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez A, Griffiths-Jones S, Ashurst JL and Bradley A: Identification of mammalian microRNA host genes and transcription units. Genome Res. 14:1902–1910. 2004. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Jeon K, Lee JT, Kim S and Kim VN: MicroRNA maturation: Stepwise processing and subcellular localization. EMBO J. 21:4663–4670. 2002. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH and Kim VN: MicroRNA genes are transcribed by RNA polymerase II. EMBO J. 23:4051–4060. 2004. View Article : Google Scholar : PubMed/NCBI | |
Nguyen TA, Jo MH, Choi YG, Park J, Kwon SC, Hohng S, Kim VN and Woo JS: Functional anatomy of the human microprocessor. Cell. 161:1374–1387. 2015. View Article : Google Scholar : PubMed/NCBI | |
Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI | |
Ha M and Kim VN: Regulation of microRNA biogenesis. Nature reviews. Nat Rev Mol Cell Biol. 15:509–524. 2014. View Article : Google Scholar : PubMed/NCBI | |
Iwasaki S, Kobayashi M, Yoda M, Sakaguchi Y, Katsuma S, Suzuki T and Tomari Y: Hsc70/Hsp90 chaperone machinery mediates ATP-dependent RISC loading of small RNA duplexes. Mol Cell. 39:292–299. 2010. View Article : Google Scholar : PubMed/NCBI | |
Frank F, Sonenberg N and Nagar B: Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 465:818–822. 2010. View Article : Google Scholar : PubMed/NCBI | |
Suzuki HI, Katsura A, Yasuda T, Ueno T, Mano H, Sugimoto K and Miyazono K: Small-RNA asymmetry is directly driven by mammalian Argonautes. Nat Struct Mol. 22:512–521. 2015. View Article : Google Scholar : PubMed/NCBI | |
Khvorova A, Reynolds A and Jayasena SD: Functional siRNAs and miRNAs exhibit strand bias. Cell. 115:209–216. 2003. View Article : Google Scholar : PubMed/NCBI | |
Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N and Zamore PD: Asymmetry in the assembly of the RNAi enzyme complex. Cell. 115:199–208. 2003. View Article : Google Scholar : PubMed/NCBI | |
Chiang HR, Schoenfeld LW, Ruby JG, Auyeung VC, Spies N, Baek D, Johnston WK, Russ C, Luo S, Babiarz JE, et al: Mammalian microRNAs: Experimental evaluation of novel and previously annotated genes. Genes Dev. 24:992–1009. 2010. View Article : Google Scholar : PubMed/NCBI | |
Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ and Schier AF: Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science. 312:75–79. 2006. View Article : Google Scholar : PubMed/NCBI | |
Baek D, Villen J, Shin C, Camargo FD, Gygi SP and Bartel DP: The impact of microRNAs on protein output. Nature. 455:64–71. 2008. View Article : Google Scholar : PubMed/NCBI | |
Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R and Rajewsky N: Widespread changes in protein synthesis induced by microRNAs. Nature. 455:58–63. 2008. View Article : Google Scholar : PubMed/NCBI | |
Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, et al: A mammalian microRNA expression atlas based on small RNA library sequencing. Cell. 129:1401–1414. 2007. View Article : Google Scholar : PubMed/NCBI | |
Dragomir MP, Knutsen E and Calin GA: SnapShot: Unconventional miRNA functions. Cell. 174:1038–1038.e1. 2018. View Article : Google Scholar : PubMed/NCBI | |
Neubauer K and Zieger B: Endothelial cells and coagulation. Cell Tissue Res. 387:391–398. 2022. View Article : Google Scholar : PubMed/NCBI | |
Krüger-Genge A, Blocki A, Franke RP and Jung F: Vascular endothelial cell biology: An update. Int J Mol Sci. 20:44112019. View Article : Google Scholar : PubMed/NCBI | |
Di Nisio M, van Es N and Büller HR: Deep vein thrombosis and pulmonary embolism. Lancet. 388:3060–3073. 2016. View Article : Google Scholar : PubMed/NCBI | |
Juchem G, Weiss DR, Knott M, Senftl A, Förch S, Fischlein T, Kreuzer E, Reichart B, Laufer S and Nees S: Regulation of coronary venular barrier function by blood borne inflammatory mediators and pharmacological tools: Insights from novel microvascular wall models. Am J Physiol Heart Circ Physiol. 302:H567–H581. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moncada S, Gryglewski R, Bunting S and Vane JR: An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature. 263:663–665. 1976. View Article : Google Scholar : PubMed/NCBI | |
Moncada S, Higgs EA and Vane JR: Human arterial and venous tissues generate prostacyclin (prostaglandin x), a potent inhibitor of platelet aggregation. Lancet. 1:18–20. 1977. View Article : Google Scholar : PubMed/NCBI | |
Cines DB, Pollak ES, Buck CA, Loscalzo J, Zimmerman GA, McEver RP, Pober JS, Wick TM, Konkle BA, Schwartz BS, et al: Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood. 91:3527–3561. 1998.PubMed/NCBI | |
Panza JA, Quyyumi AA, Brush JE Jr and Epstein SE: Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. N Engl J Med. 323:22–27. 1990. View Article : Google Scholar : PubMed/NCBI | |
Marti CN, Gheorghiade M, Kalogeropoulos AP, Georgiopoulou VV, Quyyumi AA and Butler J: Endothelial dysfunction, arterial stiffness, and heart failure. J Am Coll Cardiol. 60:1455–1469. 2012. View Article : Google Scholar : PubMed/NCBI | |
Radomski MW, Palmer RM and Moncada S: Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 2:1057–1058. 1987. View Article : Google Scholar : PubMed/NCBI | |
Deaglio S and Robson SC: Ectonucleotidases as regulators of purinergic signaling in thrombosis, inflammation, and immunity. Adv Pharmacol. 61:301–332. 2011. View Article : Google Scholar : PubMed/NCBI | |
Marcus AJ, Safier LB, Hajjar KA, Ullman HL, Islam N, Broekman MJ and Eiroa AM: Inhibition of platelet function by an aspirin-insensitive endothelial cell ADPase. Thromboregulation by endothelial cells. J Clin Invest. 88:1690–1696. 1991. View Article : Google Scholar : PubMed/NCBI | |
Fuentes E and Palomo I: Extracellular ATP metabolism on vascular endothelial cells: A pathway with pro-thrombotic and anti-thrombotic molecules. Vascul Pharmacol. 75:1–6. 2015. View Article : Google Scholar : PubMed/NCBI | |
Esmon CT: Structure and functions of the endothelial cell protein C receptor. Crit Care Med. 32 (Suppl 5):S298–S301. 2004. View Article : Google Scholar : PubMed/NCBI | |
Giri H, Panicker SR, Cai X, Biswas I, Weiler H and Rezaie AR: Thrombomodulin is essential for maintaining quiescence in vascular endothelial cells. Proc Natl Acad Sci USA. 118:e20222481182021. View Article : Google Scholar : PubMed/NCBI | |
Iba T and Levy JH: Inflammation and thrombosis: Roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost. 16:231–241. 2018. View Article : Google Scholar : PubMed/NCBI | |
Griffin JH, Evatt B, Zimmerman TS, Kleiss AJ and Wideman C: Deficiency of protein C in congenital thrombotic disease. J Clin Invest. 68:1370–1373. 1981. View Article : Google Scholar : PubMed/NCBI | |
Ofosu FA, Modi GJ, Smith LM, Cerskus AL, Hirsh J and Blajchman MA: Heparan sulfate and dermatan sulfate inhibit the generation of thrombin activity in plasma by complementary pathways. Blood. 64:742–747. 1984. View Article : Google Scholar : PubMed/NCBI | |
Mann KG, Butenas S and Brummel K: The dynamics of thrombin formation. Arterioscler Thromb Vasc Biol. 23:17–25. 2003. View Article : Google Scholar : PubMed/NCBI | |
Loskutoff DJ and Edgington TE: Synthesis of a fibrinolytic activator and inhibitor by endothelial cells. Proc Natl Acad Sci USA. 74:3903–3907. 1977. View Article : Google Scholar : PubMed/NCBI | |
Huber D, Cramer EM, Kaufmann JE, Meda P, Massé JM, Kruithof EK and Vischer UM: Tissue-type plasminogen activator (t-PA) is stored in Weibel-Palade bodies in human endothelial cells both in vitro and in vivo. Blood. 99:3637–3645. 2002. View Article : Google Scholar : PubMed/NCBI | |
Henderson SJ, Weitz JI and Kim PY: Fibrinolysis: Strategies to enhance the treatment of acute ischemic stroke. J Thromb Haemost. 16:1932–1940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Levi M and van der Poll T: Coagulation and sepsis. Thromb Res. 149:38–44. 2017. View Article : Google Scholar : PubMed/NCBI | |
Levi M and van der Poll T: Inflammation and coagulation. Crit Care Med. 38 (Suppl 2):S26–S34. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mackman N, Tilley RE and Key NS: Role of the extrinsic pathway of blood coagulation in hemostasis and thrombosis. Arterioscler Thromb Vasc Biol. 27:1687–1693. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zelaya H, Rothmeier AS and Ruf W: Tissue factor at the crossroad of coagulation and cell signaling. J Thromb Haemost. 16:1941–1952. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun LL, Li WD, Lei FR and Li XQ: The regulatory role of microRNAs in angiogenesis-related diseases. J Cell Mol Med. 22:4568–4587. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhou DM, Sun LL, Zhu J, Chen B, Li XQ and Li WD: MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway. J Cell Mol Med. 24:4624–4632. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Xu X, Li P, Zhang B and Zhang J: HDAC3 protects against atherosclerosis through inhibition of inflammation via the microRNA-19b/PPARγ/NF-κB axis. Atherosclerosis. 323:1–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu J, Jin Y, Xu C, Fang C, Zhang Z, Chen L and Xu G: Downregulation of miR-125a-5p promotes endothelial progenitor cell migration and angiogenesis and alleviates deep vein thrombosis in mice via upregulation of MCL-1. Mol Biotechnol. 65:1664–1678. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhu J, Sun LL, Li WD and Li XQ: Clarification of the role of miR-9 in the angiogenesis, migration, and autophagy of endothelial progenitor cells through RNA sequence analysis. Cell Transplant. 29:9636897209639362020. View Article : Google Scholar : PubMed/NCBI | |
Liang HZ, Li SF, Zhang F, Wu MY, Li CL, Song JX, Lee C and Chen H: Effect of endothelial microparticles induced by hypoxia on migration and angiogenesis of human umbilical vein endothelial cells by delivering MicroRNA-19b. Chin Med J (Engl). 131:2726–2733. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lou Z, Ma H, Li X, Zhang F, Du K and Wang B: Hsa_circ_0001020 accelerates the lower extremity deep vein thrombosis via sponging miR-29c-3p to promote MDM2 expression. Thromb Res. 211:38–48. 2022. View Article : Google Scholar : PubMed/NCBI | |
Meng Q, Wang W, Yu X, Li W, Kong L, Qian A, Li C and Li X: Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2. J Cell Biochem. 116:1613–1623. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Chen P, Zong H, Ding Y and Yan R: MiR-143-3p targets ATG2B to inhibit autophagy and promote endothelial progenitor cells tube formation in deep vein thrombosis. Tissue Cell. 67:1014532020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Zhu X, Du X, Xu A, Yuan X, Zhan Y, Liu M and Wang S: MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1. Microvasc Res. 123:35–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
Du X, Hu N, Yu H, Hong L, Ran F, Huang D, Zhou M, Li C and Li X: miR-150 regulates endothelial progenitor cell differentiation via Akt and promotes thrombus resolution. Stem Cell Res Ther. 11:3542020. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Li C, Li W, Kong L, Qian A, Hu N, Meng Q and Li X: MiR-150 enhances the motility of EPCs in vitro and promotes EPCs homing and thrombus resolving in vivo. Thromb Res. 133:590–598. 2014. View Article : Google Scholar : PubMed/NCBI | |
Sun LL, Xiao L, Du XL, Hong L, Li CL, Jiao J, Li WD and Li XQ: MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression. J Cell Mol Med. 23:8493–8504. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ai P, Shen B, Pan H, Chen K, Zheng J and Liu F: MiR-411 suppressed vein wall fibrosis by downregulating MMP-2 via targeting HIF-1α. J Thromb Thrombolysis. 45:264–273. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li WD, Zhou DM, Sun LL, Xiao L, Liu Z, Zhou M, Wang WB and Li XQ: LncRNA WTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through MicroRNA 3120 and Akt/PI3K/autophagy pathways. Stem Cells. 36:1863–1874. 2018. View Article : Google Scholar : PubMed/NCBI | |
Li Z and Ni J: Role of microRNA-26a in the diagnosis of lower extremity deep vein thrombosis in patients with bone trauma. Exp Ther Med. 14:5069–5074. 2017.PubMed/NCBI | |
Sun S, Chai S, Zhang F and Lu L: Overexpressed microRNA-103a-3p inhibits acute lower-extremity deep venous thrombosis via inhibition of CXCL12. IUBMB Life. 72:492–504. 2020. View Article : Google Scholar : PubMed/NCBI | |
Lu J, Fang Q and Ge X: Role and mechanism of mir-5189-3p in deep vein thrombosis of lower extremities. Ann Vasc Surg. 77:288–295. 2021. View Article : Google Scholar : PubMed/NCBI | |
Qin JZ, Wang SJ and Xia C: microRNAs regulate nitric oxide release from endothelial cells by targeting NOS3. J Thromb Thrombolysis. 46:275–282. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yang B and Zhang Z: Suppression of long intergenic non-protein coding RNA 1123 constrains lower extremity deep vein thrombosis via microRNA-125a-3p to target interleukin 1 receptor type 1. Bioengineered. 13:13452–13461. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ou M, Hao S, Chen J, Zhao S, Cui S and Tu J: Downregulation of interleukin-6 and C-reactive protein underlies a novel inhibitory role of microRNA-136-5p in acute lower extremity deep vein thrombosis. Aging (Albany NY). 12:21076–21090. 2020. View Article : Google Scholar : PubMed/NCBI | |
Du X, Hong L, Sun L, Sang H, Qian A, Li W, Zhuang H, Liang H, Song D, Li C, et al: miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis. J Transl Med. 17:2702019. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Yuan X, Xu A, Zhu X, Zhan Y, Wang S and Liu M: Human cancer cells suppress behaviors of endothelial progenitor cells through miR-21 targeting IL6R. Microvasc Res. 120:21–28. 2018. View Article : Google Scholar : PubMed/NCBI | |
Mo J, Zhang D and Yang R: MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1. Biosci Rep. 36:e003962016. View Article : Google Scholar : PubMed/NCBI | |
Ding M, Chi G, Li F, Wang B, Shao C and Song W: Up-regulated miR-204-5p promoted the migration, invasion, and angiogenesis of endothelial progenitor cells to enhance the thrombolysis of rats with deep venous thrombosis by targeting SPRED1. Exp Cell Res. 411:1129852022. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Zhang Y, Li C, Yin Y, Liu R, Zheng G, Fan W, Zhang Q, Song Z, Guo Z, et al: MiR-296-5p ameliorates deep venous thrombosis by inactivating S100A4. Exp Biol Med (Maywood). 246:2259–2268. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pan Z, Chen Q, Ding H and Li H: MicroRNA-342-3p loaded by human umbilical cord mesenchymal stem cells-derived exosomes attenuates deep vein thrombosis by downregulating EDNRA. J Thromb Thrombolysis. 54:411–419. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang X, Song Y, Sun Y, Wang M and Xiang Y: Down-regulation of miR-361-5p promotes the viability, migration and tube formation of endothelial progenitor cells via targeting FGF1. Biosci Rep. 40:BSR202005572020. View Article : Google Scholar : PubMed/NCBI | |
Li HQ, Pan ZY, Yang Z, Zhang DB and Chen Q: Overexpression of MicroRNA-122 resists oxidative stress-induced human umbilical vascular endothelial cell injury by inhibition of p53. Biomed Res Int. 2020:97916082020.PubMed/NCBI | |
He X, Liu Y, Li Y and Wu K: Long non-coding RNA crnde promotes deep vein thrombosis by sequestering miR-181a-5p away from thrombogenic Pcyox1l. Thromb J. 21:442023. View Article : Google Scholar : PubMed/NCBI | |
Jin J, Wang C, Ouyang Y and Zhang D: Elevated miR-195-5p expression in deep vein thrombosis and mechanism of action in the regulation of vascular endothelial cell physiology. Exp Ther Med. 18:4617–4624. 2019.PubMed/NCBI | |
Li Y, Ge J, Yin Y, Yang R, Kong J and Gu J: Upregulated miR-206 aggravates deep vein thrombosis by regulating GJA1-mediated autophagy of endothelial progenitor cells. Cardiovasc Ther. 2022:99663062022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Zhang Z, Wei R, Miao X, Sun S, Liang G, Chu C, Zhao L, Zhu X, Guo Q, et al: IL (interleukin)-6 contributes to deep vein thrombosis and is negatively regulated by miR-338-5p. Arterioscler Thromb Vasc Biol. 40:323–334. 2020. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Lin S, Yang Y, Zhao M, Li X and Zhang L: Significant role of long non-coding RNA MALAT1 in deep vein thrombosis via the regulation of vascular endothelial cell physiology through the microRNA-383-5p/BCL2L11 axis. Bioengineered. 13:13728–13738. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wang P, Dai J and Li D: Peripheral blood levels of miR-448 and SIRT1 in patients with deep venous thrombosis and their relationship. Clin Lab. 68:2022. View Article : Google Scholar | |
Kong L, Hu N, Du X, Wang W, Chen H, Li W, Wei S, Zhuang H, Li X and Li C: Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF. J Transl Med. 14:232016. View Article : Google Scholar : PubMed/NCBI | |
Zhu X, Chen B and Xu H: By modulating miR-525-5p/Bax axis, LINC00659 promotes vascular endothelial cell apoptosis. Immun Inflamm Dis. 11:e7642023. View Article : Google Scholar : PubMed/NCBI | |
Kong L, Du X, Hu N, Li W, Wang W, Wei S, Zhuang H, Li X and Li C: Downregulation of let-7e-5p contributes to endothelial progenitor cell dysfunction in deep vein thrombosis via targeting FASLG. Thromb Res. 138:30–36. 2016. View Article : Google Scholar : PubMed/NCBI | |
Mulder FI, Horváth-Puhó E, van Es N, van Laarhoven HWM, Pedersen L, Moik F, Ay C, Büller HR and Sørensen HT: Venous thromboembolism in cancer patients: A population-based cohort study. Blood. 137:1959–1969. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tavares V, Neto BV, Marques IS, Assis J, Pereira D and Medeiros R: Cancer-associated thrombosis: What about microRNAs targeting the tissue factor coagulation pathway? Biochim Biophys Acta Rev Cancer. 1879:1890532024. View Article : Google Scholar : PubMed/NCBI | |
Lazar S and Goldfinger LE: Platelet microparticles and miRNA transfer in cancer progression: Many targets, modes of action, and effects across cancer stages. Front Cardiovasc Med. 5:132018. View Article : Google Scholar : PubMed/NCBI | |
Liu S, Guo W, Shi J, Li N, Yu X, Xue J, Fu X, Chu K, Lu C, Zhao J, et al: MicroRNA-135a contributes to the development of portal vein tumor thrombus by promoting metastasis in hepatocellular carcinoma. J Hepatol. 56:389–396. 2012. View Article : Google Scholar : PubMed/NCBI | |
Oto J, Navarro S, Larsen AC, Solmoirago MJ, Plana E, Hervás D, Fernández-Pardo Á, España F, Kristensen SR, Thorlacius-Ussing O and Medina P: MicroRNAs and neutrophil activation markers predict venous thrombosis in pancreatic ductal adenocarcinoma and distal extrahepatic cholangiocarcinoma. Int J Mol Sci. 21:8402020. View Article : Google Scholar : PubMed/NCBI | |
Anijs RJS, Laghmani EH, Ünlü B, Kiełbasa SM, Mei H, Cannegieter SC, Klok FA, Kuppen PJK, Versteeg HH and Buijs JT: Tumor-expressed microRNAs associated with venous thromboembolism in colorectal cancer. Res Pract Thromb Haemost. 6:e127492022. View Article : Google Scholar : PubMed/NCBI | |
Morelli VM, Snir O, Hindberg KD, Hveem K, Brækkan SK and Hansen JB: High microRNA-145 plasma levels are associated with decreased risk of future incident venous thromboembolism-The HUNT study. Blood. blood.2023022285. 2024.(Epub ahead of print). View Article : Google Scholar | |
Anijs RJS, Nguyen YN, Cannegieter SC, Versteeg HH and Buijs JT: MicroRNAs as prognostic biomarkers for (cancer-associated) venous thromboembolism. J Thromb Haemost. 21:7–17. 2023. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X and Zhang F: Long noncoding RNA TUG1 induces angiogenesis of endothelial progenitor cells and dissolution of deep vein thrombosis. Thromb J. 20:542022. View Article : Google Scholar : PubMed/NCBI | |
Kuhnert F, Mancuso MR, Hampton J, Stankunas K, Asano T, Chen CZ and Kuo CJ: Attribution of vascular phenotypes of the murine Egfl7 locus to the microRNA miR-126. Development. 135:3989–3993. 2008. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Lei B, Zhang H, Niu L, Li X, Luo X and Zhang F: MicroRNA-136-5p from endothelial progenitor cells-released extracellular vesicles mediates TXNIP to promote the dissolution of deep venous thrombosis. Shock. 57:714–721. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jin QQ, Sun JH, Du QX, Lu XJ, Zhu XY, Fan HL, Hölscher C and Wang YY: Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis. Int J Mol Med. 40:1019–1028. 2017. View Article : Google Scholar : PubMed/NCBI | |
Edelstein LC, McKenzie SE, Shaw C, Holinstat MA, Kunapuli SP and Bray PF: MicroRNAs in platelet production and activation. J Thromb Haemost. 11 (Suppl 1):S340–S350. 2013. View Article : Google Scholar | |
Jankowska KI, Sauna ZE and Atreya CD: Role of microRNAs in hemophilia and thrombosis in humans. Int J Mol Sci. 21:35982020. View Article : Google Scholar : PubMed/NCBI | |
Hembrom AA, Srivastava S, Garg I and Kumar B: MicroRNAs in venous thrombo-embolism. Clin Chim Acta. 504:66–72. 2020. View Article : Google Scholar : PubMed/NCBI | |
Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA and Marti A: Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J. 29:3595–3611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Sundquist K, Elf JL, Strandberg K, Svensson PJ, Hedelius A, Palmer K, Memon AA, Sundquist J and Zöller B: Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis. Thromb Haemost. 116:328–336. 2016. View Article : Google Scholar : PubMed/NCBI | |
Monguió-Tortajada M, Gálvez-Montón C, Bayes-Genis A, Roura S and Borràs FE: Extracellular vesicle isolation methods: Rising impact of size-exclusion chromatography. Cell Mol Life Sci. 76:2369–2382. 2019. View Article : Google Scholar : PubMed/NCBI | |
Felekkis K and Papaneophytou C: Challenges in using circulating Micro-RNAs as biomarkers for cardiovascular diseases. Int J Mol Sci. 21:5612020. View Article : Google Scholar : PubMed/NCBI | |
He Y, Lin J, Kong D, Huang M, Xu C, Kim TK, Etheridge A, Luo Y, Ding Y and Wang K: Current state of circulating MicroRNAs as cancer biomarkers. Clin Chem. 61:1138–1155. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ban E and Song EJ: Considerations and suggestions for the reliable analysis of miRNA in plasma using qRT-PCR. Genes (Basel). 13:3282022. View Article : Google Scholar : PubMed/NCBI | |
Masubuchi T, Endo M, Iizuka R, Iguchi A, Yoon DH, Sekiguchi T, Qi H, Iinuma R, Miyazono Y, Shoji S, et al: Construction of integrated gene logic-chip. Nat Nanotechnol. 13:933–940. 2018. View Article : Google Scholar : PubMed/NCBI | |
Andrews WJ, Brown ED, Dellett M, Hogg RE and Simpson DA: Rapid quantification of microRNAs in plasma using a fast real-time PCR system. Biotechniques. 58:244–252. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chandrasekaran AR, Punnoose JA, Zhou L, Dey P, Dey BK and Halvorsen K: DNA nanotechnology approaches for microRNA detection and diagnosis. Nucleic Acids Res. 47:10489–10505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Qin J, Liang H, Shi D, Dai J, Xu Z, Chen D, Chen X and Jiang Q: A panel of microRNAs as a new biomarkers for the detection of deep vein thrombosis. J Thromb Thrombolysis. 39:215–221. 2015. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Ji C, Miao X, Ge J, Li F and Xu C: Combination of circulating miR-125a-5p, miR-223-3p and D-dimer as a novel biomarker for deep vein thrombosis. Am J Med Sci. 364:601–611. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xie X, Liu C, Lin W, Zhan B, Dong C, Song Z, Wang S, Qi Y, Wang J and Gu Z: Deep vein thrombosis is accurately predicted by comprehensive analysis of the levels of microRNA-96 and plasma D-dimer. Exp Ther Med. 12:1896–1900. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jiang Z, Ma J, Wang Q, Wu F, Ping J and Ming L: Combination of circulating miRNA-320a/b and D-dimer improves diagnostic accuracy in deep vein thrombosis patients. Med Sci Monit. 24:2031–2037. 2018. View Article : Google Scholar : PubMed/NCBI | |
Sun LL, Liu Z, Ran F, Huang D, Zhang M, Li XQ and Li WD: Non-coding RNAs regulating endothelial progenitor cells for venous thrombosis: Promising therapy and innovation. Stem Cell Res Ther. 15:72024. View Article : Google Scholar : PubMed/NCBI | |
Gareri C, De Rosa S and Indolfi C: MicroRNAs for restenosis and thrombosis after vascular injury. Circ Res. 118:1170–1184. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lu Y, Thavarajah T, Gu W, Cai J and Xu Q: Impact of miRNA in atherosclerosis. Arterioscler Thromb Vasc Biol. 38:e159–e170. 2018. View Article : Google Scholar : PubMed/NCBI |