1
|
Yunus MHM, Nordin A and Kamal H:
Pathophysiological perspective of osteoarthritis. Medicina
(Kaunas). 56:6142020. View Article : Google Scholar : PubMed/NCBI
|
2
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M,
Zhong Y, He T, Chen S and Xiao G: Osteoarthritis: Pathogenic
signaling pathways and therapeutic targets. Signal Transduct Target
Ther. 8:562023. View Article : Google Scholar : PubMed/NCBI
|
3
|
Hawker GA and King LK: The burden of
osteoarthritis in older adults. Clin Geriatr Med. 38:181–192. 2022.
View Article : Google Scholar : PubMed/NCBI
|
4
|
Katz JN, Arant KR and Loeser RF: Diagnosis
and treatment of hip and knee osteoarthritis: A review. JAMA.
325:568–578. 2021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Krause M, Freudenthaler F, Frosch KH,
Achtnich A, Petersen W and Akoto R: Operative versus conservative
treatment of anterior cruciate ligament rupture. Dtsch Arztebl Int.
115:855–862. 2018.PubMed/NCBI
|
6
|
Molnar V, Matišić V, Kodvanj I, Bjelica R,
Jeleč Ž, Hudetz D, Rod E, Čukelj F, Vrdoljak T, Vidović D, et al:
Cytokines and chemokines involved in osteoarthritis pathogenesis.
Int J Mol Sci. 22:92082021. View Article : Google Scholar : PubMed/NCBI
|
7
|
Xie Y, Kang R, Klionsky DJ and Tang D:
GPX4 in cell death, autophagy, and disease. Autophagy.
19:2621–2638. 2023. View Article : Google Scholar : PubMed/NCBI
|
8
|
Kanemura S, Sofia EF, Hirai N, Okumura M,
Kadokura H and Inaba K: Characterization of the endoplasmic
reticulum-resident peroxidases GPx7 and GPx8 shows the higher
oxidative activity of GPx7 and its linkage to oxidative protein
folding. J Biol Chem. 295:12772–12785. 2020. View Article : Google Scholar : PubMed/NCBI
|
9
|
Wei PC, Hsieh YH, Su MI, Jiang X, Hsu PH,
Lo WT, Weng JY, Jeng YM, Wang JM, Chen PL, et al: Loss of the
oxidative stress sensor NPGPx compromises GRP78 chaperone activity
and induces systemic disease. Mol Cell. 48:747–759. 2012.
View Article : Google Scholar : PubMed/NCBI
|
10
|
Hu X, Li B, Wu F, Liu X, Liu M, Wang C,
Shi Y and Ye L: GPX7 Facilitates BMSCs Osteoblastogenesis via ER
Stress and mTOR Pathway. J Cell Mol Med. 25:10454–10465. 2021.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Kim HJ, Lee Y, Fang S, Kim W, Kim HJ and
Kim JW: GPx7 ameliorates non-alcoholic steatohepatitis by
regulating oxidative stress. BMB Rep. 53:317–322. 2020. View Article : Google Scholar : PubMed/NCBI
|
12
|
Hwang HS and Shim JH: Brazilin and
Caesalpinia sappan L. extract protect epidermal keratinocytes from
oxidative stress by inducing the expression of GPX7. Chin J Nat
Med. 16:203–209. 2018.PubMed/NCBI
|
13
|
Zhou X, Zheng Y, Sun W, Zhang Z and Liu J,
Yang W, Yuan W, Yi Y, Wang J and Liu J: D-mannose alleviates
osteoarthritis progression by inhibiting chondrocyte ferroptosis in
a HIF-2α-dependent manner. Cell Prolif. 54:e131342021. View Article : Google Scholar : PubMed/NCBI
|
14
|
Zhou Y, Wu H, Wang F, Xu L, Yan Y, Tong X
and Yan H: GPX7 Is Targeted by miR-29b and GPX7 knockdown enhances
ferroptosis induced by erastin in glioma. Front Oncol.
11:8021242022. View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang BW, Jiang Y, Yao ZL, Chen PS, Yu B
and Wang SN: Aucubin protects chondrocytes against IL-1β-Induced
apoptosis in vitro and inhibits osteoarthritis in mice model. Drug
Des Devel Ther. 13:3529–3538. 2019. View Article : Google Scholar : PubMed/NCBI
|
16
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
17
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(−Delta Delta C(T)) Method. Methods. 25:402–408. 2001.
View Article : Google Scholar : PubMed/NCBI
|
18
|
Guilak F, Nims RJ, Dicks A, Wu CL and
Meulenbelt I: Osteoarthritis as a disease of the cartilage
pericellular matrix. Matrix Biol. 71–72. 40–50. 2018.
|
19
|
Wilkinson JM and Zeggini E: The genetic
epidemiology of joint shape and the development of osteoarthritis.
Calcif Tissue Int. 109:257–276. 2021. View Article : Google Scholar : PubMed/NCBI
|
20
|
Cui N, Hu M and Khalil RA: Biochemical and
biological attributes of matrix metalloproteinases. Prog Mol Biol
Transl Sci. 147:1–73. 2017. View Article : Google Scholar : PubMed/NCBI
|
21
|
Huang J, Zhao L and Chen D: Growth factor
signalling in osteoarthritis. Growth Factors. 36:187–195. 2018.
View Article : Google Scholar : PubMed/NCBI
|
22
|
Wang T and He C: Pro-inflammatory
cytokines: The link between obesity and osteoarthritis. Cytokine
Growth Factor Rev. 44:38–50. 2018. View Article : Google Scholar : PubMed/NCBI
|
23
|
Wang J, Chen J, Zhang B and Jia X: IL-6
regulates the bone metabolism and inflammatory microenvironment in
aging mice by inhibiting Setd7. Acta Histochem. 123:1517182021.
View Article : Google Scholar : PubMed/NCBI
|
24
|
Ashruf OS and Ansari MY: Natural
compounds: Potential therapeutics for the inhibition of cartilage
matrix degradation in osteoarthritis. Life (Basel).
13:1022022.PubMed/NCBI
|
25
|
Zhu R, Wang Y, Ouyang Z, Hao W, Zhou F,
Lin Y, Cheng Y, Zhou R and Hu W: Targeting regulated chondrocyte
death in osteoarthritis therapy. Biochem Pharmacol. 215:1157072023.
View Article : Google Scholar : PubMed/NCBI
|
26
|
Zhang T and Li J: Experimental study on
the ratios of chondrocytes apoptosis in OA. Chin Modern Doctor.
46:35–36. 2008.(In Chinese).
|
27
|
Mou Y, Wang J, Wu J, He D, Zhang C, Duan C
and Li B: Ferroptosis, a new form of cell death: Opportunities and
challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI
|
28
|
Mo Z, Xu P and Li H: Stigmasterol
alleviates interleukin-1beta-induced chondrocyte injury by
down-regulatingsterol regulatory element binding transcription
factor 2 to regulateferroptosis. Bioengineered. 12:9332–9340. 2021.
View Article : Google Scholar : PubMed/NCBI
|
29
|
Sun K, Hou L, Guo Z, Wang G, Guo J, Xu J,
Zhang X and Guo F: JNK-JUN-NCOA4 axis contributes to chondrocyte
ferroptosis and aggravates osteoarthritis via ferritinophagy. Free
Radic Biol Med. 200:87–101. 2023. View Article : Google Scholar : PubMed/NCBI
|
30
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu
X, Guo Z, Zhang S and Peng L: Targeting cell death: Pyroptosis,
ferroptosis, apoptosis and necroptosis in osteoarthritis. Front
Cell Dev Biol. 9:7899482022. View Article : Google Scholar : PubMed/NCBI
|
31
|
Zhang X, Hou L, Guo Z, Wang G, Xu J, Zheng
Z, Sun K and Guo F: Lipid peroxidation in osteoarthritis: Focusing
on 4-hydroxynonenal, malondialdehyde, and ferroptosis. Cell Death
Discov. 9:3202023. View Article : Google Scholar : PubMed/NCBI
|
32
|
An F, Zhang J, Gao P, Xiao Z, Chang W,
Song J, Wang Y, Ma H, Zhang R, Chen Z and Yan C: New insight of the
pathogenesis in osteoarthritis: The intricate interplay of
ferroptosis and autophagy mediated by mitophagy/chaperone-mediated
autophagy. Front Cell Dev Biol. 11:12970242023. View Article : Google Scholar : PubMed/NCBI
|
33
|
Rochette L, Dogon G, Rigal E, Zeller M,
Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two
corner stones in the homeostasis control of ferroptosis. Int J Mol
Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI
|
34
|
Hou Y, Wang S, Jiang L, Sun X, Li J, Wang
N, Liu X, Yao X, Zhang C, Deng H and Yang G: Patulin induces acute
kidney injury in mice through autophagy-ferroptosis pathway. J
Agric Food Chem. 70:6213–6223. 2022. View Article : Google Scholar : PubMed/NCBI
|
35
|
Cotticelli MG, Xia S, Lin D, Lee T, Terrab
L, Wipf P, Huryn DM and Wilson RB: Ferroptosis as a novel
therapeutic target for friedreich's Ataxia. J Pharmacol Exp Ther.
369:47–54. 2019. View Article : Google Scholar : PubMed/NCBI
|
36
|
Weaver K and Skouta R: The selenoprotein
glutathione peroxidase 4: From molecular mechanisms to novel
therapeutic opportunities. Biomedicines. 10:8912022. View Article : Google Scholar : PubMed/NCBI
|