Recent advances in potential therapeutic targets of ferroptosis‑associated pathways for the treatment of stroke (Review)
- Authors:
- Hao Dong
- Ya-Ping Ma
- Mei-Mei Cui
- Zheng-Hao Qiu
- Mao-Tao He
- Bao-Gang Zhang
-
Affiliations: Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, P.R. China - Published online on: May 22, 2024 https://doi.org/10.3892/mmr.2024.13252
- Article Number: 128
-
Copyright: © Dong et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Shehjar F, Maktabi B, Rahman ZA, Bahader GA, James AW, Naqvi A, Mahajan R and Shah ZA: Stroke: Molecular mechanisms and therapies: Update on recent developments. Neurochem Int. 162:1054582023. View Article : Google Scholar : PubMed/NCBI | |
Wu S, Wu B, Liu M, Chen Z, Wang W, Anderson CS, Sandercock P, Wang Y, Huang Y, Cui L, et al: Stroke in China: Advances and challenges in epidemiology, prevention, and management. Lancet Neurol. 18:394–405. 2019. View Article : Google Scholar : PubMed/NCBI | |
Barthels D and Das H: Current advances in ischemic stroke research and therapies. Biochim Biophys Acta Mol Basis Dis. 1866:1652602020. View Article : Google Scholar : PubMed/NCBI | |
Martin S: Stroke: Does intensive blood sugar control improve prognosis? Dtsch med Wochenschr. 137:26282012.(In German). PubMed/NCBI | |
Wu X, You J, Chen X, Zhou M, Ma H, Zhang T and Huang C: An overview of hyperbaric oxygen preconditioning against ischemic stroke. Metab Brain Dis. 38:855–872. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shin TH, Lee DY, Basith S, Manavalan B, Paik MJ, Rybinnik I, Mouradian MM, Ahn JH and Lee G: Metabolome changes in cerebral ischemia. Cells. 9:16302020. View Article : Google Scholar : PubMed/NCBI | |
Tuo QZ, Zhang ST and Lei P: Mechanisms of neuronal cell death in ischemic stroke and their therapeutic implications. Med Res Rev. 42:259–305. 2022. View Article : Google Scholar : PubMed/NCBI | |
Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Delling FN, et al: Heart disease and stroke statistics-2020 update: A report from the american heart association. Circulation. 141:e139–e596. 2020. View Article : Google Scholar : PubMed/NCBI | |
Przykaza Ł: Understanding the connection between common stroke comorbidities, their associated inflammation, and the course of the cerebral ischemia/reperfusion cascade. Front Immunol. 12:7825692021. View Article : Google Scholar : PubMed/NCBI | |
Rothwell PM, Algra A and Amarenco P: Medical treatment in acute and long-term secondary prevention after transient ischaemic attack and ischaemic stroke. Lancet. 377:1681–1692. 2011. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Tuo Q and Lei P: Iron, ferroptosis, and ischemic stroke. J Neurochem. 165:487–520. 2023. View Article : Google Scholar : PubMed/NCBI | |
Li J, Cao F, Yin H, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X, Kang R and Tang D: Ferroptosis: Process and function. Cell Death Differ. 23:369–379. 2016. View Article : Google Scholar : PubMed/NCBI | |
Xu L, Liu Y, Chen X, Zhong H and Wang Y: Ferroptosis in life: To be or not to be. Biomed Pharmacother. 159:1142412023. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Li Q, Guo H and He Q: Ferroptosis and iron metabolism after intracerebral hemorrhage. Cells. 12:902022. View Article : Google Scholar : PubMed/NCBI | |
Chen GH, Song CC, Pantopoulos K, Wei XL, Zheng H and Luo Z: Mitochondrial oxidative stress mediated Fe-induced ferroptosis via the NRF2-ARE pathway. Free Radic Biol Med. 180:95–107. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wan Y, Jiang Y, Zhang L and Cheng W: GPX4: The hub of lipid oxidation, ferroptosis, disease and treatment. Biochim Biophys Acta Rev Cancer. 1878:1888902023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Shen T, Lian J, Deng K, Qu C, Li E, Li G, Ren Y, Wang Z, Jiang Z, et al: Resveratrol reduces ROS-induced ferroptosis by activating SIRT3 and compensating the GSH/GPX4 pathway. Mol Med. 29:1372023. View Article : Google Scholar : PubMed/NCBI | |
Snezhkina AV, Kudryavtseva AV, Kardymon OL, Savvateeva MV, Melnikova NV, Krasnov GS and Dmitriev AA: ROS generation and antioxidant defense systems in normal and malignant cells. Oxid Med Cell Longev. 2019:61758042019. View Article : Google Scholar : PubMed/NCBI | |
Fu C, Wu Y, Liu S, Luo C, Lu Y, Liu M, Wang L, Zhang Y and Liu X: Rehmannioside A improves cognitive impairment and alleviates ferroptosis via activating PI3K/AKT/Nrf2 and SLC7A11/GPX4 signaling pathway after ischemia. J Ethnopharmacol. 289:1150212022. View Article : Google Scholar : PubMed/NCBI | |
Henning Y, Blind US, Larafa S, Matschke J and Fandrey J: Hypoxia aggravates ferroptosis in RPE cells by promoting the Fenton reaction. Cell Death Dis. 13:6622022. View Article : Google Scholar : PubMed/NCBI | |
Kosman DJ: Redox cycling in iron uptake, efflux, and trafficking. J Biol Chem. 285:26729–26735. 2010. View Article : Google Scholar : PubMed/NCBI | |
Lee J and Hyun DH: The interplay between intracellular iron homeostasis and neuroinflammation in neurodegenerative diseases. Antioxidants (Basel). 12:9182023. View Article : Google Scholar : PubMed/NCBI | |
Recalcati S, Gammella E and Cairo G: Dysregulation of iron metabolism in cancer stem cells. Free Radic Biol Med. 133:216–220. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pan F, Xu W, Ding J and Wang C: Elucidating the progress and impact of ferroptosis in hemorrhagic stroke. Front Cell Neurosci. 16:10675702023. View Article : Google Scholar : PubMed/NCBI | |
Weiland A, Wang Y, Wu W, Lan X, Han X, Li Q and Wang J: Ferroptosis and its role in diverse brain diseases. Mol Neurobiol. 56:4880–4893. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Han X, Lan X, Gao Y, Wan J, Durham F, Cheng T, Yang J, Wang Z, Jiang C, et al: Inhibition of neuronal ferroptosis protects hemorrhagic brain. JCI Insight. 2:e907772017. View Article : Google Scholar : PubMed/NCBI | |
Speer RE, Karuppagounder SS, Basso M, Sleiman SF, Kumar A, Brand D, Smirnova N, Gazaryan I, Khim SJ and Ratan RR: Hypoxia-inducible factor prolyl hydroxylases as targets for neuroprotection by ‘antioxidant’ metal chelators: From ferroptosis to stroke. Free Radic Biol Med. 62:26–36. 2013. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Li K, Zhao Y, Zhou L, Liu Y and Zhao J: Role of ferroptosis in stroke. Cell Mol Neurobiol. 43:205–222. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Guo ZN, Yan XL, Huang S, Ren JX, Luo Y and Yang Y: Crosstalk between autophagy and ferroptosis and its putative role in ischemic stroke. Front Cell Neurosci. 14:5774032020. View Article : Google Scholar : PubMed/NCBI | |
Bao WD, Pang P, Zhou XT, Hu F, Xiong W, Chen K, Wang J, Wang F, Xie D, Hu YZ, et al: Loss of ferroportin induces memory impairment by promoting ferroptosis in Alzheimer's disease. Cell Death Differ. 28:1548–1562. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mahoney-Sánchez L, Bouchaoui H, Ayton S, Devos D, Duce JA and Devedjian JC: Ferroptosis and its potential role in the physiopathology of Parkinson's disease. Prog Neurobiol. 196:1018902021. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen G and Shao W: Identification of ferroptosis-related genes in Alzheimer's disease based on bioinformatic analysis. Front Neurosci. 16:8237412022. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Chen S, Guo H, Jiang H, Liu H, Fu H and Wang D: Forsythoside A mitigates Alzheimer's-like pathology by inhibiting ferroptosis-mediated neuroinflammation via Nrf2/GPX4 axis activation. Int J Biol Sci. 18:2075–2090. 2022. View Article : Google Scholar : PubMed/NCBI | |
Jakaria M, Belaidi AA, Bush AI and Ayton S: Ferroptosis as a mechanism of neurodegeneration in Alzheimer's disease. J Neurochem. 159:804–825. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Alim I, Caulfield JT, Chen Y, Swarup V, Geschwind DH, Ivanova E, Seravalli J, Ai Y, Sansing LH, Ste Marie EJ, et al: Selenium drives a transcriptional adaptive program to block ferroptosis and treat stroke. Cell. 177:1262–1279.e25. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ren JX, Li C, Yan XL, Qu Y, Yang Y and Guo ZN: Crosstalk between oxidative stress and ferroptosis/oxytosis in ischemic stroke: Possible targets and molecular mechanisms. Oxid Med Cell Longev. 2021:66433822021. View Article : Google Scholar : PubMed/NCBI | |
Si W, Sun B, Luo J, Li Z, Dou Y and Wang Q: Snap25 attenuates neuronal injury via reducing ferroptosis in acute ischemic stroke. Exp Neurol. 367:1144762023. View Article : Google Scholar : PubMed/NCBI | |
Kuriakose D and Xiao Z: Pathophysiology and treatment of stroke: Present status and future perspectives. Int J Mol Sci. 21:76092020. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Fang Y, Zhang Z, Luo Y, Zhang A, Lenahan C and Chen S: Ferroptosis: An emerging therapeutic target in stroke. J Neurochem. 160:64–73. 2022. View Article : Google Scholar : PubMed/NCBI | |
Prajapati M, Conboy HL, Hojyo S, Fukada T, Budnik B and Bartnikas TB: Biliary excretion of excess iron in mice requires hepatocyte iron import by Slc39a14. J Biol Chem. 297:1008352021. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Fang ZM, Yi X, Wei X and Jiang DS: The interaction between ferroptosis and inflammatory signaling pathways. Cell Death Dis. 14:2052023. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Jing X, Du T, Ren J, Liu X, Chen F, Shao Y, Sun S, Yang G and Cui X: Iron overload promotes intervertebral disc degeneration via inducing oxidative stress and ferroptosis in endplate chondrocytes. Free Radic Biol Med. 190:234–246. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shi F, Zhang Z, Cui H, Wang J, Wang Y, Tang Y, Yang W, Zou P, Ling X, Han F, et al: Analysis by transcriptomics and metabolomics for the proliferation inhibition and dysfunction through redox imbalance-mediated DNA damage response and ferroptosis in male reproduction of mice and TM4 Sertoli cells exposed to PM2.5. Ecotoxicol Environ Saf. 238:1135692022. View Article : Google Scholar : PubMed/NCBI | |
Lin Q, Li S, Jin H, Cai H, Zhu X, Yang Y, Wu J, Qi C, Shao X, Li J, et al: Mitophagy alleviates cisplatin-induced renal tubular epithelial cell ferroptosis through ROS/HO-1/GPX4 axis. Int J Biol Sci. 19:1192–1210. 2023. View Article : Google Scholar : PubMed/NCBI | |
Su LJ, Zhang JH, Gomez H, Murugan R, Hong X, Xu D, Jiang F and Peng ZY: Reactive oxygen species-induced lipid peroxidation in apoptosis, autophagy, and ferroptosis. Oxid Med Cell Longev. 2019:50808432019. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Zhai Y, Chen J, Xu X and Wang H: Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules. 11:9232021. View Article : Google Scholar : PubMed/NCBI | |
Liu H, Zhang T, Zhang WY, Huang SR, Hu Y and Sun J: Rhein attenuates cerebral ischemia-reperfusion injury via inhibition of ferroptosis through NRF2/SLC7A11/GPX4 pathway. Exp Neurol. 369:1145412023. View Article : Google Scholar : PubMed/NCBI | |
Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI | |
Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NYJ, Plummer G, Pasolli HA, Matthies D, Bellen HJ and Ioannou MS: Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol. 222:e2022071302023. View Article : Google Scholar : PubMed/NCBI | |
Mamais A, Kluss JH, Bonet-Ponce L, Landeck N, Langston RG, Smith N, Beilina A, Kaganovich A, Ghosh MC, Pellegrini L, et al: Correction: Mutations in LRRK2 linked to Parkinson disease sequester Rab8a to damaged lysosomes and regulate transferrin-mediated iron uptake in microglia. PLoS Biol. 20:e30016212022. View Article : Google Scholar : PubMed/NCBI | |
Reyhani A, McKenzie TG, Fu Q and Qiao GG: Fenton-chemistry-mediated radical polymerization. Macromol Rapid Commun. 40:19002202019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L and Shen X: Boosting ROS-mediated lysosomal membrane permeabilization for cancer ferroptosis therapy. Adv Healthc Mater. 12:22021502023. View Article : Google Scholar | |
Von Krusenstiern AN, Robson RN, Qian N, Qiu B, Hu F, Reznik E, Smith N, Zandkarimi F, Estes VM, Dupont M, et al: Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. 19:719–730. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Chi H, Liu M, Yin Y, Diao H, Liu Z, Guo Z, Xu W, Xu J, Cui C, et al: Multifunctional ‘ball-rod’ Janus nanoparticles boosting Fenton reaction for ferroptosis therapy of non-small cell lung cancer. J Colloid Interface Sci. 621:12–23. 2022. View Article : Google Scholar : PubMed/NCBI | |
Kajarabille N and Latunde-Dada GO: Programmed cell-death by ferroptosis: Antioxidants as mitigators. Int J Mol Sci. 20:49682019. View Article : Google Scholar : PubMed/NCBI | |
Li J, Jia B, Cheng Y, Song Y, Li Q and Luo C: Targeting Molecular mediators of ferroptosis and oxidative stress for neurological disorders. Oxid Med Cell Longev. 2022:39990832022.PubMed/NCBI | |
Wan J, Ren H and Wang J: Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol. 4:93–95. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garton T, Keep RF, Hua Y and Xi G: CD163, a hemoglobin/haptoglobin scavenger receptor, after intracerebral hemorrhage: Functions in microglia/macrophages versus neurons. Transl Stroke Res. 8:612–616. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hare D, Ayton S, Bush A and Lei P: A delicate balance: Iron metabolism and diseases of the brain. Front Aging Neurosci. 5:342013. View Article : Google Scholar : PubMed/NCBI | |
Yang C, Hawkins KE, Doré S and Candelario-Jalil E: Neuroinflammatory mechanisms of blood-brain barrier damage in ischemic stroke. Am J Physiol Cell Physiol. 316:C135–C153. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bouchaoui H, Mahoney-Sanchez L, Garçon G, Berdeaux O, Alleman LY, Devos D, Duce JA and Devedjian JC: ACSL4 and the lipoxygenases 15/15B are pivotal for ferroptosis induced by iron and PUFA dyshomeostasis in dopaminergic neurons. Free Radic Biol Med. 195:145–157. 2023. View Article : Google Scholar : PubMed/NCBI | |
Rock C and Moos PJ: Selenoprotein P protects cells from lipid hydroperoxides generated by 15-LOX-1. Prostaglandins Leukot Essent Fatty Acids. 83:203–210. 2010. View Article : Google Scholar : PubMed/NCBI | |
Karuppagounder SS, Alim I, Khim SJ, Bourassa MW, Sleiman SF, John R, Thinnes CC, Yeh TL, Demetriades M, Neitemeier S, et al: Therapeutic targeting of oxygen-sensing prolyl hydroxylases abrogates ATF4-dependent neuronal death and improves outcomes after brain hemorrhage in several rodent models. Sci Transl Med. 8:328ra292016. View Article : Google Scholar : PubMed/NCBI | |
Wang H, Xu L, Tang X, Jiang Z and Feng X: Lipid peroxidation-induced ferroptosis as a therapeutic target for mitigating neuronal injury and inflammation in sepsis-associated encephalopathy: Insights into the hippocampal PEBP-1/15-LOX/GPX4 pathway. Lipids Health Dis. 23:1282024. View Article : Google Scholar : PubMed/NCBI | |
Shah R, Shchepinov MS and Pratt DA: Resolving the role of lipoxygenases in the initiation and execution of ferroptosis. ACS Cent Sci. 4:387–396. 2018. View Article : Google Scholar : PubMed/NCBI | |
Martami F and Holton KF: Targeting glutamate neurotoxicity through dietary manipulation: Potential treatment for migraine. Nutrients. 15:39522023. View Article : Google Scholar : PubMed/NCBI | |
Saini KK, Chaturvedi P, Sinha A, Singh MP, Khan MA, Verma A, Nengroo MA, Satrusal SR, Meena S, Singh A, et al: Loss of PERK function promotes ferroptosis by downregulating SLC7A11 (System Xc-) in colorectal cancer. Redox Biol. 65:1028332023. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : PubMed/NCBI | |
Dahlmanns M, Dahlmanns JK, Savaskan N, Steiner HH and Yakubov E: Glial glutamate transporter-mediated plasticity: System xc-/xCT/SLC7A11 and EAAT1/2 in brain diseases. Front Biosci (Landmark Ed). 28:572023. View Article : Google Scholar : PubMed/NCBI | |
Albrecht P, Lewerenz J, Dittmer S, Noack R, Maher P and Methner A: Mechanisms of oxidative glutamate toxicity: The glutamate/cystine antiporter system xc-as a neuroprotective drug target. CNS Neurol Disord Drug Targets. 9:373–382. 2010. View Article : Google Scholar : PubMed/NCBI | |
Puka-Sundvall M, Eriksson P, Nilsson M, Sandberg M and Lehmann A: Neurotoxicity of cysteine: interaction with glutamate. Brain Res. 705:65–70. 1995. View Article : Google Scholar : PubMed/NCBI | |
Yuan Y, Yucai L, Lu L, Hui L, Yong P and Haiyang Y: Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett. 368:24–32. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang W, Niu C, Liu Y and Chen B: Glutathione redox balance in hibernating Chinese soft-shelled turtle Pelodiscus sinensis hatchlings. Comp Biochem Physiol B Biochem Mol Biol. 207:9–14. 2017. View Article : Google Scholar : PubMed/NCBI | |
Iskusnykh IY, Zakharova AA and Pathak D: Glutathione in brain disorders and aging. Molecules. 27:3242022. View Article : Google Scholar : PubMed/NCBI | |
Miladinovic T and Singh G: Spinal microglia contribute to cancer-induced pain through system xC−-mediated glutamate release. Pain Rep. 4:e7382019. View Article : Google Scholar : PubMed/NCBI | |
Shen SY, Yu R, Li W, Liang LF, Han QQ, Huang HJ, Li B, Xu SF, Wu GC, Zhang YQ and Yu J: The neuroprotective effects of GPR55 against hippocampal neuroinflammation and impaired adult neurogenesis in CSDS mice. Neurobiol Dis. 169:1057432022. View Article : Google Scholar : PubMed/NCBI | |
Chen Z and Trapp BD: Microglia and neuroprotection. J Neurochem. 136 (Suppl 1):S10–S17. 2016. View Article : Google Scholar | |
Frank D, Gruenbaum BF, Grinshpun J, Melamed I, Severynovska O, Kuts R, Semyonov M, Brotfain E, Zlotnik A and Boyko M: Measuring post-stroke cerebral edema, infarct zone and blood-brain barrier breakdown in a single set of rodent brain samples. J Vis Exp. 2020:e613092020. | |
Raper DMS and Abla AA: Commentary: Encephalodu-roarteriosynangiosis averts stroke in atherosclerotic patients with border-zone infarct: Post hoc analysis from a performance criterion phase II trial. Neurosurgery. 88:E319–E320. 2021. View Article : Google Scholar : PubMed/NCBI | |
Fan G, Liu M, Liu J and Huang Y: The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci. 16:11130812023. View Article : Google Scholar : PubMed/NCBI | |
Bridges R, Lutgen V, Lobner D and Baker DA: Thinking outside the cleft to understand synaptic activity: Contribution of the cystine-glutamate antiporter (System xc-) to normal and pathological glutamatergic signaling. Pharmacol Rev. 64:780–802. 2012. View Article : Google Scholar : PubMed/NCBI | |
Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Yang G and Zhang H: Glyphosate-triggered hepatocyte ferroptosis via suppressing Nrf2/GSH/GPX4 axis exacerbates hepatotoxicity. Sci Total Environ. 862:1608392023. View Article : Google Scholar : PubMed/NCBI | |
Jin M, Shi C, Li T, Wu Y, Hu C and Huang G: Solasonine promotes ferroptosis of hepatoma carcinoma cells via glutathione peroxidase 4-induced destruction of the glutathione redox system. Biomed Pharmacother. 129:1102822020. View Article : Google Scholar : PubMed/NCBI | |
Delesderrier E, Monteiro JDC, Freitas S, Pinheiro IC, Batista MS and Citelli M: Can iron and polyunsaturated fatty acid supplementation induce ferroptosis? Cell Physiol Biochem. 57:24–41. 2023. View Article : Google Scholar : PubMed/NCBI | |
Xie G, Liang Y, Gao W, Wu L, Zhang Y, Ye Z and Qin C: Artesunate alleviates intracerebral haemorrhage secondary injury by inducing ferroptosis in M1-polarized microglia and suppressing inflammation through AMPK/mTORC1/GPX4 pathway. Basic Clin Pharmacol Toxicol. 132:369–383. 2023. View Article : Google Scholar : PubMed/NCBI | |
Steinberg GR and Hardie DG: New insights into activation and function of the AMPK. Nat Rev Mol Cell Biol. 24:255–272. 2023. View Article : Google Scholar : PubMed/NCBI | |
Muraleedharan R and Dasgupta B: AMPK in the brain: Its roles in glucose and neural metabolism. FEBS J. 289:2247–2262. 2022. View Article : Google Scholar : PubMed/NCBI | |
Taghiyar S, Pourrajab F and Aarabi MH: Astaxanthin improves fatty acid dysregulation in diabetes by controlling the AMPK-SIRT1 pathway. EXCLI J. 22:502–515. 2023.PubMed/NCBI | |
Malik N, Ferreira BI, Hollstein PE, Curtis SD, Trefts E, Weiser Novak S, Yu J, Gilson R, Hellberg K, Fang L, et al: Induction of lysosomal and mitochondrial biogenesis by AMPK phosphorylation of FNIP1. Science. 380:eabj55592023. View Article : Google Scholar : PubMed/NCBI | |
Bae SJ, Bak SB and Kim YW: Coordination of AMPK and YAP by Spatholobi caulis and procyanidin B2 provides antioxidant effects in vitro and in vivo. Int J Mol Sci. 23:137302022. View Article : Google Scholar : PubMed/NCBI | |
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al: Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gao J, Li Y and Song R: SIRT2 inhibition exacerbates p53-mediated ferroptosis in mice following experimental traumatic brain injury. Neuroreport. 32:1001–1008. 2021. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Ji H and Wu D: SIRT2 plays complex roles in neuroinflammation neuroimmunology-associated disorders. Front Immunol. 14:11741802023. View Article : Google Scholar : PubMed/NCBI | |
Wu H, Liu Q, Shan X, Gao W and Chen Q: ATM orchestrates ferritinophagy and ferroptosis by phosphorylating NCOA4. Autophagy. 19:2062–2077. 2023. View Article : Google Scholar : PubMed/NCBI | |
Mi Y, Wei C, Sun L, Liu H, Zhang J, Luo J, Yu X, He J, Ge H and Liu P: Melatonin inhibits ferroptosis and delays age-related cataract by regulating SIRT6/p-Nrf2/GPX4 and SIRT6/NCOA4/FTH1 pathways. Biomed Pharmacother. 157:1140482023. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI | |
Santana-Codina N, Gikandi A and Mancias JD: The role of NCOA4-mediated ferritinophagy in ferroptosis. Ferroptosis: Mechanism and Diseases. Vol. 1301. Florez AF and Alborzinia H: Springer International Publishing; Cham: pp. 41–57. 2021, PubMed/NCBI | |
Fang Y, Chen X, Tan Q, Zhou H, Xu J and Gu Q: Inhibiting ferroptosis through disrupting the NCOA4-FTH1 interaction: A new mechanism of action. ACS Cent Sci. 7:980–989. 2021. View Article : Google Scholar : PubMed/NCBI | |
Santana-Codina N, Gableske S, Quiles del Rey M, Małachowska B, Jedrychowski MP, Biancur DE, Schmidt PJ, Fleming MD, Fendler W, Harper JW, et al: NCOA4 maintains murine erythropoiesis via cell autonomous and non-autonomous mechanisms. Haematologica. 104:1342–1354. 2019. View Article : Google Scholar : PubMed/NCBI | |
Bellelli R, Federico G, Matte' A, Colecchia D, Iolascon A, Chiariello M, Santoro M, De Franceschi L and Carlomagno F: NCOA4 deficiency impairs systemic iron homeostasis. Cell Rep. 14:411–421. 2016. View Article : Google Scholar : PubMed/NCBI | |
Nai A, Lidonnici MR, Federico G, Pettinato M, Olivari V, Carrillo F, Geninatti Crich S, Ferrari G, Camaschella C, Silvestri L and Carlomagno F: NCOA4-mediated ferritinophagy in macrophages is crucial to sustain erythropoiesis in mice. Haematologica. 106:795–805. 2021.PubMed/NCBI | |
Xu W, Guo ZN and Shao A: Editorial: Ferroptosis in stroke, neurotrauma and neurodegeneration, volume II. Front Cell Neurosci. 17:12384252023. View Article : Google Scholar : PubMed/NCBI | |
Rochette L, Dogon G, Rigal E, Zeller M, Cottin Y and Vergely C: Lipid peroxidation and iron metabolism: Two corner stones in the homeostasis control of ferroptosis. Int J Mol Sci. 24:4492022. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu Y, Du T, Yang H, Lei L, Guo M, Ding HF, Zhang J, Wang H, Chen X and Yan C: ATF3 promotes erastin-induced ferroptosis by suppressing system Xc. Cell Death Differ. 27:662–675. 2020. View Article : Google Scholar : PubMed/NCBI | |
Verbruggen L, Sprimont L, Bentea E, Janssen P, Gharib A, Deneyer L, De Pauw L, Lara O, Sato H, Nicaise C and Massie A: Chronic sulfasalazine treatment in mice induces system xc−-independent adverse effects. Front Pharmacol. 12:6256992021. View Article : Google Scholar : PubMed/NCBI | |
de Baat A, Meier DT, Fontana A, Böni-Schnetzler M and Donath MY: Cystine/Glutamate antiporter system xc- deficiency impairs macrophage glutathione metabolism and cytokine production. PLoS One. 18:e02919502023. View Article : Google Scholar : PubMed/NCBI | |
Sui X, Zhang R, Liu S, Duan T, Zhai L, Zhang M, Han X, Xiang Y, Huang X, Lin H and Xie T: RSL3 drives ferroptosis through GPX4 inactivation and ROS production in colorectal cancer. Front Pharmacol. 9:13712018. View Article : Google Scholar : PubMed/NCBI | |
Cui C, Yang F and Li Q: Post-translational modification of GPX4 is a promising target for treating ferroptosis-related diseases. Front Mol Biosci. 9:9015652022. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang L, Yan J, Hou A, Sui W and Sun M: Curcumin induces ferroptosis in A549 CD133+ cells through the GSH-GPX4 and FSP1-CoQ10-NAPH pathways. Discov Med. 35:251–263. 2023. View Article : Google Scholar : PubMed/NCBI | |
Almahi WA, Yu KN, Mohammed F, Kong P and Han W: Hemin enhances radiosensitivity of lung cancer cells through ferroptosis. Exp Cell Res. 410:1129462022. View Article : Google Scholar : PubMed/NCBI | |
Ma S, Henson ES, Chen Y and Gibson SB: Ferroptosis is induced following siramesine and lapatinib treatment of breast cancer cells. Cell Death Dis. 7:e23072016. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Yu K, Ma L, Qian Z, Tian X, Miao Y, Niu Y, Xu X, Guo S, Yang Y, et al: Endogenous glutamate determines ferroptosis sensitivity via ADCY10-dependent YAP suppression in lung adenocarcinoma. Theranostics. 11:5650–5674. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sun S, Guo C, Gao T, Ma D, Su X, Pang Q and Zhang R: Hypoxia enhances glioma resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/HIF-1α axis. Oxid Med Cell Longev. 2022:78624302022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Li Y, Zhang R, Wang F, Wang T and Jiao Y: The role of erastin in ferroptosis and its prospects in cancer therapy. Onco Targets Ther. 13:5429–5441. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Tan H, Daniels JD, Zandkarimi F, Liu H, Brown LM, Uchida K, O'Connor OA and Stockwell BR: Imidazole ketone erastin induces ferroptosis and slows tumor growth in a mouse lymphoma model. Cell Chem Biol. 26:623–633.e9. 2019. View Article : Google Scholar : PubMed/NCBI | |
Duan L, Zhang Y, Yang Y, Su S, Zhou L, Lo PC, Cai J, Qiao Y, Li M, Huang S, et al: Baicalin inhibits ferroptosis in intracerebral hemorrhage. Front Pharmacol. 12:6293792021. View Article : Google Scholar : PubMed/NCBI | |
Li J, Wei G, Song Z, Chen Z, Gu J, Zhang L and Wang Z: SIRT5 regulates ferroptosis through the Nrf2/HO-1 signaling axis to participate in ischemia-reperfusion injury in ischemic stroke. Neurochem Res. 49:998–1007. 2024. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Bao Y, Li Y, Duan X, Dong S, Lin J, Chang X, Tan Y, Zhang H and Shan H: RSL3 inhibits porcine epidemic diarrhea virus replication by activating ferroptosis. Viruses. 15:20802023. View Article : Google Scholar : PubMed/NCBI | |
Cheff DM, Huang C, Scholzen KC, Gencheva R, Ronzetti MH, Cheng Q, Hall MD and Arnér ESJ: The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 62:1027032023. View Article : Google Scholar : PubMed/NCBI | |
Hu J, Gu W, Ma N, Fan X and Ci X: Leonurine alleviates ferroptosis in cisplatin-induced acute kidney injury by activating the Nrf2 signalling pathway. Br J Pharmacol. 179:3991–4009. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X, Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12:10792021. View Article : Google Scholar : PubMed/NCBI | |
Li S, He Y, Chen K, Sun J, Zhang L, He Y, Yu H and Li Q: RSL3 drives ferroptosis through NF-κB pathway activation and GPX4 depletion in glioblastoma. Oxid Med Cell Longev. 2021:29150192021. View Article : Google Scholar : PubMed/NCBI | |
Sun X, Huang N, Li P, Dong X, Yang J, Zhang X, Zong WX, Gao S and Xin H: TRIM21 ubiquitylates GPX4 and promotes ferroptosis to aggravate ischemia/reperfusion-induced acute kidney injury. Life Sci. 321:1216082023. View Article : Google Scholar : PubMed/NCBI | |
Li M, Meng Z, Yu S, Li J, Wang Y, Yang W and Wu H: Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact. 366:1101372022. View Article : Google Scholar : PubMed/NCBI | |
Nakamura T, Hipp C, Santos Dias Mourão A, Borggräfe J, Aldrovandi M, Henkelmann B, Wanninger J, Mishima E, Lytton E, Emler D, et al: Phase separation of FSP1 promotes ferroptosis. Nature. 619:371–377. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yao X, Xie R, Cao Y, Tang J, Men Y, Peng H and Yang W: Simvastatin induced ferroptosis for triple-negative breast cancer therapy. J Nanobiotechnology. 19:3112021. View Article : Google Scholar : PubMed/NCBI | |
Shu X and Wu J, Zhang T, Ma X, Du Z, Xu J, You J, Wang L, Chen N, Luo M and Wu J: Statin-induced geranylgeranyl pyrophosphate depletion promotes ferroptosis-related senescence in adipose tissue. Nutrients. 14:43652022. View Article : Google Scholar : PubMed/NCBI | |
Miyamoto HD, Ikeda M, Ide T, Tadokoro T, Furusawa S, Abe K, Ishimaru K, Enzan N, Sada M, Yamamoto T, et al: Iron overload via heme degradation in the endoplasmic reticulum triggers ferroptosis in myocardial ischemia-reperfusion injury. JACC Basic Transl Sci. 7:800–819. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chen GQ, Benthani FA, Wu J, Liang D, Bian ZX and Jiang X: Artemisinin compounds sensitize cancer cells to ferroptosis by regulating iron homeostasis. Cell Death Differ. 27:242–254. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pei X, Tian M, Wang Y, Xin Y, Jiang J, Wang Y and Gong Y: Advances in the knowledge on the role of apoptosis repressor with caspase recruitment domain in hemorrhagic stroke. J Intensive Med. 3:138–143. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zille M, Karuppagounder SS, Chen Y, Gough PJ, Bertin J, Finger J, Milner TA, Jonas EA and Ratan RR: Neuronal death after hemorrhagic stroke in vitro and in vivo shares features of ferroptosis and necroptosis. Stroke. 48:1033–1043. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fu K, Xu W, Lenahan C, Mo Y, Wen J, Deng T, Huang Q, Guo F, Mo L and Yan J: Autophagy regulates inflammation in intracerebral hemorrhage: Enemy or friend? Front Cell Neurosci. 16:10363132023. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Mori T, Sumii T and Lo EH: Hemoglobin-induced cytotoxicity in rat cerebral cortical neurons: Caspase activation and oxidative stress. Stroke. 33:1882–1888. 2002. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Liu Y, Li K, Yuan D, Yang S, Zhou L, Zhao Y, Miao S, Lv C and Zhao J: COX-2/PGE2 pathway inhibits the ferroptosis induced by cerebral ischemia reperfusion. Mol Neurobiol. 59:1619–1631. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dendorfer A, Heidbreder M, Hellwig-Bürgel T, Jöhren O, Qadri F and Dominiak P: Deferoxamine induces prolonged cardiac preconditioning via accumulation of oxygen radicals. Free Radic Biol Med. 38:117–124. 2005. View Article : Google Scholar : PubMed/NCBI | |
Wang C, Xie L, Xing Y, Liu M, Yang J, Gao N and Cai Y: Iron-overload-induced ferroptosis in mouse cerebral toxoplasmosis promotes brain injury and could be inhibited by Deferiprone. PLoS Negl Trop Dis. 17:e00116072023. View Article : Google Scholar : PubMed/NCBI | |
Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković AM, Bosello Travain V, Zaccarin M, Zennaro L, et al: Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 28:1013282020. View Article : Google Scholar : PubMed/NCBI | |
Gao Z, Zhang Z, Gu D, Li Y, Zhang K, Dong X, Liu L, Zhang J, Chen J, Wu D and Zeng M: Hemin mitigates contrast-induced nephropathy by inhibiting ferroptosis via HO-1/Nrf2/GPX4 pathway. Clin Exp Pharma Physio. 49:858–870. 2022. View Article : Google Scholar : PubMed/NCBI | |
Mishima E, Ito J, Wu Z, Nakamura T, Wahida A, Doll S, Tonnus W, Nepachalovich P, Eggenhofer E, Aldrovandi M, et al: A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature. 608:778–783. 2022. View Article : Google Scholar : PubMed/NCBI | |
Sun W, Lv Z, Li W, Lu J, Xie Y, Wang P, Jiang R, Dong J, Guo H, Liu Z, et al: XJB-5-131 protects chondrocytes from ferroptosis to alleviate osteoarthritis progression via restoring Pebp1 expression. J Orthop Translat. 44:114–124. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Wang W, Li Y, Xiao Y, Cheng J and Jia J: The 5-lipoxygenase inhibitor zileuton confers neuroprotection against glutamate oxidative damage by inhibiting ferroptosis. Biol Pharm Bull. 38:1234–1239. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kosyakovsky J, Fine JM, Frey WH II and Hanson LR: Mechanisms of intranasal deferoxamine in neurodegenerative and neurovascular disease. Pharmaceuticals (Basel). 14:952021. View Article : Google Scholar : PubMed/NCBI | |
Huang Z and Huang S: Reposition of the fungicide ciclopirox for cancer treatment. Recent Pat Anticancer Drug Discov. 16:122–135. 2021. View Article : Google Scholar : PubMed/NCBI | |
Averill-Bates DA: The antioxidant glutathione. Vitam Horm. 121:109–141. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen J, Yang L, Geng L, He J, Chen L, Sun Q, Zhao J and Wang X: Inhibition of Acyl-CoA synthetase long-chain family member 4 facilitates neurological recovery after stroke by regulation ferroptosis. Front Cell Neurosci. 15:6323542021. View Article : Google Scholar : PubMed/NCBI | |
Shen L, Lin D, Li X, Wu H, Lenahan C, Pan Y, Xu W, Chen Y, Shao A and Zhang J: Ferroptosis in acute central nervous system injuries: The future direction? Front Cell Dev Biol. 8:5942020. View Article : Google Scholar : PubMed/NCBI | |
Guo Z, Lin J, Sun K, Guo J, Yao X, Wang G, Hou L, Xu J, Guo J and Guo F: Deferoxamine alleviates osteoarthritis by inhibiting chondrocyte ferroptosis and activating the Nrf2 pathway. Front Pharmacol. 13:7913762022. View Article : Google Scholar : PubMed/NCBI | |
Xue Q, Yan D, Chen X, Li X, Kang R, Klionsky DJ, Kroemer G, Chen X, Tang D and Liu J: Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy. 19:1982–1996. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Zhang X, Xu M, Zheng G, Chen J, Li S, Cui J and Zhang S: Implication of ferroptosis in hepatic toxicity upon single or combined exposure to polystyrene microplastics and cadmium. Environ Pollut. 334:1222502023. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, He W, Wei H, Chang C, Yang L, Meng J, Long T, Xu Q and Zhang C: Srs11-92, a ferrostatin-1 analog, improves oxidative stress and neuroinflammation via Nrf2 signal following cerebral ischemia/reperfusion injury. CNS Neurosci Ther. 29:1667–1677. 2023. View Article : Google Scholar : PubMed/NCBI | |
Holden P and Nair LS: Deferoxamine: An angiogenic and antioxidant molecule for tissue regeneration. Tissue Eng Part B Rev. 25:461–470. 2019. View Article : Google Scholar : PubMed/NCBI | |
Kim JL, Lee DH, Na YJ, Kim BR, Jeong YA, Lee SI, Kang S, Joung SY, Lee SY, Oh SC and Min BW: Iron chelator-induced apoptosis via the ER stress pathway in gastric cancer cells. Tumor Biol. 37:9709–9719. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lin S, Gao W, Zhu C, Lou Q, Ye C, Ren Y, Mehmood R, Huang B and Nan K: Efficiently suppress of ferroptosis using deferoxamine nanoparticles as a new method for retinal ganglion cell protection after traumatic optic neuropathy. Biomater Adv. 138:2129362022. View Article : Google Scholar : PubMed/NCBI | |
You H, Wang D, Wei L, Chen J, Li H and Liu Y: Deferoxamine inhibits acute lymphoblastic leukemia progression through repression of ROS/HIF-1α, Wnt/β-catenin, and p38MAPK/ERK pathways. J Oncol. 2022:82812672022. View Article : Google Scholar : PubMed/NCBI | |
Abdul Y, Li W, Ward R, Abdelsaid M, Hafez S, Dong G, Jamil S, Wolf V, Johnson MH, Fagan SC and Ergul A: Deferoxamine treatment prevents post-stroke vasoregression and neurovascular unit remodeling leading to improved functional outcomes in type 2 male diabetic rats: Role of endothelial ferroptosis. Transl Stroke Res. 12:615–630. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jones G, Zeng L and Kim J: Mechanism-based pharmacokinetic modeling of absorption and disposition of a deferoxamine-based nanochelator in rats. Mol Pharm. 20:481–490. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Li D, Sun H, Wang W, Wu H and Kong W and Kong W: Relieving ferroptosis may partially reverse neurodegeneration of the auditory cortex. FEBS J. 287:4747–4766. 2020. View Article : Google Scholar : PubMed/NCBI | |
Tuo Q, Lei P, Jackman KA, Li XL, Xiong H, Li XL, Liuyang ZY, Roisman L, Zhang ST, Ayton S, et al: Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol Psychiatry. 22:1520–1530. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kannan M, Sil S, Oladapo A, Thangaraj A, Periyasamy P and Buch S: HIV-1 Tat-mediated microglial ferroptosis involves the miR-204-ACSL4 signaling axis. Redox Biol. 62:1026892023. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Zeng X, Lu D, Yin M, Shan M and Gao Y: Erastin induces ferroptosis via ferroportin-mediated iron accumulation in endometriosis. Hum Reprod. 36:951–964. 2021. View Article : Google Scholar : PubMed/NCBI | |
Xie B, Wang Y, Lin Y, Mao Q, Feng J, Gao G and Jiang J: Inhibition of ferroptosis attenuates tissue damage and improves long-term outcomes after traumatic brain injury in mice. CNS Neurosci Ther. 25:465–475. 2019. View Article : Google Scholar : PubMed/NCBI | |
Carbonell T and Rama R: Iron, oxidative stress and early neurological deterioration in ischemic stroke. Curr Med Chem. 14:857–874. 2007. View Article : Google Scholar : PubMed/NCBI | |
Silver MK, Lozoff B and Meeker JD: Blood cadmium is elevated in iron deficient U.S. children: A cross-sectional study. Environ Health. 12:1172013. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Luo C, Li Z, Huang W, Zheng S, Liu C, Shi X, Ma Y, Ni Q, Tan W, et al: Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity. Ecotoxicol Environ Saf. 271:1159602024. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Du Y, Liu J, Cheng L, He W and Zhang W: Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain Res Bull. 193:146–157. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chen B and Jin W: A comprehensive review of stroke-related signaling pathways and treatment in western medicine and traditional Chinese medicine. Front Neurosci. 17:12000612023. View Article : Google Scholar : PubMed/NCBI | |
Lou Y, Ma M, Jiang Y, Xu H, Gao Z, Gao L and Wang Y: Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomed Pharmacother. 156:1138062022. View Article : Google Scholar : PubMed/NCBI | |
Li J, Zhao X, Zhang Y, Wan H, He Y, Li X, Yu L and Jin W: Comparison of traditional Chinese medicine in the long-term secondary prevention for patients with ischemic stroke: A systematical analysis. Front Pharmacol. 12:7229752021. View Article : Google Scholar : PubMed/NCBI | |
Zhu T, Wang L, Wang L and Wan Q: Therapeutic targets of neuroprotection and neurorestoration in ischemic stroke: Applications for natural compounds from medicinal herbs. Biomed Pharmacother. 148:1127192022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Hu J, Chen X, Lei X, Feng H, Wan F and Tan L: Traditional Chinese medicine monomers: Novel strategy for endogenous neural stem cells activation after stroke. Front Cell Neurosci. 15:6281152021. View Article : Google Scholar : PubMed/NCBI | |
Zhan S, Liang J, Lin H, Cai J, Yang X, Wu H, Wei J, Wang S and Xian M: SATB1/SLC7A11/HO-1 axis ameliorates ferroptosis in neuron cells after ischemic stroke by danhong injection. Mol Neurobiol. 60:413–427. 2023. View Article : Google Scholar : PubMed/NCBI | |
Ko G, Kim J, Jeon YJ, Lee D, Baek HM and Chang KA: Salvia miltiorrhiza alleviates memory deficit induced by ischemic brain injury in a transient MCAO mouse model by inhibiting ferroptosis. Antioxidants (Basel). 12:7852023. View Article : Google Scholar : PubMed/NCBI | |
Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K and Shen W: Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol. 50:779–788. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu J, Jiang G, He P, Du X, Hu Z and Li F: Mechanism of ferroptosis in traditional chinese medicine for clinical treatment: A review. Front Pharmacol. 13:11088362023. View Article : Google Scholar : PubMed/NCBI | |
Wang L, Liu C, Wang L and Tang B: Astragaloside IV mitigates cerebral ischaemia-reperfusion injury via inhibition of P62/Keap1/Nrf2 pathway-mediated ferroptosis. Eur J Pharmacol. 944:1755162023. View Article : Google Scholar : PubMed/NCBI | |
Jiang Y, Zhao S, Zhou Y and Wei Z: Research progress of traditional Chinese medicine in ferroptosis-related diseases. Med Nov Technol Devices. 16:1001932022. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Zeng L, Zeng J, Deng Y, Wang S, Xu H, He Q, Yuan M, Luo Y, Ge A and Ge J: Research progress in the molecular mechanism of ferroptosis in Parkinson's disease and regulation by natural plant products. Ageing Res Rev. 91:1020632023. View Article : Google Scholar : PubMed/NCBI | |
Wu C, Duan F, Yang R, Dai Y, Chen X and Li S: 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2. Phytomedicine. 114:1547902023. View Article : Google Scholar : PubMed/NCBI | |
Bai X, Zheng E, Tong L, Liu Y, Li X and Yang H, Jiang J, Chang Z and Yang H: Angong Niuhuang Wan inhibit ferroptosis on ischemic and hemorrhagic stroke by activating PPARγ/AKT/GPX4 pathway. J Ethnopharmacol. 321:1174382024. View Article : Google Scholar : PubMed/NCBI | |
Jin Z, Gao W, Guo F, Liao S, Hu M, Yu T, Yu S and Shi Q: Astragaloside IV alleviates neuronal ferroptosis in ischemic stroke by regulating fat mass and obesity-associated-N6-methyladenosine-acyl-CoA synthetase long-chain family member 4 axis. J Neurochem. 166:328–345. 2023. View Article : Google Scholar : PubMed/NCBI | |
Hirata Y, Cai R, Volchuk A, Steinberg BE, Saito Y, Matsuzawa A, Grinstein S and Freeman SA: Lipid peroxidation increases membrane tension, Piezo1 gating, and cation permeability to execute ferroptosis. Curr Biol. 33:1282–1294.e5. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gao W, Wang X, Zhou Y, Wang X and Yu Y: Autophagy, ferroptosis, pyroptosis, and necroptosis in tumor immunotherapy. Sig Transduct Target Ther. 7:1962022. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Liao J, Mei Z, Liu X and Ge J: Insight into crosstalk between ferroptosis and necroptosis: Novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021:99910012021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI | |
Battaglia AM, Chirillo R, Aversa I, Sacco A, Costanzo F and Biamonte F: Ferroptosis and cancer: Mitochondria meet the ‘iron maiden’ cell death. Cells. 9:15052020. View Article : Google Scholar : PubMed/NCBI | |
Jeong SY and Seol DW: The role of mitochondria in apoptosis. BMB Rep. 41:11–22. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cui Y, Zhang Y, Zhao X, Shao L, Liu G, Sun C, Xu R and Zhang Z: ACSL4 exacerbates ischemic stroke by promoting ferroptosis-induced brain injury and neuroinflammation. Brain Behav Immun. 93:312–321. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wang ZL, Yuan L, Li W and Li JY: Ferroptosis in Parkinson's disease: Glia-neuron crosstalk. Trends Mol Med. 28:258–269. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ren JX, Sun X, Yan XL, Guo ZN and Yang Y: Ferroptosis in neurological diseases. Front Cell Neurosci. 14:2182020. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Long T, Xu Q and Zhang C: Bibliometric analysis of ferroptosis in stroke from 2013 to 2021. Front Pharmacol. 12:8173642022. View Article : Google Scholar : PubMed/NCBI | |
Jin Y, Zhuang Y, Liu M, Che J and Dong X: Inhibiting ferroptosis: A novel approach for stroke therapeutics. Drug Discov Today. 26:916–930. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yang K, Zeng L, Yuan X, Wang S, Ge A, Xu H, Zeng J and Ge J: The mechanism of ferroptosis regulating oxidative stress in ischemic stroke and the regulation mechanism of natural pharmacological active components. Biomed Pharmacother. 154:1136112022. View Article : Google Scholar : PubMed/NCBI | |
Xing G, Meng L, Cao S, Liu S, Wu J, Li Q, Huang W and Zhang L: PPARα alleviates iron overload-induced ferroptosis in mouse liver. EMBO Rep. 23:e522802022. View Article : Google Scholar : PubMed/NCBI |