Research progress of DNA methylation in colorectal cancer (Review)
- Authors:
- Yuxin Wang
- Chengcheng Wang
- Ruiqi Zhong
- Liang Wang
- Lei Sun
-
Affiliations: Emergency Department, The Second Hospital of Dalian Medical University, Dalian, Liaoning 116027, P.R. China, Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, Liaoning 116044, P.R. China - Published online on: July 3, 2024 https://doi.org/10.3892/mmr.2024.13278
- Article Number: 154
-
Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Migliore L, Migheli F, Spisni R and Coppedè F: Genetics, cytogenetics, and epigenetics of colorectal cancer. J Biomed Biotechnol. 2011:7923622011.PubMed/NCBI | |
Araghi M, Soerjomataram I, Bardot A, Ferlay J, Cabasag CJ, Morrison DS, De P, Tervonen H, Walsh PM, Bucher O, et al: Changes in colorectal cancer incidence in seven high-income countries: A population-based study. Lancet Gastroenterol Hepatol. 4:511–518. 2019. View Article : Google Scholar : PubMed/NCBI | |
Reilly NM, Novara L, Di Nicolantonio F and Bardelli A: Exploiting DNA repair defects in colorectal cancer. Mol Oncol. 13:681–700. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liebl MC and Hofmann TG: The role of p53 signaling in colorectal cancer. Cancers (Basel). 13:21252021. View Article : Google Scholar : PubMed/NCBI | |
Bose S, Saha S, Goswami H, Shanmugam G and Sarkar K: Involvement of CCCTC-binding factor in epigenetic regulation of cancer. Mol Biol Rep. 50:10383–10398. 2023. View Article : Google Scholar : PubMed/NCBI | |
Jamai D, Gargouri R, Selmi B and Khabir A: ERCC1 and MGMT methylation as a predictive marker of relapse and FOLFOX response in colorectal cancer patients from South Tunisia. Genes (Basel). 14:14672023. View Article : Google Scholar : PubMed/NCBI | |
Okada Y, Peng F, Perea J, Corchete L, Bujanda L, Li W and Goel A: Genome-wide methylation profiling identifies a novel gene signature for patients with synchronous colorectal cancer. Br J Cancer. 128:112–120. 2023. View Article : Google Scholar : PubMed/NCBI | |
Okano M, Bell DW, Haber DA and Li E: DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell. 99:247–257. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zhai P, Zhang H, Li Q, Yang M, Guo Y and Xing C: DNMT1-mediated NR3C1 DNA methylation enables transcription activation of connexin40 and augments angiogenesis during colorectal cancer progression. Gene. 892:1478872024. View Article : Google Scholar : PubMed/NCBI | |
Christman JK, Sheikhnejad G, Dizik M, Abileah S and Wainfan E: Reversibility of changes in nucleic acid methylation and gene expression induced in rat liver by severe dietary methyl deficiency. Carcinogenesis. 14:551–557. 1993. View Article : Google Scholar : PubMed/NCBI | |
Goll MG, Kirpekar F, Maggert KA, Yoder JA, Hsieh CL, Zhang X, Golic KG, Jacobsen SE and Bestor TH: Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science. 311:395–398. 2006. View Article : Google Scholar : PubMed/NCBI | |
Smith ZD and Meissner A: DNA methylation: Roles in mammalian development. Nat Rev Genet. 14:204–220. 2013. View Article : Google Scholar : PubMed/NCBI | |
Cho HY, Wang X, Campbell MR, Panduri V, Coviello S, Caballero MT, Bennett BD, Kleeberger SR, Polack FP, Ofman G and Bell DA: Prospective epigenome and transcriptome analyses of cord and peripheral blood from preterm infants at risk of bronchopulmonary dysplasia. Sci Rep. 13:122622023. View Article : Google Scholar : PubMed/NCBI | |
Guinney J, Dienstmann R, Wang X, de Reyniès A, Schlicker A, Soneson C, Marisa L, Roepman P, Nyamundanda G, Angelino P, et al: The consensus molecular subtypes of colorectal cancer. Nat Med. 21:1350–1356. 2015. View Article : Google Scholar : PubMed/NCBI | |
Powell SM, Zilz N, Beazer-Barclay Y, Bryan TM, Hamilton SR, Thibodeau SN, Vogelstein B and Kinzler KW: APC mutations occur early during colorectal tumorigenesis. Nature. 359:235–237. 1992. View Article : Google Scholar : PubMed/NCBI | |
Cancer Genome Atlas Network, . Comprehensive molecular characterization of human colon and rectal cancer. Nature. 487:330–337. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lin CY, Shen MY, Chen WTL and Yang CA: Evaluation of the prognostic value of low-frequency KRAS mutation detection in circulating tumor DNA of patients with metastatic colorectal cancer. J Pers Med. 13:10512023. View Article : Google Scholar : PubMed/NCBI | |
Rajagopalan H, Bardelli A, Lengauer C, Kinzler KW, Vogelstein B and Velculescu VE: Tumorigenesis: RAF/RAS oncogenes and mismatch-repair status. Nature. 418:9342002. View Article : Google Scholar : PubMed/NCBI | |
Tsujii M, Kawano S and DuBois RN: Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA. 94:3336–3340. 1997. View Article : Google Scholar : PubMed/NCBI | |
Hidalgo-Estévez AM, Stamatakis K, Jiménez-Martínez M, López-Pérez R and Fresno M: Cyclooxygenase 2-regulated genes an alternative avenue to the development of new therapeutic drugs for colorectal cancer. Front Pharmacol. 11:5332020. View Article : Google Scholar : PubMed/NCBI | |
Samowitz WS, Slattery ML, Sweeney C, Herrick J, Wolff RK and Albertsen H: APC mutations and other genetic and epigenetic changes in colon cancer. Mol Cancer Res. 5:165–170. 2007. View Article : Google Scholar : PubMed/NCBI | |
Pruitt K and Der CJ: Ras and Rho regulation of the cell cycle and oncogenesis. Cancer Lett. 171:1–10. 2001. View Article : Google Scholar : PubMed/NCBI | |
Tozaki Y, Aoki H, Kato R, Toriuchi K, Arame S, Inoue Y, Hayashi H, Kubota E, Kataoka H and Aoyama M: The combination of ATM and Chk1 inhibitors induces synthetic lethality in colorectal cancer cells. Cancers (Basel). 15:7352023. View Article : Google Scholar : PubMed/NCBI | |
Lai WL, Lee SC, Chang KF, Huang XF, Li CY, Lee CJ, Wu CY, Hsu HJ and Tsai NM: Juniperus communis extract induces cell cycle arrest and apoptosis of colorectal adenocarcinoma in vitro and in vivo. Braz J Med Biol Res. 54:e108912021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Y, Dai W, Wang H, Pan H and Wang Q: Long non-coding RNA CASP5 promotes the malignant phenotypes of human glioblastoma multiforme. Biochem Biophys Res Commun. 500:966–972. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gönenc II, Wolff A, Schmidt J, Zibat A, Müller C, Cyganek L, Argyriou L, Räschle M, Yigit G and Wollnik B: Single-cell transcription profiles in Bloom syndrome patients link BLM deficiency with altered condensin complex expression signatures. Hum Mol Genet. 31:2185–2193. 2022. View Article : Google Scholar : PubMed/NCBI | |
Bader S, Walker M, Hendrich B, Bird A, Bird C, Hooper M and Wyllie A: Somatic frameshift mutations in the MBD4 gene of sporadic colon cancers with mismatch repair deficiency. Oncogene. 18:8044–8047. 1999. View Article : Google Scholar : PubMed/NCBI | |
De Palma FDE, D'Argenio V, Pol J, Kroemer G, Maiuri MC and Salvatore F: The molecular hallmarks of the serrated pathway in colorectal cancer. Cancers (Basel). 11:10172019. View Article : Google Scholar : PubMed/NCBI | |
Rajamäki K, Taira A, Katainen R, Välimäki N, Kuosmanen A, Plaketti RM, Seppälä TT, Ahtiainen M, Wirta EV, Vartiainen E, et al: Genetic and epigenetic characteristics of inflammatory bowel disease-associated colorectal cancer. Gastroenterology. 161:592–607. 2021. View Article : Google Scholar : PubMed/NCBI | |
Pajares MJ, Palanca-Ballester C, Urtasun R, Alemany-Cosme E, Lahoz A and Sandoval J: Methods for analysis of specific DNA methylation status. Methods. 187:3–12. 2021. View Article : Google Scholar : PubMed/NCBI | |
Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J, Gray JW, Leonhardt H and Jaenisch R: Induction of tumors in mice by genomic hypomethylation. Science. 300:489–492. 2003. View Article : Google Scholar : PubMed/NCBI | |
Takeuchi C, Yamashita S, Liu YY, Takeshima H, Sasaki A, Fukuda M, Hashimoto T, Naka T, Ishizu K, Sekine S, et al: Precancerous nature of intestinal metaplasia with increased chance of conversion and accelerated DNA methylation. Gut. 73:255–267. 2024. View Article : Google Scholar : PubMed/NCBI | |
Oshima M, Murai N, Kargman S, Arguello M, Luk P, Kwong E, Taketo MM and Evans JF: Chemoprevention of intestinal polyposis in the Apcdelta716 mouse by rofecoxib, a specific cyclooxygenase-2 inhibitor. Cancer Res. 61:1733–1740. 2001.PubMed/NCBI | |
Xu X, Nie J, Lu L, Du C, Meng F and Song D: LINC00337 promotes tumor angiogenesis in colorectal cancer by recruiting DNMT1, which suppresses the expression of CNN1. Cancer Gene Ther. 28:1285–1297. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hu YH, Ma S, Zhang XN, Zhang ZY, Zhu HF, Ji YH, Li J, Qian XL and Wang YX: Hypermethylation of ADHFE1 promotes the proliferation of colorectal cancer cell via modulating cell cycle progression. Onco Targets Ther. 12:8105–8115. 2019. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Watkins DN, Jair KW, Schuebel KE, Markowitz SD, Chen WD, Pretlow TP, Yang B, Akiyama Y, Van Engeland M, et al: Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer. Nat Genet. 36:417–422. 2004. View Article : Google Scholar : PubMed/NCBI | |
Jafarpour S, Yazdi M, Nedaeinia R, Vatandoost N, Ferns GA and Salehi R: Status of integrin subunit alpha 4 promoter DNA methylation in colorectal cancer and other malignant tumors: A systematic review and meta-analysis. Res Pharm Sci. 18:231–243. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Zhou J, Zhang J, Cao H, Han F, Zhang H and Xu E: The expression of ADAMTS14 is regulated by promoter DNA methylation and is associated with poor prognosis in colorectal cancer. Exp Cell Res. 410:1129532022. View Article : Google Scholar : PubMed/NCBI | |
Kim YI, Pogribny IP, Basnakian AG, Miller JW, Selhub J, James SJ and Mason JB: Folate deficiency in rats induces DNA strand breaks and hypomethylation within the p53 tumor suppressor gene. Am J Clin Nutr. 65:46–52. 1997. View Article : Google Scholar : PubMed/NCBI | |
Kim YI, Christman JK, Fleet JC, Cravo ML, Salomon RN, Smith D, Ordovas J, Selhub J and Mason JB: Moderate folate deficiency does not cause global hypomethylation of hepatic and colonic DNA or c-myc-specific hypomethylation of colonic DNA in rats. Am J Clin Nutr. 61:1083–1090. 1995. View Article : Google Scholar : PubMed/NCBI | |
Marugame T, Tsuji E, Kiyohara C, Eguchi H, Oda T, Shinchi K and Kono S: Relation of plasma folate and methylenetetrahydrofolate reductase C677T polymorphism to colorectal adenomas. Int J Epidemiol. 32:64–66. 2003. View Article : Google Scholar : PubMed/NCBI | |
Othman R, Mohtarrudin N, Ahmad Zubir NM, Seow HF, Ngan KW and Osman M: HER3 overexpression and hypomethylation in colorectal adenocarcinoma. Malays J Pathol. 44:67–74. 2022.PubMed/NCBI | |
Timar J and Kashofer K: Molecular epidemiology and diagnostics of KRAS mutations in human cancer. Cancer Metastasis Rev. 39:1029–1038. 2020. View Article : Google Scholar : PubMed/NCBI | |
Santini D, Loupakis F, Vincenzi B, Floriani I, Stasi I, Canestrari E, Rulli E, Maltese PE, Andreoni F, Masi G, et al: High concordance of KRAS status between primary colorectal tumors and related metastatic sites: Implications for clinical practice. Oncologist. 13:1270–1275. 2008. View Article : Google Scholar : PubMed/NCBI | |
Lièvre A, Bachet JB, Boige V, Cayre A, Le Corre D, Buc E, Ychou M, Bouché O, Landi B, Louvet C, et al: KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab. J Clin Oncol. 26:374–379. 2008. View Article : Google Scholar : PubMed/NCBI | |
Wong CC, Xu J, Bian X, Wu JL, Kang W, Qian Y, Li W, Chen H, Gou H, Liu D, et al: In colorectal cancer cells with mutant KRAS, SLC25A22-mediated glutaminolysis reduces DNA demethylation to increase wnt signaling, stemness, and drug resistance. Gastroenterology. 159:2163–2180.e6. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mangelinck A and Mann C: DNA methylation and histone variants in aging and cancer. Int Rev Cell Mol Biol. 364:1–110. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sakai E, Nakajima A and Kaneda A: Accumulation of aberrant DNA methylation during colorectal cancer development. World J Gastroenterol. 20:978–987. 2014. View Article : Google Scholar : PubMed/NCBI | |
Kasprzak A: Prognostic biomarkers of cell proliferation in colorectal cancer (CRC): From immunohistochemistry to molecular biology techniques. Cancers (Basel). 15:45702023. View Article : Google Scholar : PubMed/NCBI | |
Hinoue T, Weisenberger DJ, Lange CPE, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM, et al: Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res. 22:271–282. 2012. View Article : Google Scholar : PubMed/NCBI | |
Jensen SØ, Øgaard N, Ørntoft MW, Rasmussen MH, Bramsen JB, Kristensen H, Mouritzen P, Madsen MR, Madsen AH, Sunesen KG, et al: Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer-a clinical biomarker discovery and validation study. Clin Epigenetics. 11:1582019. View Article : Google Scholar : PubMed/NCBI | |
Li Y, Li B, Jiang R, Liao L, Zheng C, Yuan J, Zeng L, Hu K, Zhang Y, Mei W, et al: A novel screening method of DNA methylation biomarkers helps to improve the detection of colorectal cancer and precancerous lesions. Cancer Med. 12:20626–20638. 2023. View Article : Google Scholar : PubMed/NCBI | |
Dai Y, Li H, Wu Q, Wang J, Wang K, Fei S, Pei B, Song L, Chen G, Ma Y, et al: A sensitive and robust plasma-based DNA methylation panel for early detection of target gastrointestinal cancers. Neoplasia. 46:1009412023. View Article : Google Scholar : PubMed/NCBI | |
Benatti P, Gafà R, Barana D, Marino M, Scarselli A, Pedroni M, Maestri I, Guerzoni L, Roncucci L, Menigatti M, et al: Microsatellite instability and colorectal cancer prognosis. Clin Cancer Res. 11:8332–8340. 2005. View Article : Google Scholar : PubMed/NCBI | |
Toh JWT, Phan K, Reza F, Chapuis P and Spring KJ: Rate of dissemination and prognosis in early and advanced stage colorectal cancer based on microsatellite instability status: Systematic review and meta-analysis. Int J Colorectal Dis. 36:1573–1596. 2021. View Article : Google Scholar : PubMed/NCBI | |
Popat S, Hubner R and Houlston RS: Systematic review of microsatellite instability and colorectal cancer prognosis. J Clin Oncol. 23:609–618. 2005. View Article : Google Scholar : PubMed/NCBI | |
Klump B, Nehls O, Okech T, Hsieh CJ, Gaco V, Gittinger FS, Sarbia M, Borchard F, Greschniok A, Gruenagel HH, et al: Molecular lesions in colorectal cancer: Impact on prognosis? Original data and review of the literature. Int J Colorectal Dis. 19:23–42. 2004. View Article : Google Scholar : PubMed/NCBI | |
Koyama M, Ito M, Nagai H, Emi M and Moriyama Y: Inactivation of both alleles of the DPC4/SMAD4 gene in advanced colorectal cancers: Identification of seven novel somatic mutations in tumors from Japanese patients. Mutat Res. 406:71–77. 1999.PubMed/NCBI | |
Song JH, Oh TJ, An S, Lee KH, Kim JY and Kim JS: Comparative detection of syndecan-2 methylation in preoperative and postoperative stool DNA in patients with colorectal cancer. World J Gastrointest Surg. 15:2032–2041. 2023. View Article : Google Scholar : PubMed/NCBI | |
Shima K, Nosho K, Baba Y, Cantor M, Meyerhardt JA, Giovannucci EL, Fuchs CS and Ogino S: Prognostic significance of CDKN2A (p16) promoter methylation and loss of expression in 902 colorectal cancers: Cohort study and literature review. Int J Cancer. 128:1080–1094. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carragher LAS, Snell KR, Giblett SM, Aldridge VS, Patel B, Cook SJ, Winton DJ, Marais R and Pritchard CA: V600EBraf induces gastrointestinal crypt senescence and promotes tumour progression through enhanced CpG methylation of p16INK4a. EMBO Mol Med. 2:458–471. 2010. View Article : Google Scholar : PubMed/NCBI | |
van der Weyden L, Arends MJ, Dovey OM, Harrison HL, Lefebvre G, Conte N, Gergely FV, Bradley A and Adams DJ: Loss of rassf1a cooperates with Apc(Min) to accelerate intestinal tumourigenesis. Oncogene. 27:4503–4508. 2008. View Article : Google Scholar : PubMed/NCBI | |
Melling N, Muth J, Simon R, Bokemeyer C, Terracciano L, Sauter G, Izbicki JR and Marx AH: Cdc7 overexpression is an independent prognostic marker and a potential therapeutic target in colorectal cancer. Diagn Pathol. 10:1252015. View Article : Google Scholar : PubMed/NCBI | |
el-Deiry WS, Nelkin BD, Celano P, Yen RW, Falco JP, Hamilton SR and Baylin SB: High expression of the DNA methyltransferase gene characterizes human neoplastic cells and progression stages of colon cancer. Proc Natl Acad Sci USA. 88:3470–3474. 1991. View Article : Google Scholar : PubMed/NCBI | |
Lu ZH, Ding Y, Wang YJ, Chen C, Yao XR, Yuan XM, Bu F, Bao H, Dong YW, Zhou Q, et al: Early administration of Wumei Wan inhibit myeloid-derived suppressor cells via PI3K/Akt pathway and amino acids metabolism to prevent colitis-associated colorectal cancer. J Ethnopharmacol. 333:1182602024.(Epub ahead of print). View Article : Google Scholar : PubMed/NCBI | |
Chen J, Zheng X, Xu G, Wang B, Hu L, Mao J, Lu X, Cai Y, Chai K and Chen W: Sini decoction inhibits tumor progression and enhances the anti-tumor immune response in a murine model of colon cancer. Comb Chem High Throughput Screen. 26:2517–2526. 2023. View Article : Google Scholar : PubMed/NCBI | |
Okuno K, Pratama MY, Li J, Tokunaga M, Wang X, Kinugasa Y and Goel A: Ginseng mediates its anticancer activity by inhibiting the expression of DNMTs and reactivating methylation-silenced genes in colorectal cancer. Carcinogenesis. 44:394–403. 2023. View Article : Google Scholar : PubMed/NCBI | |
Boughanem H, Kompella P, Tinahones FJ and Macias-Gonzalez M: An overview of vitamins as epidrugs for colorectal cancer prevention. Nutr Rev. 81:455–479. 2023. View Article : Google Scholar : PubMed/NCBI | |
Brockmueller A, Sajeev A, Koklesova L, Samuel SM, Kubatka P, Büsselberg D, Kunnumakkara AB and Shakibaei M: Resveratrol as sensitizer in colorectal cancer plasticity. Cancer Metastasis Rev. 43:55–85. 2024. View Article : Google Scholar : PubMed/NCBI | |
Link A, Balaguer F, Shen Y, Lozano JJ, Leung HC, Boland CR and Goel A: Curcumin modulates DNA methylation in colorectal cancer cells. PLoS One. 8:e577092013. View Article : Google Scholar : PubMed/NCBI | |
Lopez M, Gilbert J, Contreras J, Halby L and Arimondo PB: Inhibitors of DNA methylation. Adv Exp Med Biol. 1389:471–513. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fabianowska-Majewska K, Kaufman-Szymczyk A, Szymanska-Kolba A, Jakubik J, Majewski G and Lubecka K: Curcumin from turmeric rhizome: A potential modulator of DNA methylation machinery in breast cancer inhibition. Nutrients. 13:3322021. View Article : Google Scholar : PubMed/NCBI | |
Sharma M and Tollefsbol TO: Combinatorial epigenetic mechanisms of sulforaphane, genistein and sodium butyrate in breast cancer inhibition. Exp Cell Res. 416:1131602022. View Article : Google Scholar : PubMed/NCBI | |
Futterman B, Derr J, Beisler JA, Abbasi MM and Voytek P: Studies on the cytostatic action, phosphorylation and deamination of 5-azacytidine and 5,6-dihydro-5-azacytidine in HeLa cells. Biochem Pharmacol. 27:907–909. 1978. View Article : Google Scholar : PubMed/NCBI | |
Ghanim V, Herrmann H, Heller G, Peter B, Hadzijusufovic E, Blatt K, Schuch K, Cerny-Reiterer S, Mirkina I, Karlic H, et al: 5-Azacytidine and decitabine exert proapoptotic effects on neoplastic mast cells: role of FAS-demethylation and FAS re-expression, and synergism with FAS-ligand. Blood. 119:4242–4252. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wang Y, Chen FR, Wei CC, Sun LL, Liu CY, Yang LB and Guo XY: Zinc finger protein 671 has a cancer-inhibiting function in colorectal carcinoma via the deactivation of Notch signaling. Toxicol Appl Pharmacol. 458:1163262023. View Article : Google Scholar : PubMed/NCBI | |
Bhullar DS, Barriuso J, Mullamitha S, Saunders MP, O'Dwyer ST and Aziz O: Biomarker concordance between primary colorectal cancer and its metastases. EBioMedicine. 40:363–374. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Vuille JA, Wittner BS, Lachtara EM, Hou Y, Lin M, Zhao T, Raman AT, Russell HC, Reeves BA, et al: DNA hypomethylation silences anti-tumor immune genes in early prostate cancer and CTCs. Cell. 186:2765–2782.e28. 2023. View Article : Google Scholar : PubMed/NCBI | |
Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, Krol I, Scheidmann MC, Beisel C, Stirnimann CU, et al: Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 176:98–112.e14. 2019. View Article : Google Scholar : PubMed/NCBI | |
Padmanaban V, Krol I, Suhail Y, Szczerba BM, Aceto N, Bader JS and Ewald AJ: E-cadherin is required for metastasis in multiple models of breast cancer. Nature. 573:439–444. 2019. View Article : Google Scholar : PubMed/NCBI | |
Warton K and Samimi G: Methylation of cell-free circulating DNA in the diagnosis of cancer. Front Mol Biosci. 2:132015. View Article : Google Scholar : PubMed/NCBI | |
Zhou X, Yu L, Wang L, Xiao J, Sun J, Zhou Y, Xu X, Xu W, Spiliopoulou A, Timofeeva M, et al: Alcohol consumption, blood DNA methylation and breast cancer: A Mendelian randomisation study. Eur J Epidemiol. 37:701–712. 2022. View Article : Google Scholar : PubMed/NCBI | |
Gaiani F, Marchesi F, Negri F, Greco L, Malesci A, de'Angelis GL and Laghi L: Heterogeneity of colorectal cancer progression: Molecular gas and brakes. Int J Mol Sci. 22:52462021. View Article : Google Scholar : PubMed/NCBI | |
Bao Y, Zhai J, Chen H, Wong CC, Liang C, Ding Y, Huang D, Gou H, Chen D, Pan Y, et al: Targeting m6A reader YTHDF1 augments antitumour immunity and boosts anti-PD-1 efficacy in colorectal cancer. Gut. 72:1497–1509. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, et al: ALKBH5 drives immune suppression via targeting AXIN2 to promote colorectal cancer and is a target for boosting immunotherapy. Gastroenterology. 165:445–462. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Jiang C, Xu C and Gu L: Systematic analysis of integrated bioinformatics to identify upregulated THBS2 expression in colorectal cancer cells inhibiting tumour immunity through the HIF1A/Lactic Acid/GPR132 pathway. Cancer Cell Int. 23:2532023. View Article : Google Scholar : PubMed/NCBI | |
Yang L, Chen X, Lee C, Shi J, Lawrence EB, Zhang L, Li Y, Gao N, Jung SY, Creighton CJ, et al: Functional characterization of age-dependent p16 epimutation reveals biological drivers and therapeutic targets for colorectal cancer. J Exp Clin Cancer Res. 42:1132023. View Article : Google Scholar : PubMed/NCBI | |
Sheikhnejad G, Brank A, Christman JK, Goddard A, Alvarez E, Ford H Jr, Marquez VE, Marasco CJ, Sufrin JR, O'Gara M and Cheng X: Mechanism of inhibition of DNA (cytosine C5)-methyltransferases by oligodeoxyribonucleotides containing 5,6-dihydro-5-azacytosine. J Mol Biol. 285:2021–2034. 1999. View Article : Google Scholar : PubMed/NCBI | |
Zheng Z, Zeng S, Liu C, Li W, Zhao L, Cai C, Nie G and He Y: The DNA methylation inhibitor RG108 protects against noise-induced hearing loss. Cell Biol Toxicol. 37:751–771. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ou Y, Zhang Q, Tang Y, Lu Z, Lu X, Zhou X and Liu C: DNA methylation enzyme inhibitor RG108 suppresses the radioresistance of esophageal cancer. Oncol Rep. 39:993–1002. 2018.PubMed/NCBI | |
Tanaka S, Hosokawa M, Matsumura J, Matsubara E, Kobori A, Ueda K and Iwakawa S: Effects of zebularine on invasion activity and intracellular expression level of let-7b in colorectal cancer cells. Biol Pharm Bull. 40:1320–1325. 2017. View Article : Google Scholar : PubMed/NCBI | |
Guo Y, Shu L, Zhang C, Su ZY and Kong ANT: Curcumin inhibits anchorage-independent growth of HT29 human colon cancer cells by targeting epigenetic restoration of the tumor suppressor gene DLEC1. Biochem Pharmacol. 94:69–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Singh BN, Shankar S and Srivastava RK: Green tea catechin, epigallocatechin-3-gallate (EGCG): Mechanisms, perspectives and clinical applications. Biochem Pharmacol. 82:1807–1821. 2011. View Article : Google Scholar : PubMed/NCBI |